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Figure S1: Further detail of changes in ventilation (a), export productivity (b), 
temperature (c), and salinity (d) at the LGM relative to the Holocene, following 
Figure 2 in the main text.  Red indicates an increase at the LGM relative to the 
Holocene, blue a decrease, and white no clear change outside of 1s uncertainty.  
Ventilation proxies (d13C, circles; benthic-planktic radiocarbon offsets, diamonds; 
redox tracers, squares) are shown here only for sites more northerly than 40 °N (c.f. 0 
°N in Figure 2).  Productivity data (opal, circles; biogenic barium, squares) are shown 
here as mass accumulation rate of biogenic material into sediment.  In most cases this 
is calculated using d18O or 14C derived sediment core age models and dry bulk density, 
either measured or estimated from the compilation of Kohfeld & Chase (26); 230Th-
normalisation is used at a subset of sites, indicated with bold symbol outlines.  
Temperature reconstructions (planktic foraminiferal Mg/Ca, circles; alkenone 
saturation index UK’37, diamonds) and change in salinity (d18O on planktic foraminifera 
corrected for temperature using Mg/Ca and for whole ocean d18O and salinity changes 
due to ice volume) are shown using a graduated scale to illustrate the magnitude of 
change.  This alternative presentation of the data in Figure 2 of the main text supports 
the conclusion that the subpolar LGM North Pacific was better ventilated at 
intermediate depths, with lower productivity, and relatively warm and salty surface 
waters.   
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Figure S2: Further detail on d13C depth profiles, highlighting minimal influence 
of age model uncertainties (a) and regional differences (b). (a) Benthic foraminiferal 
d13C data from the northwest Pacific from the Holocene (open symbols), LGM (closed 
blue symbols), and a timeslice 3000 years older than the LGM timeslice (closed yellow 
symbols) (6).  Cibicides spp. are shown in circles, Uvigerina in squares; although 
Uvigerina are not typically used for estimates of bottom water d13C, they are 
indistinguishable from the Cibicides data at the LGM, and allow extension of the profile 
deeper in time (as Cibicides data do not extend beyond the LGM).  LGM and LGM+3ka 
d13C data have been corrected for a whole ocean d13C change of 0.34 ‰ (17).  The 
LGM and Holocene foraminiferal d13C are fit with a general additive model.  (b) 
Holocene (open symbols) and LGM (closed symbols) foraminiferal d13C data from 
across the basin, as used in the ventilation proxy compilation (see Methods).  Data from 
west of the dateline is shown in pink, east in green, and each profile has been fit with a 
general additive model. Water column d13C for the North Pacific (black dotted line) 
and North Atlantic (red dotted line) are taken from the recent compilation of (162), and 
include all values between 40-65 °N in each basin; here a generalized additive model 
fit to the data is shown. The Pacific depth profile of d13C is notably different at the 
LGM, with elevated values found at intermediate depths.  The glacial increase in 
intermediate depth d13C is more apparent in the west of the basin relative to the east; 
this is suggestive of a source of local ventilation in west of the basin. 
  



 

 

Figure S3: Meridional d13C sections from benthic foraminifera in the Western (a, 
b) and Eastern (c, d) Pacific in the late Holocene (a, c) and at the LGM (b, d).  Data 
are taken from the compilation of (17), with glacial data corrected for a whole ocean 
d13C change of 0.34 ‰, and are plotted using Ocean Data View (54). The location of 
the data making up these sections are shown in the inset maps.  Areas of poor data 
coverage are shown in grey.  At the LGM there is a substantial increase in d13C of 
intermediate waters in the North Pacific, indicating enhanced ventilation.  The largest 
change is observed in the West of the basin, as expected from the formation of a deep 
western boundary current.   
  



 

 

Figure S4: Latitudinally binned deglacial changes in SST (a) and d18O of seawater 
(b).  (a) At each site Mg/Ca and/or UK’37 SSTs were converted to a difference from 
Holocene (0-10 ka, light grey box) and binned by latitude. (b) d18O of seawater, derived 
from paired measurements of Mg/Ca and d18Ocalcite and corrected for changes in global 
ice volume, was converted to a difference from Holocene and binned by latitude.  The 
latitudinally binned SST and d18Oseawater data were modelled as a function of time using 
a generalised additive model (GAM), with the 68% and 95% Bayesian credible 
intervals shown (161, 163). For each latitudinal SST and d18Oseawater bin, the LGM (19-
21 ka, dark grey box) value is given with the 95% confidence interval.  
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Figure S5: Model sensitivity tests, showing the salinity (a) and phosphate 
concentration (b) of surface waters in the subpolar North Pacific, as a function of 
exchange with the subtropical gyre (VSTG) under different boundary conditions.  
Base state values are given in Table S2; P-E+R is net precipitation plus riverine run-
off; SSTG is the salinity of the subtropical gyre; VUP is the upwelling flux; [PO4-]UP is 
the phosphate concentration of upwelled water.  Subpolar salinity increases when (i) 
net precipitation is reduced, (ii) upwelling is increased, and (iii) exchange with the 
subtropics is enhanced, particularly when subtropical salinity is elevated.  Phosphate 
concentrations in the subpolar gyre are reduced by exchange with the subtropics and by 
decreasing the phosphate concentrations of upwelled waters, and are increased by 
increasing the upwelling flux.  Note that the net effect of doubling vertical exchange 
while halving subsurface nutrients is similar to that of halving subsurface nutrients 
alone.  Because the wind- and tidally-driven transfer of water from 
to the surfac e  Nor th Pacif ic is hi gh vert ic al nut, rient gra dients ar e relativel y   

  ther increase in vertical exchange – for instance due to convective mixing – 
  fluence than decreasing the nutrient content of the upwelled water.   
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Figure S6: The relationship between Atlantic to Pacific freshwater forcing and 
maximum PMOC in cGENIE.  Forcing values are shown as anomalies relative to the 
prescribed Atlantic to Pacific freshwater flux, which has a default value of 0.23 Sv (i.e. 
the default flux of 0.23 Sv plots as 0 on the figure above).  
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Figure S7: Representative cGENIE experiments spanning a range of PMOC 
states.  Top row shows phosphate and overturning anomalies, illustrating the flushing 
of phosphate from the upper reaches of the North Pacific as overturning increases.  
Bottom row shows the North Pacific water fraction at 1000 m, based on a dye tracer 
tagging surface waters north of 40 °N in the North Pacific.  These experiments were 
run under glacial boundary conditions.  Newly formed NPIW travels south as a western 
boundary current, while the eastern basin feels relatively little influence of NPIW at 
low latitudes.  Even at high overturning rates, North Pacific deep water is largely 
confined to the Pacific basin.  Note that the central experiment (-0.19 Sv forcing and 8 
Sv PMOC) shows the best fit to the data in Figures 5, S10.  
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Figure S8: Phosphate and Dissolved Inorganic Carbon (DIC) anomalies under 
enhanced PMOC in simulations with the LOVECLIM (1.1) and UVic (v2.9) Earth 
System Models by Menviel et al.(28).  These simulations were forced with North 
Atlantic freshwater hosing of 0.1 Sv for 2000 years (fNA in the rubric of the original 
publication), which produces a strong PMOC in response (stream function contours are 
shown for LOVECLIM).  As in cGENIE, the establishment of an active overturning 
circulation in these higher resolution models flushes nutrients from the upper reaches 
of the North Pacific.  
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Figure S9: Transient response of North Pacific surface nutrients at the onset of 
enhanced overturning in cGENIE.  Data are shown for the NW of the subpolar gyre 
in simulations spanning a range of overturning states (as in Figure S7).  For the first 
several hundred years after North Pacific salinity is increased, surface phosphate shows 
a transient increase (top panel), as convective mixing increases (bottom panel) and 
subsurface nutrients remain relatively high (middle panel).  As overturning becomes 
established, nutrient-rich subsurface waters are flushed out, reducing surface nutrient 
supply despite the increase in convective mixing, as described in main text (e.g. Figure 
4).  
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Figure S10: Simulated changes in d13C (a), oxygen concentration (b), and Δ14C (c) 
compared to the changes seen in our LGM data compilation.  The simulated section 
is from 165 °W for the experiment run with an Atlantic to Pacific freshwater forcing of 
-0.18 Sv under glacial boundary conditions and is shown as an anomaly from conditions 
prior to anomalous salinity forcing.  This experiment shows the best match to LGM 
d13C profile data (Figure 5).  Note that as the abyssal Pacific likely remains ventilated 
by Southern Ocean waters at depths greater than 2000 m, and as we have not made any 
changes to the Southern Ocean in our simulations, some offsets between the 
experiments and the data are to be expected at depth.  

  

a)

b)

5

4

3

2

1

0
D

ep
th

 (k
m

)

-2

-1

0

1

2

5

4

3

2

1

0

D
ep

th
 (k

m
)

-200

-100

0

100

200

Latitude

5

4

3

2

1

0

D
ep

th
 (k

m
)

-100

-50

0

50

100c)

δ
13C

 (‰
) anom

aly
[O

2 ] anom
aly

∆
14C

 (‰
) anom

aly

Latitude

Latitude

No change Higher at LGMLower at LGM

0°N 30°N 60°N

0°N 30°N 60°N

30°N 60°N0°N



 

 

Figure S11: Annual mean meridional overturning circulation streamfunction (a), 
surface temperature (b), and sea surface salinity (c) in the North Pacific in 
simulations of preindustrial and LGM climate with the Community Climate 
System Model version 3 (CCSM3). The North Pacific streamfunction is diagnosed 
from the difference between the Eulerian mean streamfunction of the global ocean and 
the Atlantic, both of which are output directly from the model. Positive values denote 
a clockwise circulation.  Preindustrial properties are averaged over model years 470-
489 of the preindustrial control simulation described by Otto-Bliesner et al.(164  ), and 
LGM properties over model years 380-399 of the simulation described by Otto-Bliesner 
et al.(164, 165).  LGM conditions include greenhouse gas forcings and insolation at 21 
ka values, and ice sheets based on the 21 ka reconstruction from ICE-5G (166). Note 
the enhanced intermediate-depth overturning, warming of NW Pacific waters, and 
increased salinity of surface waters in the North Pacific under glacial conditions.  
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Figure S12: Volumetric contribution of North Pacific waters to the global ocean 
in the CM2Mc model under a range of boundary conditions.  Simulations are from 
(167)  and were designed to ensure equilibration of the deep ocean.  North Pacific waters 
were tagged using a tracer in surface waters >30 °N in the Pacific basin.  The fraction 
of North Pacific waters filling the global ocean systematically increases with decreasing 
CO2, supporting the idea that a colder climate enhances the formation of NPIW.  We 
note that in these simulations NPIW formation is decreased in the presence of LGM ice 
sheets, although the geometry of the ice sheets used in these simulations is now thought 
to have some significant inaccuracies compared to more recent reconstructions (168).  
CM2Mc also has a cold bias in the North Pacific, which leads to relatively high NPIW 
formation under modern conditions (167). Nevertheless, these simulations illustrate 
the potential for enhanced North Pacific overturning in a state-of-the-art Earth system 
model under cold climate conditions.  
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Figure S13: Intermediate water d13C from cGENIE over a range of overturning 
states in the North Atlantic (orange circles and dashed line) and North Pacific 
(blue crosses and solid line).  Values are taken from 1000 m at a central position in 
each Northern basin (40 °N 165 °W in the Pacific, 48 °N 35 °W in the Atlantic).  
Intermediate depth d13C is consistently lower in the North Pacific than in the North 
Atlantic under similar rates of overturning.  
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Figure S14: Change in the inventory of preformed phosphate (a) and atmospheric 
CO2 (b) as a function of changes in NPIW’s global volume fraction, preformed 
phosphate composition, and PMOC (c).  Shaded contours show the result of mass 
balance calculations, assuming NPIW replaces water with preformed phosphate of 1.4 
(158), with CO2  change then calculated using the scaling of Ito & Follows (33).  
Symbols in (a) and (b) show the NPIW volume and preformed phosphate found in our 
cGENIE experiments, and (c) shows the calculated change in CO2 using these values 
and the scaling of (33) against the maximum PMOC for each experiment.  Note the 
sensitivity of CO2 to changes in PMOC of ~6-12 Sv (c), driven by the increase in the 
volume of the global ocean occupied by NIPW (b).   
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Table S1:  

Results of calculations based on Warren’s box model.  Input values include net 
precipitation (P-E) and riverine runoff (R), the salinity of the subtropical gyre (SSTG), 
advection from the subtropical gyre (VSTG), and the phosphate concentration of 
upwelled waters (PO4UP).  Output values are the salinity (SSPG) and phosphate 
concentration (PO4SPG) of the top 200 m of the subpolar gyre.  

 

 

 

 

 

Table S2:  

Model input parameters for modern base state. P-E and R are from ERA-Interim 
reanalysis from (148), VSTG and VUP are from (3) and salinity and phosphate 
concentrations are from World Ocean Atlas, computed using the box averaging tool in 
Ocean Data View (149).  

	
	
	
	

 Model inputs Model outputs 

	
P-E + R SSTG VSTG PO4

-
UP SSPG PO4

-
SPG 

  Sv psu Sv µmol/kg psu µmol/kg 

Modern Pacific - observed 0.21 + 0.07 34.6 2 3.1 33.0 1.8 
Modern Pacific - model 0.21 + 0.07 34.6 2 3.1 33.0 2.0 
Subtropical salinity + 1 psu 0.21 + 0.07 35.6 2 3.1 33.3 2.0 
Gyre exchange + 2 Sv 0.21 + 0.07 34.6 4 3.1 33.4 1.6 
Subtropical salinity & Gyre exchange combined 0.21 + 0.07 35.6 4 3.1 33.9 1.6 
Net rainfall (P-E) - 30% 0.15 + 0.05 34.6 2 3.1 33.7 2.0 
Subtropical salinity, Gyre exchange, P-E combined 0.15 + 0.05 35.6 4 3.1 34.2 1.6 
As above with 2x upwelling & 0.5x upwelled [PO4] 0.15 + 0.05 35.6 4 1.5 34.4 1.1 
Modern Atlantic - observed 0.10 + 0.06 36.6 5-10 1.1 35.0 0.8 

	
	
	

P-E R VSTG VUP SSTG SUP PO4
-
SPG PO4

-
UP 

Sv Sv Sv Sv psu Sv µmol/kg µmol/kg 
0.213 0.07 2.02 3.74 34.6 34.6 3.1 0.28 
	

P-E R VSTG VUP SSTG SUP PO4
-
SPG PO4

-
UP 

Sv Sv Sv Sv psu Sv µmol/kg µmol/kg 
0.213 0.07 2.02 3.74 34.6 34.6 3.1 0.28 
	

!
P-E R VSTG VUP SSTG SUP PO4

-
STG PO4

-
UP 

Sv Sv Sv Sv psu Sv µmol/kg µmol/kg 
0.213 0.07 2.02 3.74 34.6 34.6 3.1 0.28 
!
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