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Supplementary Note  

Effect of "Pre-filters" on error modeling  

The growing catalogs of somatic mutations in cancer and the large databases of human germline 

variants make it possible to define genomic loci more likely to be associated with authentic 

mutations. Therefore, one can attempt to incorporate this knowledge by removing those alleles to 

refine error modeling for increased sensitivity. Thus, a set of filters was incorporated in the 

Espresso pipeline helping in mitigating the inclusion of real mutated alleles in contextual error 

models (Materials and Methods). To determine the effect of our filtering step on the accuracy of 

mutation detection, we analyzed the cell line dilution dataset with and without applying the filters. 

When the filters were not used, an expected decrease in sensitivity was observed (Fig S4A).  

Alleles with a high number of supporting reads are relatively infrequent as compared with 

the high number of typical errors observed in hybrid capture sequencing data. Yet, they can result 

in poorer overall model performance if not treated separately. To shed light on the observed 

sensitivity decrease, we focused on the effect of germline mutations on contextual model fitting 

following the removal of the MAF>=0.1% filter. In a representative sample, we measured the 

goodness of fit for the A[C>T]G contextual model as it is expected to be populated with a high 

number of germline alleles (Fig S4B).  When the filter was removed, the model failed to 

appropriately match the observed and expected number of nonreference supporting reads (Fig 

S4C). These results illustrated that failure to enrich for error alleles prior to model derivation would 

compromise the detection of real mutation with relatively low read support. 

 

 

 

SUPPLEMENTARY INFORMATION: 



Selecting the appropriate distribution fit for nonreference supporting reads 

In implementing Espresso for a particular dataset, we assess the goodness of fit of different 

distribution models to the data. We found that any single model cannot appropriately account for 

the different proportions of nonreference supporting reads in the various datasets tested. Selecting 

the appropriate model to match the distribution of nonreference supporting reads in the dataset 

(Fig. 3B, Materials and Methods) provided a more powerful and robust approach (Fig. S5). 

 

Advantage of modeling the number of nonreference supporting reads  

We evaluated whether modeling errors by their number of nonreference supporting reads (SR) will 

better mitigate the effect of varying coverage on mutation detection as compared with allele 

frequency-based modeling (Fig. S1C). Using the AML-MRD cohort, for each mutation that was 

reported in the diagnostic samples, we determined its VAF and SR in the follow-up samples of the 

patients. We then checked how many other alleles with the same genomic context had been 

reported with either a higher VAF or a higher number of SR. We observed that for the majority of 

the diagnostic alleles, higher number of other contextual nonreference alleles were reported with 

higher VAF as compared with higher number of SR (Fig. S6A). These results imply that 

probabilistic error models that are based on the VAF parameter are likely to result in a longer right-

skewed distribution tail and, therefore, potentially a higher number of false negative results as 

compared with models that are based on the SR parameter. These results were also replicated using 

a random selection of alleles (Fig. S6B), illustrating that the observed advantage of using SR-based 

models is not specific to the reported diagnostic mutations, and it is rather a robust approach to 

also mitigate false positive calls. 
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Fig. S1. Intrinsic limitations of common error suppression techniques. (A) Diagram 
illustrating the design and usage of unique molecular adapters for single-stranded consensus 
sequences (SSCS) and duplex implementation. During each step, lower-level reads that cannot 
form SSCS or duplex sequences are typically being disposed to achieve a higher level of 
confidence in mutation calls. Disposal of such reads results in information loss. (B) Low SSCS 
and duplex assembly efficiency (calculated as the number of SSCS or duplex reads divided by all 
the number of raw reads) results in lower depth. In turn, lower depth due to “lower-level” read 
disposal may translate to lower sensitivity and high detection limit levels. (C) Illustration of 
training set usage approach for error rate estimation. When sequencing depth is not considered, 
probabilistic error models may suffer from higher rates of type 1 and type 2 errors. (D) Modeling 
the number of supporting nonreference reads (SR) better captures the relationship between VAF 
and coverage thus helping with mitigating this issue (Supplementary Note). VAF (also referred 
to as error rates in the manuscript) and coverage (also referred to as depth in the manuscript) are 
plotted on a log-log scale 
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Fig. S2. Error rates differ at different trinucleotide sequence contexts. Mean error rates per 
sample are shown for each one of the 192 trinucleotide contextual error types across the (A) CB, 
(B) CL, (C) pre-AML1, and (D) pre-AML2 datasets. Vertical lines in each contextual error box 
represent individual samples, and their order is maintained in each box. 
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Fig. S3. Error rates asymmetries. (A) Contextual error rates and their reciprocals are 
superimposed, demonstrating intra-sample variation. Results are illustrated for 14 control samples 
that were sequenced together with the AML-MRD dataset. (B) Error rates vary significantly 
between error contexts and their reciprocals (Wilcoxon rank-sum test, P<0.05. # sign indicates that 
significance was not reached). Results from the CB, CL, pre-AML1 and pre-AML2 cohorts are 
shown.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S4: Incorporating pre-filtering steps improves error modeling accuracy and 
performance. (A) Espresso’s performance on the CL dataset when the 5 pre-filters were applied 
before error modeling (solid line, also reported in the main text, Fig4. A) and when they were not 
applied (dashed lines). (B) Number of contextual germline alleles defined as mutations with 
MAF>=0.1% either in 1000 genomes (50) or Kaviar (51) databases that are covered by the targeted 
panel. There are a high number of affected genomic loci corresponding to the N[C>T]G context 
that typically arises from methylation-mediated deamination of 5-methylcytosine. (C) The 
Cumulative Distribution Function graph displays the empirical data for the A[C>T]G genomic 
context in a representative sample from the CL dataset (black dots, nonreference supporting reads). 
The models’ contextual allele counts estimates are shown when alleles with MAF>=0.1% were 
omitted from the sample’s data (Blue line) and when these alleles were not omitted (Red line). 
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Fig. S5: Improved fit by automatic probabilistic distribution model selection. As described 
in Fig. 3B, the appropriate model is selected based on the modal nonreference supporting reads 
across the interrogated positions (exponential model for nonreference supporting reads = 1; 
Weibull model for nonreference supporting reads >1). The Cumulative Distribution Function 
graphs illustrate the goodness of fit. (A) The appropriate exponential model’s fit (blue) to the CB 
data (n=10 samples) and the less suitable Weibull model’s fit (red) are illustrated. (B) The 
appropriate Weibull models’ fit (blue) to the AML-MRD control sample set (n=14 samples) and 
the less suitable exponential model’s fit (red) are illustrated. Black dots represent the actual 
number of nonreference supporting reads observed in the samples. The merged data derived from 
all the contextual models is shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S6: Error modeling based on the number of nonreference supporting reads is likely to 
result in lower numbers of false positive and negatives calls as compared with VAF-based 
modeling. (A) Each dot represents a single mutation in the AML-MRD cohort that was reported 
in the diagnostic samples. Dot location represents the number of alleles with the same genomic 
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context as the diagnostic mutations that were detected with higher VAF (y-axis) or higher number 
of nonreference supporting reads (SR) (x-axis) in the patient’s follow-up samples. Black dots 
(x=y), represent that an equal number of alleles with the same genomic context as the mutation 
were detected with higher VAF as compared with alleles with higher number of nonreference SR. 
For red dots (above the line of equality), a greater number of alleles were detected with higher 
VAF as compared with alleles with higher number of nonreference SR. For blue dots (below the 
line of equality), a lesser number of alleles were detected with higher VAF as compared with 
alleles with higher number of nonreference SR. (B) Single alleles were randomly selected by 
iterating over every trinucleotide contextual pattern in every sample in the AML-MRD dataset 
resulting in 18,432 interrogated alleles. In each sample, the sums of alleles with the same genomic 
context as the randomly queried allele with higher VAF or higher SR were calculated. A significant 
higher number of contextual alleles with with higher VAF as compared with alleles with higher 
SR is observed (Wilcoxon signed-rank test: P = 4.9x10-9).  
 
 
 

 
 
Fig. S7. Sensitivity versus specificity of various contextual error modeling approaches. 
(A,B,C) Sensitivity versus specificity trade-offs derived by Espresso, and the reduced and 
extended contextual error modeling approaches are illustrated at serially decreased panel sizes. 
The figure illustrates the same data as in Fig. 4E-H, yet in here, the data is being grouped based 
on the modeling approached rather than the panel size. 
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Fig. S8. Performance comparisons with deepSNV. Variable performance was calculated with 
deepSNV when different control samples were used (dashed color lines, n=14 iterations). A solid 
green line represents the performance of Espresso. deepSNV performance is being shown (A) at 
default settings. P-values were determined for each observed nonreference allele in the 78 genomic 
positions reported to be mutated in the AML-MRD cohort at AML diagnosis. Sensitivities and 
specificities are illustrated at each p-value cut-off. (B) deepSNV’s performance is illustrated when 
only the most abundant nonreference allele in each one of the investigated genomic positions in 
the sample of interest is being considered. Other nonreference alleles that were reported following 
the analysis of the raw samples bams files by deepSNV were automatically considered as true-
negatives. (C) deepSNV’s performance, when only the most abundant nonreference alleles 
reported by our bioinformatics pipeline are being considered. The increased performance indicates 
the added value of our bam files preprocessing and allele prefiltering schemes described herein 
(see Materials and Methods). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S9. Longitudinal detection of clonal and sub-clonal SNVs in AML patients. Espresso 
detected SNVs in 32 out of the 42 individuals recruited to this study. For each patient, the 
mutations’ VAF is plotted at a time point relative to the time that followed diagnosis. Variants that 
supposedly existed or detected at multiple time points are connected with a black line (alpha≤0.05, 
Bonferroni adjusted. specificity=99.47% as estimated from the diagnostic mutations). Red and 
blue vertical lines represent induction and consolidation treatment rounds, respectively. 
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