
Article
Turbulent-like Dynamics i
n the Human Brain
Graphical Abstract
Highlights
d Amplitude turbulence found in empirical human brain

dynamics

d Whole-brain model with coupled oscillator provides causal

evidence

d Confirms exponential distance rule of anatomy as cost-of-

wiring principle

d Turbulent-like dynamic intrinsic backbone for large-scale

brain communication
Deco & Kringelbach, 2020, Cell Reports 33, 108471
December 8, 2020 ª 2020 The Authors.
https://doi.org/10.1016/j.celrep.2020.108471
Authors

Gustavo Deco, Morten L. Kringelbach

Correspondence
morten.kringelbach@psych.ox.ac.uk

In Brief

Deco and Kringelbach show turbulent-

like dynamics in empirical human

neuroimaging data and use a whole-brain

model for discovering the underlying

mechanistic principles. Overall, the

results reveal a way of analyzing and

modeling whole-brain dynamics that

suggests a turbulenct-like dynamic

intrinsic backbone facilitating large-scale

network communication.
ll

mailto:morten.kringelbach@psych.ox.ac.uk
https://doi.org/10.1016/j.celrep.2020.108471
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.108471&domain=pdf


OPEN ACCESS

ll
Article

Turbulent-like Dynamics in the Human Brain
Gustavo Deco1,2,3,4 and Morten L. Kringelbach5,6,7,8,*
1Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies,

Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain
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SUMMARY
Turbulence facilitates fast energy/information transfer across scales in physical systems. These qualities are
important for brain function, but it is currently unknown if the dynamic intrinsic backbone of the brain also
exhibits turbulence. Using large-scale neuroimaging empirical data from 1,003 healthy participants, we
demonstrate turbulent-like human brain dynamics. Furthermore, we build a whole-brain model with coupled
oscillators to demonstrate that the best fit to the data corresponds to a region of maximally developed
turbulent-like dynamics, which also corresponds to maximal sensitivity to the processing of external stimu-
lations (information capability). The model shows the economy of anatomy by following the exponential
distance rule of anatomical connections as a cost-of-wiring principle. This establishes a firm link between tur-
bulent-like brain activity and optimal brain function. Overall, our results reveal a way of analyzing and
modeling whole-brain dynamics that suggests a turbulent-like dynamic intrinsic backbone facilitating
large-scale network communication.
INTRODUCTION

The study of turbulence remains one of the most exciting un-

solved problems of modern physics (Cross and Hohenberg,

1993). Much progress has been made in the field of fluid and

oscillator dynamics in terms of understanding and modeling tur-

bulence (Cross and Hohenberg, 1993; Kawamura et al., 2007;

Kuramoto, 1984). One of themost relevant aspects of turbulence

is the ability to facilitate fast energy transfer across fluids, the

statistical study of which was pioneered by Andrey Kolmogorov

(Frisch, 1995; Kolmogorov, 1941a, 1941b). At an abstract level,

effective energy transfer can be thought of in terms of efficient in-

formation processing. Thus, a key question presents itself,

namely are there turbulence-like dynamics in the human brain?

In the context of turbulence in fluid dynamics, Kolmogorov

developed his phenomenological theory of turbulence (Kolmo-

gorov, 1941a, 1941b; see excellent review in Frisch, 1995).

This introduced the important concept of structure functions,

based on computing the spatial correlations between any two

points in a fluid, which demonstrated and quantified the energy

cascades that balance kinetics and viscous dissipation.

Later on, Kuramoto used the theory of coupled oscillators to

show turbulence in fluid dynamics (Kuramoto, 1984). Beyond

fluid dynamics, coupled oscillators have in general been highly

successful for describing large-scale brain activity and in partic-
C
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ular their metastability (Cabral et al., 2014; Deco et al., 2017).

These findings suggest that turbulence could play a role in brain

dynamics and could be important for ensuring efficient informa-

tion transfer (rather than energy transfer). Specifically, in the

coupled oscillator framework, the Kuramoto local order param-

eter represents a spatial average of the complex phase factor

of the local oscillators weighted by the coupling. The level of

amplitude turbulence is defined as the standard deviation of

the modulus of Kuramoto local order parameter and can be

applied to the empirical data of any physical system.

Here, to investigate the presence of turbulence-like traces in

human brain dynamics, we combined Kuramoto’s framework

for describing turbulence with Kolmogorov’s concept of struc-

ture functions for describing turbulence. We applied this frame-

work to a large HumanConnectomeProject (HCP) databasewith

neuroimaging data from 1,003 healthy human participants. We

found that the empirical data show clear evidence of turbulent-

like dynamics (indexed by the local Kuramoto order parameter).

One thing is to observe, however, and another is to truly under-

stand a phenomenon through a causal mechanistic model. The

dynamics of the human brain has been described using a

plethora of whole-brain models, which include biophysical real-

istic models (Chaudhuri et al., 2015; Deco and Jirsa, 2012; Demi-

rtasx et al., 2017, 2019; Ghosh et al., 2008; Honey et al., 2009;

Izhikevich and Edelman, 2008) andmodels of coupled oscillators
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(Cabral et al., 2014; Deco et al., 2017b, Deco et al., 2017). Yet, no

one has investigated whether these dynamics show traces of

turbulence.

Therefore, we used a whole-brain model with Stuart-Landau

(also known as Hopf) oscillators (Deco et al., 2017) and used

the exponential distance rule of anatomical connections as a

cost-of-wiring principle. We demonstrated the economy of

anatomy and showed that, at the dynamical working point of

the whole-brain model optimally fitting the empirical data,

the system not only show sturbulent-like dynamics, but it is

also maximal. Even further, we generalized the concept of

susceptibility, which measures the sensitivity of the brain to

the processing of external stimulation, to define a measure

of the information capability of the whole-brain model. The in-

formation capability is designed to capture how different

external stimulations of the model are encoded in the elicited

dynamics (see STAR Methods). Remarkably, at the dynamical

working point of the model fitting the data where there are

maximal turbulent-like dynamics, we also found maximal in-

formation capability.

This framework also allowed us to investigate the differences

between the turbulent-like dynamics found in resting state and

in the seven behavioral tasks found in the HCP dataset. The re-

sults show that they share a turbulent core but that the long-dis-

tance correlations show task-specific increases in higher-order

brain regions outside the turbulent core.

Finally, given that we have shown a turbulent-like dynamic

intrinsic backbone facilitating large-scale network communica-

tion, we also investigated if there are power laws in empirical

brain dynamics similar to those found by Kolmogorov in the

structure functions of fluid dynamics. In our case, however,

such power laws would be evidence of the presence of a

cascade of efficient information processing across scales. We

found power laws in the turbulent core, tentatively named the

‘‘inertial subrange,’’ similar to those found in fluid dynamics,

and that similarly appear to be homogeneous isotropic, i.e.,

with average properties that are both independent of position

and direction.

RESULTS

In order to demonstrate turbulence in human brain dynamics, we

combined the seminal insights andmethods of Kolmogorov (Kol-

mogorov, 1941a, 1941b) and Kuramoto (1984). The study of tur-

bulence in fluid dynamics (see left panel of Figure 1A) was

strongly influenced by Richardson’s concept of cascaded

eddies reflecting the energy transfer (see cartoon in right panel

of Figure 1A), for which the hierarchical organization of different

sizes of eddies is schematized for the turbulent so-called inertial

subrange, i.e., the range in which turbulence kinetic energy is

transferred from larger to smaller scales without loss (see

shaded areas in Figures 1A and 1B). Subsequently, this inspired

Kolmogorov to create his phenomenological theory of turbu-

lence based on the concept of structure functions. For fluid

dynamics, he demonstrated the existence of power laws in the

inertial subrange in which the structure functions show a univer-

sal scaling of the spatial scale, i.e. Euclidean distance, r, given by

r
2 =

3 (left panel of Figure 1B) and an energy scaling of k, the
2 Cell Reports 33, 108471, December 8, 2020
associated wave number of the spectral scale given by k�
5 =

3

(right panel of Figure 1B).

Another way to describe turbulence in fluid dynamics was pro-

posed by Kuramoto (1984), who defined a local order parameter,

representing a spatial average of the complex phase factor of the

local oscillators weighted by the coupling. The amplitude turbu-

lence is simply given by the standard deviation of the modulus of

this measure. An example of this is shown in Figure 1C for a ring

of Stuart-Landau oscillators (Kawamura et al., 2007).

We used the state-of-the-art resting state data from a large

set of 1,003 healthy human participants in the HCP database

(see Figure 1D and STAR Methods), extracting the timeseries

from each the 1,000 parcels in the fine-grained Schaefer par-

cellation (Schaefer et al., 2018; Figure 1E). The empirical data

were minimally pre-processed according to the HCP protocol,

subsequently filtered in the narrow relevant band between

0.008 and 0.08 Hz, and then detrended and Z scored (see

STAR Methods). We computed the function structure as the

functional correlations between pairs with equal Euclidean dis-

tance, r, in Montreal Neurological Institute (MNI) space (Fig-

ure 1F). We combined Kolmogorov’s structure functions with

Kuramoto’s local order parameter to demonstrate turbulent-

like dynamics. Finally, we created a whole-brain model by using

simplified brain connectivity following the exponential distance

rule (Ercsey-Ravasz et al., 2013; Markov et al., 2013, 2014)

based on massive tract tracing studies in non-human primates

(Figure 1G). This whole-brain model was based on Stuart-

Landau (also called Hopf) oscillators (Deco et al., 2017) aiming

to establish the causal mechanisms underlying the emergence

of turbulent-like dynamics (Figure 1H).

Amplitude Turbulence in Empirical Brain Dynamics
We computed the local Kuramoto order parameter R for the

empirical brain resting data of 1,200 data points from the 1,003

HCP participants and compared it to surrogate data, a shuffled

version maintaining the spatiotemporal characteristics of the

empirical data (Kantz and Schreiber, 1997). Amplitude turbu-

lence, D, is defined as the standard deviation of the modulus

of R across time and space (Kawamura et al., 2007). Figure 2A

(left panel) shows a boxplot of the statistically significant differ-

ence (p < 0.001, two-sided Wilcoxon rank-sum test) between

empirical and surrogate data. Furthermore, to ascertain the

absence of regular spatiotemporal patterns in the empirical

data, we computed the autocorrelation of R across space and

time (Figure 2A, middle and right panel, respectively), which

show a rapid decay as expected in turbulence.

It is instructive to visualize the change over time and space of

R. Figure 2B shows the spatiotemporal evolution of amplitude

turbulence in empirical data of a single participant in a 2D plot

of all 500 parcels in the left hemisphere over the 1,200 time

points. Given that this is a 1D representation of a 3D space,

the 500 parcels are not ordered in terms of spatial neighborhood,

and therefore, it does not represent the true spatiotemporal evo-

lution of amplitude turbulence. Instead, to appreciate the syn-

chronization of neighboring clusters over time, Figure 2C shows

snapshots for two segments separated in time (the left and right

parts marked on the 2D plot) rendered on a flatmap of the hemi-

sphere. The evolution of turbulent-like dynamics in the empirical
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Figure 1. Measuring Turbulence in Fluid Dynamics and in Human Brain Activity

(A) The study of turbulence in fluid dynamics was pioneered by Kolmogorov’s phenomenological theory of turbulence that is based on the concept of structure

functions. In turn, it was inspired by Richardson’s concept of cascaded eddies. The left panel shows a snapshot of turbulence in a real physical system with

different sizes of eddies, whose hierarchical organization is schematized for the inertial subrange in the right panel.

(B) In fluid dynamics, as shown in the cartoon, power laws are found in an inertial subrange where the structure functions show a universal scaling of r
2 =

3 (left panel)

and an energy scaling of k�
5 =

3 (right panel), where r is the spatial scale and k the associated wave number of the spectral scale. This power law behavior reflects

the energy transfer cascade found in turbulence.

(C) Fluid dynamics can equally well be modeled by coupled oscillators, as shown by Kuramoto (1984). He defined a local order parameter, representing a spatial

average of the complex phase factor of the local oscillators weighted by the coupling. The standard deviation of the modulus of this measure defines the level of

amplitude turbulence, which is shown in the adapted figure for a ring of the Stuart-Landau oscillator system (Kawamura et al., 2007). This concept is not only valid

for coupled oscillator modeling but also can be used to detect turbulence in a given system in a model-free way.

(D) Here, to detect the presence of turbulent-like human brain activity, we used state-of-the-art resting state data from a large set of 1,003 healthy human

participants in the Human Connectome Project (HCP) database.

(E) We extracted the timeseries from each of the 1,000 parcels in the fine-grained Schaefer parcellation, which are shown here as slices in MNI space and on the

surface of the HCP CIFTI (Connectivity Informatics Technology Initiative) file format space.

(F) The function structure is based on the functional correlations between pairs with equal Euclidean distance, r, inMNI space. Here, we show two examples of the

pairs with r = 8–10 mm (left) and r = 160–162 mm (right).

(G) Most of the underlying brain connectivity follows the exponential decay described by the exponential distance rule (Ercsey-Ravasz et al., 2013). The figure

shows the histogram of interareal projection length for all labeled neurons (n = 6,494,974) in a massive tract tracing study in non-human primates. The blue line

shows the exponential fit with a decay rate 0.188mm�1.

(H) We used this anatomical basis in a whole-brain model based on Stuart-Landau oscillators (Deco et al., 2017), aiming to establish the causal mechanisms

underlying the emergence of turbulent-like dynamics.
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data across space and time is even clearer in Video S1 in the

supplemental material, which shows the full spatiotemporal evo-

lution over the full 1,200 time points of the full resting state ses-

sion. Remarkably, the evolution of amplitude turbulence in terms

of R, for which spatial neighborhood is conserved, closely re-

sembles the typical turbulence found in fluid dynamics and oscil-

lators, which can be directly compared with the theoretical ring

results of Kawamura and colleagues (Kawamura et al., 2007).

Furthermore, Figure 2D shows this finding in another way by

plotting only 26 neighboring parcels running from the front to

the back of the brain.

Finally, similar to Kawamura and colleagues (Kawamura et al.,

2007), Figure 2E plots consecutive snapshots over time of the

phases of all brain regions for both the empirical data (top) and

the surrogate data (bottom). This figure convincingly demon-

strates the absence of structure in the surrogate data and clus-

tering resembling vortices in the empirical data.

Mechanistic Origins of Turbulent-like Human Brain
Dynamics
We wanted to understand the causal mechanistic principles un-

derlying the emergence of turbulent-like brain dynamics. Turbu-

lence has been described by Kuramoto using Stuart-Landau os-

cillators (Kuramoto, 1984), and the very same oscillators have

successfully been used in whole-brain models modeling human

brain activity, although these models are usually named after the

Hopf bifurcation, given the fact that the Stuart-Landau oscillator

expressedmathematically is the normal form of the Hopf bifurca-

tion (Deco et al., 2017). Thus, Hopf whole-brainmodels are highly

suitable for elucidating the underlyingmechanisms of turbulence

in brain dynamics.

Whole-brain modeling couples local dynamics between

different brain regions through their anatomical structural con-

nectivity, which is usually obtained from tractography esti-

mated with diffusion MRI (dMRI). On the other hand, massive

tract tracing studies in non-human primates have shown that

the core of anatomical structural brain connectivity can be

fairly well described by a simple rule, the exponential distance

rule (Ercsey-Ravasz et al., 2013; see Figure 1G and STAR

Methods).
Figure 2. Amplitude Turbulence in Empirical Data

(A) The left panel shows a boxplot of the amplitude turbulence, D, computed on th

matched surrogate data. These data are significantly different (p < 0.001, two-s

median, and the bottom and top edges of the box indicate the 25th and 75th perc

considered outliers, and the outliers are plotted individually using the ‘‘+’’ symbol. T

parameter, R, across space and time, respectively (shadow showing the stand

temporal patterns in the empirical data.

(B) Visualization of the change over time and space of the local Kuramoto order p

turbulence can be clearly seen in the 2D plot of all 500 parcels in the left hemisp

(C) This can be appreciated from the snapshots for two segments separated in tim

renderings of a single snapshot on the inflated and flatmapped cortex). Furthermor

Supplemental Information, Video S1) over the full 1,200 time points of the full res

(D) The synchronization of clusters over time is dependent on the neighborhood, a

we show a 2D plot of 26 neighboring parcels running from the front to the back

(E) A further demonstration of the presence of turbulence by plotting consecutive s

(top) and the surrogate data (bottom). These graphs clearly show the absence of st

data (although, note that the regions are simply ordered in their original space sim

in D).
Figure 3A shows the close relationship between the empirical

HCP dMRI tractography of the human brain and the exponential

distance rule. Specifically, the figure shows a plot of the fiber

densities between the pairs of regions in the Schaefer parcella-

tions as a function of the Euclidian distance, r, between the no-

des. The blue line represents dMRI tractography, and the red

line represents the fitted exponential distance rule. The sub-

panels show the structural connectivity matrices for the empir-

ical dMRI tractography (left) and the fitted exponential distance

rule (right), at the optimal l = 0.18 mm�1 when fitting the dMRI

connectivity data to the underlying exponential function. These

matrices are remarkably similar, reflecting the excellent level of

fitting.

This fact simplifies the fitting of a Hopf whole-brain model to

the empirical functional data. We built a Hopf whole-brain model

by using the exponential distance rule (with the empirically

derived l = 0.18 mm�1) (Figure 1H). For the fitting function, we

used Kolmogorov’s concept of structure functions of a variable

u (in turbulence, usually a transversal or longitudinal velocity)

(see Figure 1H and STAR Methods) Here, we used variable u

to denote the spatiotemporal fMRI BOLD signals from our anal-

ysis of the whole-brain dynamics of the HCP resting state data,

taking the average across the spatial location x of the nodes

and time. Thus, the structure functions are characterizing the

evolution of the functional connectivity (FC) as function of the

Euclidean distance between equally distant nodes, which is

different from the usual definition of FC that does include

distance.

Figure 3B shows the evolution of the amplitude turbulence, D,

(red line) and the level of model fitting (blue line) as a function of

the global coupling parameter, G. We found that the amplitude

turbulence, D, is increasing with G and reaches a plateau until

tapering off at high levels. This means that themodel exhibits tur-

bulence at a broad range of global coupling strengths. Remark-

ably, however, themaximumof amplitude turbulence, D, is found

at the optimal working point at G= 0:8, where the model fits the

empirical data, specifically BðrÞ; the spatial correlation function

of two nodes. The fact that we get a maximum of turbulence at

the working point could suggest that the level of turbulence is re-

flecting the information capabilities of the brain. Furthermore, the
e empirical resting state data of the 1,003 HCP participants and on the carefully

ided Wilcoxon rank-sum test). The central mark on the boxplot indicates the

entiles, respectively. The whiskers extend to the most extreme data points not

hemiddle and right panel show the autocorrelation of the local Kuramoto order

ard deviation). The rapid decay demonstrates an absence of regular spatio-

arameter, R, reflecting amplitude turbulence in a single participant. Amplitude

here over the 1,200 time points.

e (left and right parts) rendered on a flatmap of the hemisphere (see insert with

e, the full spatiotemporal evolution can be appreciated in the video (found in the

ting state session.

nd so, to further visualize the spatiotemporal evolution of amplitude turbulence,

of the brain (see blue insert).

napshots over time of the phases of all brain regions for both the empirical data

ructure in the surrogate data and clustering resembling vortices in the empirical

ilar to B and therefore potentially show less of the neighborhood effect shown
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Figure 3. Whole-Brain Modeling Demonstrating Turbulence in the Empirical Data

(A) The exponential distance rule is also evident in the empirical HCP dMRI tractography of the human brain, as shown by the fiber densities between the pairs of

regions in the Schaefer parcellations as a function of the Euclidian distance between the nodes. Blue shows dMRI tractography, and the red line shows the fitted

exponential distance rule at the optimal l = 0.18 mm�1. The remarkable similarity can be appreciated by comparing the two subpanels. On the left is shown the

structural connectivitymatrices for the empirical dMRI tractography and on the right the optimally fitted exponential distance rule connectivity, whichwas used as

the basis for the whole-brain model.

(B) The whole-brain fit of the root squared error between the empirical and simulated B(r) in the inertial subrange as a function of the global coupling parameter G

(black). The model shows amplitude turbulence (red line, defined in STAR Methods) in a broad range of G, but maximal amplitude turbulence is found at the

optimal working point fitting the data (G = 0.8). The dotted line shows the amplitude turbulence estimated from the empirical data, and it is interesting that the

model at the optimal working point also corresponds to this value.

(C) The maximal amplitude turbulence is likely to reflect an optimal level of information processing, which we quantify in a measure of information capability, a

meaningful extension of the standard concept of susceptibility (see STAR Methods). As can be seen, the maximum of information capability (red line) is found at

G = 0.8 that corresponds to the optimal fitting of the whole-brain model to the empirical data (black line) andmaximal amplitude turbulence. In contrast, the simple

measure of susceptibility (orange line) is high but not maximal at the working point.

(D) Interestingly, at the optimal point where the whole-brain model fits the empirical data (black line) and shows maximal amplitude turbulence and information

capability, we also find an optimal balance between segregation/integration (red line) as a function of G. In all figures, the shadow indicates the standard deviation.
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level of amplitude turbulence for the empirical data is plotted by a

dotted line, which corresponds to the maximum. In other words,

at the optimal working point, not only is the model reaching its

maximum but also this is corresponding the empirical value.

We investigated the possibility that the level of turbulence re-

flects the information capability of the brain by generalizing the

concept of susceptibility, which is defined as the sensitivity of

the whole-brain model to the processing of external stimula-

tions (see STAR Methods). On the other hand, the information

capability of the whole-brain model is defined as the standard

deviation across trials of the difference between the perturbed

and unperturbed mean of the modulus of the local order

parameter across time, averaged over all brain nodes. This is

easy to implement in the Hopf whole-brain model (Deco et

al., 2017, 2019), in which perturbations can be introduced by

changing the local bifurcation parameter an of each brain
6 Cell Reports 33, 108471, December 8, 2020
node n. For each value of G, we perturbed the whole-brain

model 200 times with random parameters for the local bifurca-

tion parameter an.

Figure 3C shows that the maximum of information capability

(red line) is found at G = 0.9 that corresponds to the optimal fitting

of the whole-brain model to the empirical data (blue line). This

clearly demonstrates that maximal turbulence is directly associ-

ated with information capability at the working point of the

whole-brain model fitting the empirical data and thus presum-

ably reflects optimal information processing. In contrast, the

simple measure of susceptibility (pink line) is not maximal at

this working point (but high) and does not show a maximum in

the range shown.

Further probing the question of optimal information process-

ing, we measured the integration and segregation of the

whole-brain model in the whole range of global coupling.
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Figure 4. The Spatiotemporal Evolution of Whole-Brain Model for Different Coupling Strengths Showing Different Levels of Amplitude

Turbulence

(A) For four different coupling strengths (G = 0, G = 0.4, G = 0.8, and G = 3.0), we show a 2D plot of the spatiotemporal evolution of the local Kuramoto order

parameter, R, reflecting different levels of turbulence in the model (for all 500 parcels in the left hemisphere over 1,200 time points). The highlighted optimal

working point (G = 0.8 in red) shows maximal turbulence, as can be appreciated by comparing to the other three 2D plots.

(B) Similar to (C), for all four values of coupling strengths, G, we show 2D plots of the spatiotemporal evolution of amplitude turbulence in 26 neighboring parcels

running from the front to the back of the brain.

(C) Similarly, we show continuous snapshots for two segments of the model at G = 0, G = 0.4, G = 0.8, and G = 3.0, separated in time (left and right parts) and

rendered on a flatmap of the hemisphere. Furthermore, the full spatiotemporal evolution of each snapshot can be appreciated in the videos for each G (found in

the Supplemental Information, Videos S2, S3, S4, and S5) over the full 1,200 time points of the full resting state session.
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Integration is measured as the mean functional correlation and

segregation is measured by the level of modularity of the FC

(see STAR Methods for definition). Figure 3D shows the com-

bined measure of segregation/integration (red line) G. As can

be seen, the maximum is around the optimal fitting of the

whole-brain model to the empirical data (blue line). This finding

suggests the healthy brain is also at its highest level of being

able to segregate and integrate information (Deco et al., 2015).

Spatiotemporal Evolution of Amplitude Turbulence in
Whole-Brain Model Dynamics
Deeper insights into the spatiotemporal evolution of amplitude

turbulence can be gained from studying the Hopf whole-brain
model for different coupling strengths showing different levels

of amplitude turbulence. Figure 4A shows 2D plots of the

spatiotemporal evolution of the R, reflecting different levels of

turbulence in the model for four different coupling strengths

(G = 0, G = 0.4, G = 0.8, and G = 3.0). Similar to Figure 2,

we plotted the level of R for all 500 parcels in the left hemi-

sphere over 1,200 time points. The optimal working point

(G = 0.8) is highlighted and shows maximal turbulence as can

be appreciated by comparing the level of variability of R in

the other three 2D plots. Please also note how the uncoupled

case (G = 0) resembles random spatiotemporal dynamics,

whereas the two cases demonstrate various degrees of turbu-

lence (as shown by the values of D, the standard deviation of R,
Cell Reports 33, 108471, December 8, 2020 7
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Figure 5. Discovering the Functional Exceptions Driving the Turbulent Core in Cognitive Tasks

(A) The functional connectivity in resting state between the 1,000 regions in the Schaefer1000 parcellation averaged across all HCP 1,003 participants.

(B) Similarly, from (A), we computed the global brain connectivity (GBC) as the mean correlation between each region with the rest of the brain (Demirtas et al.,

2019) that characterizes the node-level connectivity. The left panel shows the GBC vector (averaged over all participants), and the right panel shows a rendering

on the brain of position of the top 20%quantile GBC regions. The top part shows them rendered on the left hemisphere, the middle part shows a rendering on the

midline, and the bottom part shows a rendering on a flat map of the left hemisphere.

(C) The left panel shows the top regions with myelination (T1w/T2w) rendered on the brain. As can be seen in the middle panel, there is a strong spatial overlap

between the top GBC regions and the top regions with myelination. This can also be seen in the right panel of the overlapping histograms of the top GBC and top

myelin regions, as indexed by the spatial location (Schaefer parcellation number), which shows a 46.5% overlap.

(D) Example of the pipeline finding the functional exceptions applied to HCP relational task (see STARMethods). Here is shown the contrast between the relational

task (brown) and the resting state (gray), with the shaded error showing the dispersion across nodes, i.e., all pairs across all participants. The inertial subrange (r =

[8.13 33.82]mm) is highlighted with a light-yellow background, and the long-distance correlation subrange (r > 33.82mm) is shown on a light-gray background. As

can been clearly seen, the long-range correlations aremainly increased in task, whereas the inertial subrange correlations remain unchanged (p < 0.001,Wilcoxon

rank-sum test). The shadows indicate the standard deviation.

(E) We show a histogram of the difference of the average correlation for each spatial location across the long-distance subrange. The histogram for task (in brown)

is clearly showing higher correlations than the histogram for resting (in gray, p < 0.001, Wilcoxon rank-sum test).

(F) We found the most changed long-distance regions in the relational task by thresholding the pair correlation by the maximum pair correlation of the resting

condition. The left panel shows a rendering of the top changing regions in the relational task overlaid on the top GBC regions. The overlap is very low (18.2%) as

can be seen in the right panel, which shows the overlapping histograms of the top relational (red) and top GBC (blue) regions, as indexed by the spatial location.

This is strong evidence that the most changed regions in task are complementary to the unchanged resting GBC regions.
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in Figure 3B). Figure 4B shows the corresponding 2D plots of

the spatiotemporal evolution of R in 26 neighboring parcels

running from the front to the back of the brain (similar to the

plot in Figure 2D).

The supplemental material contains four videos (Videos S2,

S3, S4, and S5) of the full spatiotemporal evolution of ampli-

tude turbulence in one hemisphere across the 1,200 time

points of the full resting state session for each G. For the

optimal working point fitting the empirical data (G = 0.8), Fig-

ure 4C shows snapshots of two segments separated in time

rendered on a flatmap of the hemisphere for each the four
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values of G. The spatiotemporal patterns generated by the

whole-brain model at this optimal working point resemble

the amplitude turbulence found in the empirical brain activity.

There is clearly amplitude turbulence for other values of G, but

Figure 3B shows that the maximal value of turbulence is

observed at G = 0.8.

Differences between Task and Resting
These results demonstrate amplitude turbulence in the brain dy-

namics of resting state. We were interested in investigating how

turbulence is controlled when performing different cognitive
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tasks. To address this question, we studied the seven HCP tasks

and contrasted these results with rest.

First, we established a spatial map of the most significant cor-

relations in resting state in order to have this as a reference for

the analysis of the tasks. Figure 5A shows the group average

FC correlation matrix for all 1,000 parcels across all 1,003 partic-

ipants in the resting state. We calculated the global brain con-

nectivity (GBC) of the FC matrix by calculating the average FC

of each region with all other regions (the mean value of each

row across the columns). The right panel of Figure 5B shows a

rendering of GBC thresholded at the 80% quantile. Remarkably,

as shown in Figure 5C, there is strong spatial overlaps with the

myelination measured with ratio between T1 and T2 weighted

images (T1w/T2w) (Glasser et al., 2014; Glasser and Van Essen,

2011) thresholded at a similar 80% quantile (left subpanel). This

can be seen in themiddle panel of Figure 5C, where GBC is over-

laid on the spatial myelin map, and in the right panel of the over-

lapping histograms of the top GBC and topmyelin regions, as in-

dexed by the spatial location (indexed by the Schaefer

parcellation number), which are showing a 67.0% overlap. This

means that the backbone of resting state processing builds a

functional core in primarily visual, auditory, and somatomotor

regions.

Second, for rest and each task, we compared the correlation

function B(r) as a function of the distance r. As a representative

example, Figure 5D shows the contrast between the HCP rela-

tional task (red, see STAR Methods) and the resting state

(gray), with the shaded error showing the dispersion across no-

des, i.e., all pairs across all participants. As can be seen from Fig-

ure 5D, it would appear that the task and rest are similar in a sub-

range of values for r and that precisely in this range, there is a

power law. We return to this power law behavior in the next sec-

tion. Inspired by Kolmogorov, we used the term inertial subrange

to refer to the range r = [8.13 33.82] mm (light-yellow back-

ground), which is the functional core for which task and rest

are similar. In contrast, we use the term ‘‘long-distance correla-

tion subrange’’ for r > 33.82mm (light-gray background), which is

outside the functional core and for which task and rest are dis-

similar. As can be seen, the inertial subrange is mainly unaf-

fected, but the long-distance correlations are significantly

increased in the relational task (p < 0.001, Wilcoxon rank-sum

test, and for all other tasks, not shown).

Figure 5E shows the histograms of rest (gray) and relational

task (red) of correlations averaged across the long-distance sub-

range. As can be seen clearly, the two distributions are signifi-

cantly different (p < 0.001, Wilcoxon rank-sum test), and there

is a group of task-specific regions that show larger correlations

than the maximum of resting state (which is equally true for the

six other HCP tasks). Figure 5F (left subpanel) shows the spatial

maps of the relational task-specific regions are found in higher-

order brain regions (in red) outside the functional core and over-

laid on the maps for the thresholded GBCmap from resting state

(in gray). Remarkably, the overlap is very low (16.4%), as can be

seen in the right panel, which shows the overlapping histograms

of the top relational (red) and top GBC (gray) regions, as indexed

by the spatial location. This finding demonstrates that the task-

specific regions are taken from the long-range correlations that

serve to control the unaffected functional core.
Figure 6A shows the same procedure of thresholding the cor-

relations averaged over the long-distance subrange (for the

maximum value of the resting state long-distance correlations)

but now applied to all sevenHCP tasks (relational, red; gambling,

green; emotion, light blue; working memory [wm], light red; so-

cial, pink; language, blue; and motor, purple). They are rendered

to visualize the task-specific regions for each task, overlaid on

the thresholded GBC map from resting state (gray regions).

The regions are found in higher-order regions of the frontal, orbi-

tofrontal, parietal, temporal, insular and midline frontal, and

cingulate cortices.

Importantly, for all tasks, there are hardly any overlaps with the

resting GBC maps, which is strongly suggestive of a significant

role of long-distance connections in controlling the unaffected

common turbulent core. Interesting, as expected, each of the

tasks use different, yet overlapping, higher-order regions to

perform the relevant cognitive task.

Figure 6B shows a quantification of the overlap of task-spe-

cific exceptions by computing the intersection between task-

specific regions by thresholding of the seven tasks at two thresh-

olds: max (leftmost panel, red) and 99% quantile (middle panel,

orange) of the resting state long-distance correlations). They are

then overlaid on the GBC map (right panel, gray). The common

regions are compatible with the literature on higher order func-

tional regions. The common regions are known to engage a

network of brain regions in the ventromedial prefrontal/orbito-

frontal, insular, mid-cingulate, and dorsolateral prefrontal

cortices. We propose that this overlap could correspond to a

‘‘cognitive control network’’ that is needed to control the turbu-

lence in the functional core processing.
Exploring the Functional Core and Power Law in the
Empirical Data
The important result that the functional core is the underlying

backbone for information processing leaves open the important

question of whether this shows a power law similar to that found

in fluid dynamics, which would be indicative of an information

cascade. The existence of such a power law does not, of course,

demonstrate the existence of turbulence but provides consistent

evidence in support of our main findings of turbulence in the hu-

man brain demonstrated using Kuramoto’s oscillator framework

in the empirical data and in the Hopf whole-brain models of the

data. Other studies have shown power laws in human brain

data in the context of criticality that could be consistent with tur-

bulence but is not definite proof (Cocchi et al., 2017; Shew and

Plenz, 2013).

We explored whether power laws exist in the inertial subrange

sustaining the functional core for both S(r) and B(r). We plotted

both in log-log plots and fit a straight line in the relevant range

of r. The slope of the straight line is the exponent of the power

law but note that shifting of functions S and B. Averaging across

participants, we show in Figure 7A the structure function S(r),

plotted in a log-log plot. We clearly observed an inertial sub-

range, inspired by the similar observation in fluid dynamics,

where a power law is found (see Kolmogorov’s law in Figure 1B).

Our results show a power scaling law with an exponent of

approximately 1/2 in the range between r = 8.13 mm and r =
Cell Reports 33, 108471, December 8, 2020 9



Figure 6. Comparing Task-Specific Exceptions across Seven Tasks

(A) The same pipeline shown in Figure 6 was applied to all seven HCP tasks (relational, gambling, emotion, working memory [wm], social, language, and motor).

The panels are rendered on side views, midline views, and flat map of the left hemisphere to visualize the task-specific regions for each task, overlaid on the

thresholded GBC map from the resting state (dark blue).

(B) The overlap of task-specific exceptions is quantified by computing the intersection between task-specific regions by thresholding of the seven tasks at two

thresholds: max (leftmost panel, red) and 99% quantile (middle panel, orange) of the resting state long-distance correlations. They are then overlaid on the GBC

map (right panel, gray). This overlap could correspond to a ‘‘cognitive backbone’’ that is needed to control the turbulent core processing.
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33.82 mm in the inertial subrange coinciding with the functional

core (shown in the shaded areas in Figures 7A–7C).

The functional correlation between two nodes, BðrÞ, is

computed as a function of the distance between those nodes

(averaged across nodes and time), i.e., using homogeneous

isotropy (see Figure 7B). Again, we observed a power law,

here with a negative exponent of approximately �1/2 in the

same inertial subrange in the functional core. Figure 7C shows

BðrÞ as function of the distance (in a normal coordinate system)

but averaged across time and shows the dispersion across no-

des, i.e., all pairs across all participants. The unimodal distribu-

tion with a single peak suggests homogeneity across nodes in

the functional core.

In fact, the homogeneity can be quantified. For each node

location x for each participant, we computed the fitting of the po-

wer scaling law in the same inertial subrange, i.e., logðBðrÞÞ=
a logðrÞ+ h. Here, the parameters a (slope) and h (bias) describe

the power scaling law for each participant and each location.

Figure 7D shows the density distribution (across participants

and node locations) of the slope parameter a, and Figure 7E

shows this for the bias parameter h. Both distributions are unim-

odal, which is suggestive of a core of homogeneity of the corre-
10 Cell Reports 33, 108471, December 8, 2020
lation function BðrÞ across node location. Furthermore, Figure 7F

shows the density distribution (across participants and node lo-

cations) of themean (across r in the inertial subrange) of the stan-

dard deviation of BðrÞ (labeled isotropy in the figure). This distri-

bution also reflects a unimodal distribution suggestive of

isotropy, given that the variability across directions (standard de-

viation of BðrÞ) is consistent with an isotropic peak.

Summing up, the results show that the functional core of the

human brain exhibits a power law and isotropic homogeneity,

which are both characteristics of turbulence. Importantly, this

could reflect the presence of an information cascade.

DISCUSSION

Overall, we used a large, high-quality state-of-art dataset of

1,003 HCP participants to demonstrate that human brain dy-

namics exhibit amplitude turbulence as formalized by Kuramoto

in his studies of oscillators. Deepening our understanding of the

causal mechanistic root of this turbulence, we built a whole-brain

model with coupled oscillators and demonstrated that the best

fit of the Hopf whole-brain model to the empirical data corre-

sponds to a region of maximally developed amplitude
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Figure 7. Power Laws of the Functional Core

The figure demonstrates the presence of power law and homogeneous isotropy in the empirical human neuroimaging data from 1,003 participants.

(A) Spatial power scaling law of the structure function S(r) as a function of log(r) for the correlation function.

(B) Same spatial power scaling law for the correlation B(r) as a function of log(r).

(C) The correlation function B(r) as a function of the distance r, but showing the dispersion across regions (with the shadow indicating the standard deviation).

(D) The unimodal density distribution (across participants and node locations) of the slope parameter a.

(E) Similar unimodal density distribution of the bias parameter h.

(F) Unimodal density distribution of the mean (across r in the inertial subrange) of the standard deviation of B(r). These distributions are suggestive, but not proof,

of turbulence and of a functional core of homogeneous isotropic function.
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turbulence. Furthermore, the Hopf whole-brain model shows the

economy of anatomy by using the exponential distance rule of

anatomical connections as a cost-of-wiring principle. Remark-

ably, the optimum of turbulence in the model also corresponded

to maximal information capability, i.e., sensitivity to the process-

ing of external stimulations, which suggests that amplitude tur-

bulence is crucial for information processing.

Further probing the link to information processing in resting

state dynamics, we investigated the brain dynamics during

seven cognitive tasks in the same participants. We found that

the tasks share a turbulent functional core with the resting state

and that the long-distance correlations show task-specific

increases in specific higher-order brain regions outside this

functional core. We were interested to further establish a link

to turbulence in fluid dynamics and were able to demonstrate

a consistent power law for functional brain correlations in a

broad spatial range in the functional core that is suggestive

of a cascade of information processing. Overall, our results

reveal a framework for analyzing and modeling whole-brain dy-

namics that establishes a turbulent-like dynamic intrinsic back-

bone of the brain.
Evidence of Turbulent-like Empirical Brain Dynamics
The study of turbulence was pioneered by the phenomenolog-

ical theory of Kolmogorov, based on the concept of structure

functions (Kolmogorov, 1941a, 1941b). Equally, Kuramoto

were able to formalize a framework for turbulence with a cen-

tral role for oscillators that is able to model turbulence in fluid

dynamics (Kuramoto, 1984). This inspired us to combine Kol-

mogorov’s structure functions with Kuramoto’s local order

parameter to demonstrate turbulence in human brain dy-

namics. More specifically, we obtained significant results

when computing amplitude turbulence which is defined as

the standard deviation of the modulus of the local Kuramoto

order parameter across time and space for the empirical brain

resting data compared to applying this to carefully con-

structed surrogate data. We visualized the change over time

and space of amplitude turbulence on a flatmap rendering of

the individual empirical brain data. This closely resembled

the typical turbulence found in fluid dynamics and oscillators

(Kawamura et al., 2007).

Please note that our demonstration of a turbulent-like dynamic

backbone in empirical brain dynamics is entirely compatible with
Cell Reports 33, 108471, December 8, 2020 11



Article
ll

OPEN ACCESS
the rich literature on structured temporal patterning in brain data.

This can be appreciated by considering two complementary per-

spectives on brain function, namely computational and dynam-

ical. The former establishes a relationship between behavior

and concomitant brain activity, whereas the latter focuses on

the information flow across space and time in order to integrate

the processing segregated in different neuronal modules. In

other words, the dynamical framework provides a description

of the communication between nodes.

Our results described are compatible with an account of

structured patterns of computation embedded in an intrinsic

backbone regulating the windows of opportunity and facili-

tating the communication necessary for integration. Take as

an example how metastable dynamics are not only possible

but also necessary for implementing computation and for inte-

grating the corresponding structured spatiotemporal patterns

(Roberts et al., 2019; Tognoli and Kelso, 2014). The turbulence

demonstrated here uses Kuramoto’s framework and general-

izes previous work showing metastability in whole-brain dy-

namics (Cabral et al., 2014; Deco et al., 2017) to show that

amplitude turbulence results in more, rather than less, struc-

ture in the brain.

Modeling the Origin of Turbulent-like Dynamics
Moving beyond correlation, we built a causal mechanistic Hopf

whole-brain model by using the exponential distance rule for

the anatomical structural connectivity to demonstrate the emer-

gence of turbulence. The whole-brain Hopf model of coupled os-

cillators was able to produce an excellent fit to the empirical

data. The results showed maximal amplitude turbulence at the

dynamical working point of the whole-brain model. Even more,

at this working point, we rendered the spatiotemporal evolution

of amplitude turbulence on a flatmap of the cortex, which

showed a remarkable similarity to the renderings of the empirical

data. Importantly, the renderings of other non-optimal working

points of the model look rather different, as reflected in the Kur-

amoto amplitude turbulence definition, e.g., when using very

weak connectivity that results in very weak synchronization

and dissolving the vortex structure in the spatiotemporal evolu-

tion of patterns (see Figure 4C, G = 0).

Furthermore, the results suggest that amplitude turbulence

could play a crucial role in brain information processing, given

that we also found maximal information capability of the Hopf

whole-brain model for capturing how different external stimula-

tions are encoded in the dynamics. Importantly, we also found

an optimal balance between segregation and integration at this

working point of the model. Taken together, the findings clearly

demonstrate turbulent-like human brain dynamics and this helps

to facilitate optimal information processing across scales, which

is suggestive of an information cascade.

Please note that an important caveat to using a causal

modeling framework is provided by the seminal work of Judea

Pearl (Pearl, 2009), in which any framework of causal inference

is based on inferring causal structures that are equivalent in

terms of the probability distributions they generate. Neverthe-

less, our modeling framework is perfectly suited for our stated

aim of determining the origin of turbulence by using a causal

modeling framework.
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Task-Specific Higher-Order Regions
In order to study the link between turbulence and information

processing, we used the same framework to contrast the brain

dynamics in seven cognitive tasks with resting state in the

same participants. We found that the task-specific functional

differences were mainly found in regions in the long-distance

subrange of correlations, whereas the turbulent functional

core in the inertial subrange was largely unaffected. This re-

veals the existence of a turbulent functional core that could

be essential for basic brain function and is reflective of the un-

derlying economy of anatomy that keeps the human brain cost

effective.

The turbulent functional core is consistent with the discovery

of the default mode network (Raichle et al., 2001). This follows

the fact that the brain is clearly hierarchical in its structure from

single units to the larger circuits (Bullmore and Sporns, 2012;

Felleman and Van Essen, 1991; Hagmann et al., 2008; Markov

et al., 2014; Mesulam, 1998; van den Heuvel and Sporns,

2011; Zamora-López et al., 2010). In particular, research byMar-

gulies et al. (2016) have used neuroimaging to extendMesulam’s

seminal proposal that brain processing is shaped by a hierarchy

of distinct unimodal areas to integrative transmodal areas (Me-

sulam, 1998). More recently, we have added to this literature

by identifying the ‘‘global workspace’’ of brain regions at the

top of the hierarchy (Deco et al., 2020).

Beyond the functional core, the regions that we have identified

could promote higher brain function through the breaking of the

homogeneity and isotropy of the functional core organization,

mainly due to the brain networks found in long-distance sub-

range, which are the functional homologs driven by the anatom-

ical exceptions to the exponential distance rule.

Finding a Power Law in the Turbulent Functional Core
It is well-known that human brain activity reflects the underlying

brain anatomy (Deco et al., 2017) and that this shaping of func-

tion by anatomical connectivity gets even stronger in brain states

such as deep sleep (Tagliazucchi et al., 2016) and anesthesia

(Barttfeld et al., 2015). Over the last decades, a large body of

convincing research has identified precisely how the underlying

anatomical connectivity is responsible for the emergence of the

fundamental resting state networks that give rise to the low

dimensional manifold of the functional organization shaped by

the human brain (Damoiseaux et al., 2006).

The important result presented here, namely the discovery of a

turbulent functional core, suggests an even simpler underlying

backbone for information processing that can create the neces-

sary efficient information cascade. Supporting this proposal, we

were able to show the existence of a power law in the common

functional core in the empirical data of both resting state and

seven tasks. Taken together, these results provide consistent

evidence in support of our main findings of turbulence in human

brain dynamics, as demonstrated using Kuramoto’s oscillator

framework in the empirical data and in the Hopf whole-brain

models of the data.

The discovery of the turbulent functional core opens up the

possibility for an elegant proposal, namely that anatomical con-

nectivity of the brain can be described by a structural core

following a simple, homogeneous isotropic rule, namely the



Article
ll

OPEN ACCESS
exponential distance rule that provides the economy of anatomy

as a cost-of-wiring principle (Markov et al., 2013).

Future Perspectives
Using state-of-the-art neuroimaging data from over 1,000 peo-

ple, we demonstrate turbulent-like human brain dynamics, in a

tour-de-force technical analysis combining empirical methods

and whole-brain modeling and adapting established methods

from the fields of fluid dynamics and oscillators.

This result significantly expands on previous research aimed

at relating spatiotemporal chaos to brain activity (Babloyantz

and Lourenço, 1994; Breakspear, 2017; Freeman, 2000; Honey

et al., 2007; van Vreeswijk and Sompolinsky, 1996). Careful

mathematical research has suggested that a main difference be-

tween spatiotemporal chaos and turbulence is that the latter is

primarily needed for the propagation of disturbances and the

transmittal of information from one spatial point to the other

(Cross and Hohenberg, 1993; Oono and Yeung, 1987). The pur-

pose of turbulent-like like dynamics in the brain must be closely

linked to the ability to catalyze fast and efficient information

processing.

The results presented here from our whole-brain modeling of a

very large set of empirical human data confirm that the human

brain operates in a turbulent regime showing a maximum of

amplitude turbulence and information capability and an optimal

balance between integration and segregation.

This finding of turbulent-like dynamics in the human brain is

important for its controllability, not only in directing task activity

but also more generally for characterizing brain states in health

and disease (Deco et al., 2019; Gu et al., 2017; Tu et al., 2018).

As such, the findings will allow for much more sensitive and se-

lective biomarkers of brain states, will provide important infor-

mation on how to control brain disorders, andwill help find novel,

efficient ways to force homeostatic transitions to a healthy state

by using external perturbations (Deco et al., 2018a; Deco et al.,

2018b; Kringelbach et al., 2007, 2020).
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(morten.kringelbach@psych.ox.ac.uk).

Materials availability
The dataset used for this investigation was from an independent publicly available dataset of fMRI data, where we chose a sample of

1003 participants selected from the March 2017 public data release from the Human Connectome Project (HCP).

Data and code availability
The HCP dataset is available at https://www.humanconnectome.org/study/hcp-young-adult. The code to run the analysis is avail-

able on GitHub (https://github.com/decolab/cr-turbulence).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Neuroimaging ethics
TheWashington University–University of Minnesota (WU-Minn HCP) Consortium obtained full informed consent from all participants,

and research procedures and ethical guidelines were followed in accordance with Washington University institutional review board

approval.

Neuroimaging participants
The dataset used for this investigation was selected from the March 2017 public data release from the Human Connectome Project

(HCP) where we chose a sample of 1003 participants.

The HCP task battery of seven tasks
The HCP task battery consists of seven tasks: working memory, motor, gambling, language, social, emotional, relational, which are

described in details on the HCPwebsite (Barch et al., 2013). HCP participants performed all tasks in two separate sessions (first ses-

sion: working memory, gambling, and motor; second session: language, social cognition, relational processing, and emotion

processing).

METHOD DETAILS

Neuroimaging acquisition for fMRI HCP
The 1003HCPparticipants were scanned on a 3-T connectome-Skyra scanner (Siemens).We used one resting state fMRI acquisition

of approximately 15 min acquired on the same day, with eyes open with relaxed fixation on a projected bright cross-hair on a dark
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background as well as data from the seven tasks. The HCPwebsite (https://www.humanconnectome.org/) provides the full details of

participants, the acquisition protocol and preprocessing of the data for both resting state and the seven tasks.

Preprocessing and extraction of functional timeseries in fMRI resting data
The preprocessing of the HCP resting state and task datasets is described in full details on the HCP website. Briefly, the data are

preprocessed using the HCP pipeline which is using standardized methods using FSL (FMRIB Software Library), FreeSurfer, and

the Connectome Workbench software (Glasser et al., 2013; Smith et al., 2013). This preprocessing included correction for spatial

and gradient distortions and head motion, intensity normalization, and bias field removal, registration to the T1 weighted structural

image, transformation to the 2mmMontreal Neurological Institute (MNI) space, and using the FIX artifact removal procedure (Navarro

Schröder et al., 2015; Smith et al., 2013). The head motion parameters were regressed out and structured artifacts were removed by

ICA+FIX processing (Independent Component Analysis followed by FMRIB’s ICA-based X-noiseifier; Griffanti et al., 2014; Salimi-

Khorshidi et al., 2014;)). Preprocessed timeseries of all grayordinates are in HCP CIFTI grayordinates standard space and available

in the surface-based CIFTI file for each participants for resting state and each of the seven tasks.

We used a custom-made MATLAB script using the ft_read_cifti function (Fieldtrip toolbox; Oostenveld et al., 2011) to extract the

average timeseries of all the grayordinates in each region of the Schaefer parcellation, which are defined in the HCP CIFTI grayordi-

nates standard space. Furthermore, the BOLD time series were transformed to phase space by filtering the signals in the range be-

tween 0.008-0.08 Hz, where we chose the typical highpass cutoff to filter low-frequency signal drifts (Fox et al., 2005), and the low-

pass cutoff to filter the physiological noise, which tends to dominate the higher frequencies (Cordes et al., 2001; Fox et al., 2005). We

then applied the Hilbert transforms in order to obtain the phases of the signal for each brain node as a function of the time.

We computed the functional connectivity (FC) as the correlation between the BOLD timeseries in all 1000 regions in the Schaefer

Parcellation. We then computed the global brain connectivity (GBC) as the node-level FC, or node strength, characterizing the

average FC strength for each region (Demirtas et al., 2019; Yang et al., 2016). Thus, node strength is defined asGBCi = ð1 =NÞPN
j =1

FCij.

Structural connectivity using dMRI
The Human Connectome Project (HCP) database contains diffusion spectrum and T2-weighted imaging data from 32 participants

with the acquisition parameters described in details on the HCP website (Setsompop et al., 2013). The freely available Lead-DBS

software package (https://www.lead-dbs.org/) provides the preprocessing which is described in details in Horn et al. (2017) but

briefly, the data were processed using a generalized q-sampling imaging algorithm implemented in DSI studio (http://dsi-studio.

labsolver.org). Segmentation of the T2-weighted anatomical images produced a white-matter mask and co-registering the images

to the b0 image of the diffusion data using SPM12. In each HCP participant, 200,000 fibers were sampled within the white-matter

mask. Fibers were transformed into MNI space using Lead-DBS (Horn and Blankenburg, 2016). We used the standardized methods

in Lead-DBS to produce the structural connectomes for the Schaefer 1000 parcellation Scheme (Schaefer et al., 2018).

QUANTIFICATION AND STATISTICAL ANALYSIS

Schaefer parcellation
Schaefer and colleagues created a publicly available population atlas of cerebral cortical parcellation based on estimation from a

large dataset (n = 1489) (Schaefer et al., 2018). They provide parcellations of 400, 600, 800, and 1000 areas available in surface

spaces, as well as MNI152 volumetric space. We used here the Schaefer parcellation with 1000 areas and estimated the Euclidean

distances from the MNI152 volumetric space and extracted the timeseries from HCP using the HCP surface space version.

Analysis using Kolmogorov’ structure function concept
We adapted Kolmogorov’s concept of structure functions of a variable u, which in turbulence is usually a transversal or longitudinal

velocity but here is given by the BOLD signal of the data:

SðrÞ =
��

u
�
x + r

�� u
�
x
��2�

= 2½Bð0Þ�BðrÞ� (Equation 1)

In Equation 1, the basic spatial correlations of two points separated by an Euclidean distance r, given by:

BðrÞ = �
u
�
x + r

�
u
�
x
��

(Equation 2)

where the symbol C D refers to the average across the spatial location x of the nodes and time.

Whole-brain model
The link between anatomical structure and functional dynamics, introduced more than a decade ago is at the heart of whole-brain

network models (Deco et al., 2013; Deco and Kringelbach, 2014). Typically, the anatomy is represented by the structural connectivity

(SC) of an individual or average brain, measured in vivo by diffusionMRI (dMRI) combined with probabilistic tractography. The spatial
Cell Reports 33, 108471, December 8, 2020 e2
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resolution is in the order of 1-2 mm, but with ultra-high field MRI resolutions 0.4 mm can be reached. The structural connectome

denotes the wire-diagram of the connections between cortical regions as ascertained from dMRI tractography. The functional global

dynamics result from themutual interactions of local node dynamics coupled through the underlying empirical anatomical SCmatrix.

Whole-brain models aim to balance between complexity and realism in order to describe the most important features of the brain

in vivo (Breakspear, 2017). The most successful whole-brain computational models have taken their lead from statistical physics

where it has been shown that macroscopic physical systems obey laws that are independent of their mesoscopic constituents.

The emerging collective macroscopic behavior of brain models has been shown to depend only weakly on individual neuron

behavior. This theoretical framework has been successful in explaining the pattern of inter-regional activity correlation measured

with fMRI, so called resting-state-networks. Recent developments have shown that whole-brain models are able to describe not

only static FC (averaged over all time points), but also dynamical measurements like the temporal structure of the activity fluctuations,

the so-called functional connectivity dynamics (FCD) (Deco et al., 2017; Hansen et al., 2015).

Here, we use the Hopf model and assume that the underlying anatomy fulfil the Exponential Distance Rule derived from exhaustive

massive retrograde tract tracing in non-human primates (Ercsey-Ravasz et al., 2013). Mathematically this can expressed as an expo-

nential decay function,

Cnp = e�lðrðn;pÞÞ (Equation 3)

where rðn;pÞ is the Euclidean distance between the regions n and p, and the decay, l. Here we estimate l by fitting the dMRI trac-

tography and obtain l= 0:18mm-1.

The Hopf whole-brain model consists of coupled dynamical units (ROIs or nodes) representing the N cortical brain areas from a

given parcellation (Deco et al., 2017). For the first analysis, we take all 1000 cortical nodes in the Schaefer parcellation. The local dy-

namics of each brain region is described by the normal form of a supercritical Hopf bifurcation, also known as the Landau-Stuart

Oscillator, which is the canonical model for studying the transition from noisy to oscillatory dynamics (Kuznetsov, 1998). Coupled

together with the brain network architecture, the complex interactions between Hopf oscillators have been shown to reproduce sig-

nificant features of brain dynamics observed in electrophysiology (Freyer et al., 2011, 2012), MEG (Deco et al., 2017b) and fMRI (Deco

et al., 2019; Kringelbach et al., 2020).

The dynamics of an uncoupled brain region n is given by the following set of coupled dynamical equations, which describes the

normal form of a supercritical Hopf bifurcation in Cartesian coordinates:

dxn
dt

= anxn +
�
x2n + y2n

	ðbyn � xnÞ � unyn + nhnðtÞ (Equation 4)
dyn
dt

= anyn �
�
x2n + y2n

	ðbxn + ynÞ � unxn + nhnðtÞ (Equation 5)

where hnðtÞ is additive Gaussian noise with standard deviation n, and b is the so-called shear factor (where b = 0, except in results

presented in Figure S2, where we systematically explore the influence of this parameter). This normal form has a supercritical bifur-

cation an = 0, so that if an > 0, the system engages in a stable limit cycle with frequency fn =un=2p. On the other hand, when an < 0, the

local dynamics are in a stable fixed point representing a low activity noisy state. Within this model, the intrinsic frequencyun = u0
n + b,

whereu0
n is estimated from the empirical data as the peak of the power spectrum. Here, the subindex n denotes the region taken from

(1..N), where N is the total number regions.

The whole-brain dynamics was defined by the following set of coupled equations:

dxn
dt

= anxn +
�
x2n + y2n

	ðbyn � xnÞ � unyn +G
XN
p= 1

CnpðxpðtÞ� xnÞ+ nnhnðtÞ (Equation 6)
dyn
dt

= anyn �
�
x2n + y2n

	ðbxn + ynÞ � unxn +G
XN
p= 1

Cnp

�
ypðtÞ� yp

�
+ nnhnðtÞ (Equation 7)

where the noise was fixed n = 0.01. The local bifurcation parameters, an = � 0:02, are at the brink of the local bifurcations which is

where the best fitting was demonstrated to be achieved. We estimated the intrinsic frequencies from the empirical data, as given by

the averaged peak frequency of the narrowband BOLD signals of each brain region. The variable xn emulates the BOLD signal of each

region n. To model the whole-brain dynamics we added an additive coupling term representing the input received in region n from

every other region p, which is weighted by the corresponding structural connectivity. In this term, G denotes the global coupling

weight, scaling equally the total input received in each brain area. All the measures related to whole-brain model were estimated

for each global coupling work point, G, running the simulations 200 times and averaging the results.
e3 Cell Reports 33, 108471, December 8, 2020
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Measure of amplitude turbulence
Wemeasure amplitude turbulence by first defining the Kuramoto local order parameter and then taking the standard deviation of the

modulus across time and space (similar to Kawamura et al., 2007). First, we define the amplitude turbulence,RnðtÞ, as themodulus of

the local order parameter for a given brain node as a function of the time:

RnðtÞeiwnðtÞ =
X
p

"
CnpP
qCnq

#
ei4pðtÞ (Equation 8)

where 4pðtÞ are the phases of the BOLD time series and Cnp the anatomical exponential distance rule connectivity matrix (see Equa-

tion 3). The BOLD fMRI time series were transformed to phase space by first filtering the signals in the range between 0.008-0.08 Hz

and using the Hilbert transforms to extract the evolution of the phases of the signal for each brain node over time.

We then measure the amplitude turbulence, D, as the standard deviation across time and space of R:

D = CR2D� CR2D (Equation 9)

where the brackets C D denotes average across space and time. In order to normalize this measure, we shift D with respect to its

value when using a global coupling of G = 0, which corresponds to a non-coupled system of oscillators, i.e., random.

Fitting model using traditional strategy is not informative
As a note, Figure S1 shows that using the traditional strategy of fitting using the correlation between empirical and simulated func-

tional connectivity matrices (red line) is not informative for constraining the model. This shows the usefulness of defining functional

connectivity as a function of equally distanced nodes as is defined in the structure function definitions of S(r) and B(r).

The influence of the shear parameter on amplitude turbulence
In order to investigate the role of turbulence on fitting the model, we were inspired by the findings by Kawamura et al. (2007), who

manipulated the shear parameter in Equations 4–7. Figure S2 shows the results of systematically changing the shear parameter,

b, and the resulting changes in amplitude turbulence (red line) and the level of fitting (black line). Increasing the shear parameter leads

to a worsening of the level of fitting, which is the error of the estimation of B(r). Nevertheless, the shear parameter is strongly affecting

the amplitude turbulence, and it is interesting to observe that when this decreases so the level of fitting get worse, establishing the

relevance of turbulence for fitting the model.

Power laws in Hopf whole-brain model
We checked for power laws in the dynamics of the Hopf whole-brain model. Figure S3 shows the goodness of fit of power law for the

pair correlation function B(r) in the inertial subrange. This is not particularly sensitive to finding optimal turbulence as shown by the red

line, representing the goodness of fit, which only goes below p < 0.05 for G > 0.65. Still, this is evidence for the existence of power law

and is consistent with the findings of high values of amplitude turbulence in the same range.

In the context of the Exponential Distance Rule, wewere interested in estimating the exponential decay, l, in a complementary way

to that used in the results section, namely estimating this from dMRI tractography which yields l= 0:18 mm-1. This is consistent with

research showing that smaller brain species such as non-human primates and rodents have higher exponential decays (Horvát et al.,

2016), with values of l= 0:19 mm-1 for non-human primates (Ercsey-Ravasz et al., 2013) and l= 0:78 mm-1 for rodents (Horvát et al.,

2016).

In order to see if lower values of lambda are feasible in humans, we constructed a Hopf whole-brain model entirely reliant on the

Exponential Distance Rule and estimated the possible exponential decays. Thus, this model has two free parametersG and l, which

can be systematically varied to study the root squared error between the empirical and simulated B(r) in the inertial subrange. Fig-

ure S4A shows that the model fitting includes the previously empirically estimated l= 0:18 mm-1, based on the dMRI connectivity.

Importantly, as can be seen from the plot, many exponential decays are possible, including smaller ones as suggested by the existing

empirical data in other species.

Similarly, Figure S4B shows there is a combination of the two parameters that provides the optimal balance between segregation

and integration, computed as the product of the segregation and integration for the model (see STAR Methods). Figure S4C shows

the fit between empirical and simulated BðrÞ for the inertial subrange, with empirical data shown by the red line and standard devi-

ation, while the data from the Hopf whole-brain model is shown by the blue line and standard deviation. This causally demonstrates

that the human brain contains a homogeneous isotropic functional core, which observes spatial power scaling behavior in the inertial

subrange, generated by the Exponential Distance Rule.

Measure of susceptibility
We define the susceptibility of a whole-brain model as the sensitivity of the brain to the processing of external stimulations. We

perturb the Hopf whole-brain model at each G by randomly changing the local bifurcation parameter, an, in the range [-0.02:0].
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We estimate the sensitivity of these perturbations on the spatiotemporal dynamics by measuring the modulus of the local Kuramoto

order parameter, i.e., ~R
ðmÞ
n ðtÞ for the perturbed case, and R

ðmÞ
n ðtÞ for the unperturbed case. We define susceptibility in the following

way:

c =
DDD

~R
ðmÞ
n ðtÞ

E
t
�
D
RðmÞ

n ðtÞ
E
t


E
trials

E
s

(Equation 10)

where h it, h itrials and h is are the mean averages across time, trials, and space, respectively.

Measure of information capability
Moving beyond susceptibility, we define the information capability of the whole-brain model as a measure to capture how different

external stimulations are encoded in the dynamics. Specifically, we perturb the model as above, but here the information capability I

is defined as the standard deviation across trials of the difference between the perturbed and unperturbedmean of themodulus of the

local order parameter across time, averaged over all brain nodes n, i.e.:

I = CC
�
C ~R

ðmÞ
n ðtÞDt � CRðmÞ

n ðtÞDt

2

Dtrials � C
�
C ~R

ðmÞ
n ðtÞDt � CRðmÞ

n ðtÞDt

2

DtrialsDs (Equation 11)

where the averages (CDt, CDtrials and CDs) are defined as above.

Measure of integration
As a measure of integration we used the mean value of all functional correlation pairs i and j, i.e.

I =
1

k

X
i;j > i

Fij = CuiujDt (Equation 12)

where k is the number of upper triangular elements in the functional connectivity matrix F, whose elements are defined as the tem-

poral average of the z-scored functional signals u between nodes i and j.

Segregation
As a complement of the integration, we used the modularity measure (Rubinov and Sporns, 2011) as a measure of segregation.

Following Rubinov and Sporns (2011), modularity is defined as a measure of the goodness with which a network is optimally parti-

tioned into functional subgroups, i.e., a complete subdivision of the network into non-overlapping modules, and supported by

densely connected network communities. We consider the modularity of our FC matrix. Our measure of modularity is given by,

S =
1

v +

X
ij

�
w+

ij � e+
ij



dMiMj

(Equation 13)

Where the total weight, v+ =
P

ijwij
+, is the sum of all positive or negative connection weights (counted twice for each connection),

being wij
+ ˛ (0,1] the weighted connection between nodes i and j. The chance-expected within-module connection weights e+

ij =
s+
i
s+
j

v + , where the strength of node i, si
+ =

P
jwij

+, is the sum of positive or negative connection weights of i. The dMiMj = 1 when i and

j are in the same module and dMiMj = 0, otherwise (Newman, 2006). For a complete description see Sporns (2010).
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Supplemental Figures 

 
Figure S1. Fitting with functional connectivity. The traditional strategy of fitting using the 

correlation between empirical and simulated functional connectivity matrices (red line) is not 

informative for constraining the model. Related to Figure 3. 
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Figure S2. Changes in amplitude turbulence as a function of the shear parameter. Inspired by the 

findings by Kawamura, Nakao and Kuramoto (Kawamura et al., 2007), we systematically 

investigated the influence of the shear parameter (𝛽) on amplitude turbulence (red line) and on the 

level of fitting (black line). The level of fitting is the error of the estimation of B(r) and is thus clearly 

not improved by increasing the shear parameter. Nevertheless the shear parameter is strongly 

affecting the amplitude turbulence, and it is interesting to observe that when this decreases so the 

level of fitting get worse, establishing the relevance of turbulence for fitting the model. Related to 

Figure 3. 
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Figure S3. Power law fitting of model. The power law fitting of the pair correlation function B(r) in 

the inertial subrange (information cascade) can also be useful for capturing turbulence but is not 

very sensitive to finding optimal turbulence. The slope of the power law is plotted in. The goodness 

of fit (red line) only goes below p<0.05 for G>0.65, which is evidence for the existence of power law. 

This is consistent with the findings of high values of amplitude turbulence in the same range. Related 

to Figure 7. 
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Figure S4. Modelling of lambda in the Exponential Distance Rule. Independently of the fitting using 

dMRI connectivity, we wanted to explore the relationship between exponential decay and coupling in 

a model with these two free parameters. A) We show the root squared error between the empirical 

and simulated B(r) in the inertial subrange as a function of the two free parameters G and 𝜆. There 

is a clear optimal region as the combination of the parameters along the diagonal of the matrix. B) 

The results show that there is a consistent region of parameters producing an optimal balance 

between integration and segregation, computed as their product (see Methods). C) For optimal 

parameters, we plot the very good fit between empirical and simulated B(r) for the inertial subrange. 

Related to Figure 7. 
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