
Supporting Information: residual heterogeneity in random-effects521

meta-CART522

In random-effects meta-analysis, it is assumed that there is heterogeneity unexplained by the moderators,

and such heterogeneity is called residual heterogeneity. In meta-CART analysis, we estimate the residual

heterogeneity using the DerSimonian and Laird (1986) method. The residual heterogeneity is computed

as
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where Qj is the within-subgroup Q-statistic in the jth group. It can be computed as in (4). dfj equals523

K − 1, and the components Cj are computed as524
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In the tree growing process of RE meta-CART, the residual heterogeneity σ2
τ is updated after each525

split. Once a new split is introduced, the estimation of σ2
τ needs to be re-estimated based on the new526

values of Qj , dfj and Cj . As a result, the random effects within-subgroup Q∗j needs be re-computed for527

all the existing terminal nodes in the current tree.528
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