## Global genetic deletion of $Ca_V 3.3$ channels facilitates anaesthetic induction and

## enhances isoflurane-sparing effects of T-type calcium channel blockers

Simon Feseha<sup>1</sup>, Tamara Timic Stamenic<sup>1</sup>, Damon Wallace<sup>1</sup>, Caesare Tamag<sup>1</sup>, Lingling

Yang<sup>4</sup> Jen Q. Pan<sup>4</sup>, Slobodan M. Todorovic<sup>1,2,3</sup>

<sup>1</sup>Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora 80045; <sup>2</sup>Neuroscience and <sup>3</sup>Pharmacology Graduate Programs, University of Colorado, Anschutz Medical Campus, Aurora 80045; <sup>4</sup>Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT

Correspondence Author: Slobodan M. Todorovic

Phone 303-724-9122; Fax 303-724-9752 E-mail: slobodan.todorovic@cuanschutz.edu University of Colorado Anschutz Medical Campus Department of Anesthesiology, Mail Stop 8130 12801 E. 17<sup>th</sup> Avenue, Rm L18-4100 Aurora, CO 80045

**Running title**: the role of Ca<sub>V</sub>3.3 channels in anaesthesia **Key words**: low-voltage-activated, calcium, thalamus, burst suppression, GABA

## Acknowledgements

This study was funded in part by grants from the National Institutes of Health (GRANT# R01GM102525 to S.M.T.) and funds from the Department of Anesthesiology and School of Medicine at Anschutz Medical Campus. We thank the University of Colorado Anschutz Medical Campus Rodent *In Vivo* Neurophysiology Core, which is partly supported by the NIH P30 NS048154 grant, for providing facilities to acquire and review video-EEG data.

## Conflict of interest

The authors received no compensation, nor do they have any conflicting financial interests with regard to the work described in this manuscript.

SUPPLEMENTAL FIGURES



**Supplemental Figure 1:** A) Time of induction at 1.2% isoflurane comparing male and female mice in the WT mice. ANOVA demonstrated no significance between sexes (two-way repeated measure (RM) ANOVA:  $F_{1,7} = 0.82 \text{ p}=0.394$ ). Males and females were grouped together for Figure 1A. B) Time of induction at 1.2% isoflurane comparing male and female mice in the Ca<sub>V</sub>3.3 KO group. ANOVA demonstrated no significance between sexes (two-way repeated measure (RM) ANOVA:  $F_{1,8} = 0.79 \text{ p}=0.399$ ). Males and females were grouped together for Figure 1A.



**Supplemental Figure 2:** A) Percent isoflurane at LORR comparing male and female mice in the WT group. ANOVA demonstrated no significance between sexes (two-way repeated measure (RM) ANOVA:  $F_{1,8} = 2.847$  p=0.130). Males and females were grouped together for Figure 3A. B) Percent isoflurane at LORR comparing male and female mice in the Ca<sub>V</sub>3.3 KO group. ANOVA demonstrated no significant differences between sexes (two-way repeated measure (RM) ANOVA:  $F_{1,8} = 0.265$  p=0.621). Males and females were grouped together for Figure 3B.



<u>Supplemental Figure 3</u>: Isoflurane-sparing effect of TTA-P2 and 3 $\beta$ -OH on anaesthetic hypnosis is more prominent in the Ca<sub>v</sub>3.3 KO mice than in the WT mice. A) The Ca<sub>v</sub>3.3 KO mice pretreated with 60 mg/kg i.p. of TTA-P2 achieved LORR with significantly lower concentration of isoflurane than the WT cohort (unpaired two-tailed t-test: t<sub>18</sub> = 3.638, \*\* indicates p = 0.002). The data are taken from Figure 3A and used here as a reference. B) Mutant mice pretreated with 20 mg/kg i.p. of 3 $\beta$ -OH reached LORR at significantly lower concentration of isoflurane that WT mice (unpaired two-tailed t-test: t<sub>18</sub> = 3.286, \*\* shows p = 0.004).