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Table S1: Data set summary and patient characteristics. HCT-graft types: TCD: T-cell depleted graft (ex-vivo) 1 

by CD34+selection; PBSC: peripheral blood stem cells; BM: bone marrow; cord: umbilical cord blood; 2 

Conditioning intensity: Bacigalupo classification, graded categories from most to least intense (ABLATIVE, 3 

REDUCE, NONABL). 4 
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patients  2,926 

HCT therapies*  3,060 

blood samples total 450,635 

 between HCT-day -21 and HCT-day 183 193,396 

Disease  Leukemia 1,635 

 Non-Hodgkin's Lymphoma 415 

 Multiple Myeloma 170 

 Hodgkin's disease 88 

 other 752 

HCT graft type TCD 1,106 

 PBSC unmodified 959 

 BM unmodified 617 

 cord 378 

Conditioning intensity ABLATIVE 65% 

 REDUCE 21% 

 NONABL 13% 

Gender M 58% 

 F 42% 

Age of adults (years) 25%-tile 39 

 mean 50 

 75%-tile 62 

Microbiome samples total 12,633 

 - from patients with blood data 10,680 

 - of those, post engraftment 4,179  

 - of those with daily change in WBC 2,615 

 patients with microbiome sample 1,290 

*) some patient received several HCTs 6 
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Table S2: Patient and HCT characteristics of 24 patients enrolled in the randomized controlled FMT trial. 8 

 control  FMT treated 

N patients 10 14 

ABLATIVE 6 7 

REDUCE 4 7 

BM unmodified 1 3 

PBSC unmodified 3 4 

TCD 5 3 

cord 1 4 

 9 

 10 

 11 

 12 
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Table S3: Patient and HCT characteristics of the subset of patients who did not donate microbiota samples. 13 

patients  1,010 

   

Disease distribution Leukemia 53% 

 Non-Hodgkin's Lymphoma 17% 

 Multiple Myeloma 5% 

 Hodgkin's disease 5% 

 other 20% 

HCT graft type TCD 40%% 

 PBSC unmodified 31% 

 BM unmodified 17% 

 cord 12% 

Conditioning intensity ABLATIVE 65% 

 REDUCE 14% 

 NONABL 21% 

Gender M 58% 

 F 42% 

Age (years) 25%-tile 36 

 mean 47 

 75%-tile 59 
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Table S4: Patient and HCT characteristics of the subset of patients who donated microbiota samples. 15 

patients  1,294 

   

Disease distribution Leukemia 51% 

 Non-Hodgkin's Lymphoma 15% 

 Multiple Myeloma 8% 

 Hodgkin's disease 3% 

 other 23% 

HCT graft type TCD 37% 

 PBSC unmodified 38% 

 BM unmodified 9% 

 cord 16% 

Conditioning intensity ABLATIVE 55% 

 REDUCE 34% 

 NONABL 11% 

Gender M 59% 

 F 41% 

Age (years) 25%-tile 46 

 mean 54 

 75%-tile 65 

 16 

 17 

 18 

 19 

 20 

 21 
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Table S5: Patient and HCT characteristics of the Duke University patient cohort. 22 

patients  493 

Disease distribution Lymphoma 11% 

 Leukemia 50% 

 Non-Hodgkin's Lymphoma 4% 

 Multiple Myeloma 8% 

 Hodgkin's disease 4% 

 other 24% 

HCT graft type TCD 0% 

 PBSC unmodified 72% 

 BM unmodified 11% 

 cord 16% 

Conditioning intensity ABLATIVE 92% 

 NONABL 7% 

Gender M 65% 

 F 35% 

Age (years) 25%-tile 41 

 mean 49 

 75%-tile 57 

 23 

Supplementary methods and results 24 

FMT procedure 25 

Patient sample collection protocols were approved by the Memorial Sloan Kettering Cancer Center 26 

Institutional Review and Privacy Board (ClinicalTrials.gov identifier: NCT02269150) and described 27 

in full in the original publication. Briefly, patients’ stool was collected when they first entered the 28 

clinic. We chose autologous, as opposed to feces from a heterologous donor, because of potential 29 

safety concerns. The stool was tested for the presence of potential intestinal pathogens including C. 30 

difficile and frozen (−80°C). If a patient was randomized to receive treatment after engraftment of 31 

neutrophils, the thawed sample was re-administered via an enema. Due to the strenuous nature of this 32 

procedure, it was deemed unethical to administer a mock enema to control patients. Subjects whose 33 

pre–allo-HSCT feces demonstrated low microbial diversity (IS index < 2.0) or tested positive for the 34 

presence of an intestinal pathogen, for example, C. difficile, were excluded from randomization. After 35 

successful hematopoietic cell engraftment (three consecutive blood neutrophil counts ≥500 per mm3), 36 

subjects underwent testing of a fecal specimen collected after engraftment to determine the presence 37 

of the Bacteroidetes phylum via quantitative PCR. Individuals with low abundance of Bacteroidetes 38 

(<0.1% total 16S) were eligible to proceed to randomization and treatment. Eligible subjects were 1:1 39 

randomized to undergo auto-FMT with the subject’s stored pre–allo-HSCT feces versus no fecal 40 

transplantation. Randomization was stratified by cord blood source versus non–cord blood source. 41 

Subjects could be randomized within a 28-day window after engraftment. Subjects who were 42 

critically ill or required prolonged microbiota-perturbing antibiotics through the designated 28-day 43 

period were excluded from randomization. 44 
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 45 

Alternative analysis of FMT effect on white blood cell counts 46 

In the main text we considered a random effect per day post neutrophil engraftment. Our choice of 47 

modeling day_i as a random intercept term was to allow the cell counts to follow any function of day 48 

post FMT. Alternatively, we conducted another analysis now with day as a linear predictor: 49 

𝑦𝑖𝑗 =  𝛽0 + 𝑑𝑎𝑦 +  𝑎𝑟𝑚𝑝𝑜𝑠𝑡 ∗ 𝐹𝑀𝑇𝑖𝑗 + 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑗 + 𝜀𝑖𝑗 ,   𝑖 = 0, … , 𝐷, 𝑗 = 1, … , 𝑃, 50 

This reduced significance but did not alter our main conclusions: FMT associated with increased 51 

neutrophils (coefficient FMT: 1.44, p=0.002), lymphocyte (coefficient FMT: 0.08, p=0.13), and 52 

monocytes (coefficient FMT: 0.34, p<0.001). 53 

 54 

Survival analysis 55 

We sought to analyze 3-year survival following neutrophil engraftment in the patient cohort analyzed 56 

in our main analyses. We observed 668 deaths during that period (see Kaplan Meier plot Extended 57 

Data Fig. 10). We used a Cox proportional hazards model to analyze 3-year patient survival following 58 

neutrophil engraftment using the lifelines (v0.24) package for the Python programming language 59 

(DOI:10.5281/zenodo.3677104).  60 

ℎ(𝑡) = ℎ0(𝑡)exp (𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑛𝑋𝑛 ) 61 

where h(t) is the expected hazard at time t, h0(t) is the baseline hazard. As predictors, X, we included 62 

the median total white blood cell count during the first 100 days following the time when FMT was 63 

usually performed (i.e. 37 days after neutrophil engraftment), sex, and age removing patients who 64 

lacked sufficient blood data during this post-engraftment period. Disease and stem cell graft source 65 

were used to stratify patients (using the “strata” parameter of the Cox proportional hazard fit 66 

function), as including them in the form of intercept terms violated the proportional hazards 67 

assumptions. This showed a mild but detectable association of total white blood cell counts during the 68 

investigated interval with improved survival: 69 

 70 

 
N:  2,013 

   

 
events: 668 

   

 
strata:  'disease', 'hct-source' 

  

 

     

 
coef exp(coef) lower 0.95 upper 0.95 p-value 

average total wbc count (z-scored) -0.09 0.91 -0.18 0 0.04 

age (z-scored) 0.19 1.21 0.1 0.28 <0.005 

SEX:F 0.03 1.03 -0.12 0.19 0.68 

 71 

 72 

 73 
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Dynamic systems analyses 74 

To investigate if the composition of the gut microbiota is associated with the dynamics of circulating 75 

white blood cells, we analyzed detailed blood and clinical metadata of HCT patients between 3 days 76 

before HCT and until 100 days post neutrophil engraftment. The blood of each patient is monitored 77 

throughout this therapy, and medications are administered to modulate the immune cell dynamics, 78 

including GCSF (Fig. 1) to increase neutrophil counts, and immunosuppressants such as 79 

mycophenolate mofetil or tacrolimus to prevent complications such as graft-vs-host disease. During 80 

this period, patients are monitored carefully, and our analysis included on average 63 longitudinal 81 

host phenotype measurements per patient in the form of complete blood counts (CBCs) which 82 

quantify the most abundant immune cells in circulation (Fig. 1, complete data description and 83 

exclusion criteria in Extended Data Fig. 1). Combining this data with detailed medication and clinical 84 

metadata—and microbiome data where available—allowed us to apply dynamic systems inference 85 

approaches on intervals during which changes in WBC counts were observed. 86 

 87 

Covariates included in interval data 88 

For a given daily interval, a medication was considered present for at least part of the interval when it 89 

was administered on either endpoint. Administration events were obtained from parsing the 90 

institutional task data base which contains drug and treatment administrations performed on patients. 91 

For the microbiota, data from the end day were considered for the interval, and for blood stream 92 

infection data, either endpoint was considered. Homeostatic feedback calculations used the geometric 93 

mean of the white blood cell counts between the two endpoints. We included only those covariates 94 

that were present during at least 10 intervals.  95 

Our data comprises >1.6M recorded administrations of 806 different medications with 96 

durations provided. All patients analyzed in stage 2 had available medication records, but ~10% of the 97 

patients without microbiome data had missing medication records and/or incomplete metadata. In 98 

case of missing continuous metadata, missing values were filled with means. 99 

The stem cell graft source is a major determinant of engraftment times and can affect 100 

recovery dynamics1,2, and we therefore included intercept terms for unmodified peripheral blood stem 101 

cell grafts (PBSC), bone marrow (BM), T-cell depleted graft (ex-vivo) by CD34+selection (TCD) and 102 

cord blood (cord) in stage 1.  103 

Patients received a variety of conditioning regimens comprised of various doses of 104 

chemotherapy and, in some cases, irradiation. There are dozens of conditioning regimes for HCT3. 105 

The standard approach in the allo-HCT field for observational studies is to categorize them by the 106 

Bacigalupo classification, which uses three graded categories from most to least intense4: 107 

Myeloablative (“ABLATIVE”), Reduced Intensity (“REDUCE”), and Nonmyeloablative 108 

(“NONABL”). We included the conditioning intensity as indicator variables. 109 

 110 
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Data exclusion for white blood cell dynamic (stage 1 and 2)   111 

Our dynamics analyses focus on the daily changes in white blood cell counts from one day to another 112 

during recovery of the circulatory immune cell system. To analyze the kinetics of this reconstitution, 113 

we excluded data when (see also flow chart below): 114 

- On the day of HCT, patients were younger than 18 years  115 

- Patients did not engraft  116 

- Patients had a second transplant within 100 days  117 

- Samples were taken outside the window of 100 days starting from neutrophil engraftment 118 

- In case there were multiple blood samples per patient and day, the one closest to noon was 119 

chosen 120 

- A patient died within the first 3 months after HCT 121 

- A sample was taken within 1 week of FMT  122 

 123 

This data exclusion is encoded as two separate columns in the tidy data table WBC.csv, by a Boolean 124 

indicator column named “include”, and the column “exclude_reason” of string type (Extended Data 125 

Fig. 1). The algorithm and code for stage 1 and 2 are available online 126 

(https://github.com/jsevo/wbcdynamics_microbiome/). 127 

 128 

Additional results 129 

Most of the taxa that strongly associated with white blood cell dynamics were obligate anaerobes that 130 

may affect immune homeostasis5–8. Rothia, was a notable exception: this aerobic genus is typically 131 

found in the oral cavity9 but can become an opportunistic pathogen in immunosuppressed patients and 132 

is not known to provide metabolic functions to the host10–12. 133 

 134 

Shotgun sequencing data processing  135 

We removed normal optical duplicates in paired FASTQ files using the clumpify.sh tool from the 136 

BBMap package (BBMap – Bushnell B. – https://www.sourceforge.net/projects/bbmap/), producing a 137 

pair of deduped read files. Using the bbduk.sh script in the BBMap package, we trimmed the right and 138 

left side of a read in a pair to Q10 using the Phred algorithm. A pair of reads was dropped if any one 139 

of them has a length shorter than 51 nucleotides after trimming. We trim 3’-end adapters using a kmer 140 

of length 31, and a shorter kmer of 9 at the other end of the read. One mismatch was allowed in this 141 

process, and we allowed adapter trimming based on pair overlap detection (which does not require 142 

known adapter sequences) using the ‘tbo’ parameter. We used the ‘tpe’ parameter to trim the pair of 143 

reads to the same length. 144 

 145 

Removal of human contamination was done using Kneaddata with paired-end reads, employing 146 

BMTagger. The BMTagger database was built with human genome assembly GRCh38. After 147 

https://www.sourceforge.net/projects/bbmap/
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decontamination, the paired-end reads were concatenated to a single FASTQ file as the input for 148 

functional profiling with the Humann2 pipeline (main methods). 149 

 150 

Rationale for using estimations of total bacterial abundances for bi-directional analysis of 151 

bacterial and white blood cell dynamics 152 

In order to assess the association of bacterial populations with antibiotics, the ecosystem of other 153 

bacteria and the count of white blood cells in circulation, we employed a similar approach to that used 154 

in stage 1. To calculate the dependent variable, i.e. the log-changes per day in total counts, we had to 155 

estimate the absolute abundances of bacteria. This is needed because inferences of dynamic equations 156 

like the ones used here cannot be conducted on observations of changes in relative abundances. 157 

Briefly, a positive change in relative abundances of a bacterium could be due to the focal bacterium’s 158 

counts increasing, that of other species’ decreasing, both focal and others increasing or decreasing but 159 

the focal species faster or slower so, respectively. This means that when attempting to use 160 

observations of relative abundance changes as dependent variables to infer interactions like we do 161 

here, one would try to solve one more unknown than one has information for. Unless specific 162 

assumptions can be justified, one therefore must estimate a total count. We here do this by estimating 163 

the total population density using qPCR. 164 

 This is important when estimating the sign and the effect sizes of antibiotics, other bacterial 165 

species in the ecosystem or the white blood cells in circulation on the changes of a focal taxon. We do 166 

not know what aspects of the microbiota can be affected by the immune system, and it is entirely 167 

possible that the immune system evolved to “control” relative abundances to achieve microbiota 168 

homeostasis13. Yet, in order to estimate in which direction the immune system’s effect operates on 169 

any one taxon, for the reasons above, we require observations of total changes per taxon. 170 

 171 

Duke data collection 172 

Data at Duke university was collected analogously to the procedures at MSKCC. Complete blood 173 

counts were assessed on the Sysmex XN, Pro00050975 platform. Clinical metadata was obtained 174 

from the Duke Enterprise Data Unified Content Explorer (DEDUCE) and Duke Adult Blood and 175 

Marrow Transplant (ABMT) data base. All sequencing was conducted at MSKCC following the same 176 

protocols. 177 

  178 
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