Supplemental Online Content

Writing Committee and Steering Committee for the RELAx Collaborative Group. Effect of a lower vs higher positive end-expiratory pressure strategy on ventilator-free days in ICU patients without ARDS: a randomized clinical trial. *JAMA*. Published online December 9, 2020. doi:10.1001/jama.2020.23517

eAppendix 1. List of Committees, Investigators, and Study Sites

eAppendix 2. Supplementary Methods

eTable 1. Definitions of Secondary Outcomes

eTable 2. Daily Ventilatory Variables, Arterial Blood Gases and Vital Signs in the First Three Days after Randomization

eTable 3. Daily Sedation, Fluids, Transfusion and Vasopressors

eTable 4. Adherence to the Protocol With Respect to PEEP, FiO2 and SpO2 in the First Five Days

eTable 5. Per-Protocol Analysis of the Primary Outcome

eTable 6. Adjusted Analyses for the Primary and Secondary Outcomes

eTable 7. Significance Levels for Secondary Outcomes in Table 2 of Paper After Correction for Multiple Comparisons

eFigure 1. Flowchart of Ventilator Settings in the Two Ventilation Strategies

eFigure 2. Mean, Highest and Lowest PEEP in the First Five Days According to the Allocation Group

eFigure 3. Mean, Highest and Lowest FiO₂ in the First Five Days According to the Allocation Group

eFigure 4. Mean, Highest and Lowest SpO₂ in the First Five Days According to the Allocation Group

eFigure 5. Mean, Highest and Lowest SpO₂/FiO₂ in the First Five Days According to the Allocation Group

eFigure 6. Mean Tidal Volume, Driving Pressure, PaO₂/FiO₂ and PaCO₂ in the First Five Days According to the Allocation Group

eFigure 7. Mean Heart Rate and Mean Arterial Pressure in the First Five Days According to the Allocation Group

eFigure 8. Cumulative Distribution of PEEP in the First Three Days According to the Allocation Group **eFigure 9.** Cumulative Distribution of FiO₂ in the First Three Days According to the Allocation Group

eFigure 10. Cumulative Distribution of SpO₂ in the First Three Days According to the Allocation Group

eFigure 11. Ventilatory Modes in the First Five Days According to the Allocation Group

eFigure 12. Percentage of Patients in Each Group of PEEP in the First Three Days According to the Allocation Group

eFigure 13. Percentage of Patients in Each Group of SpO₂ in the First Three Days According to the Allocation Group

eFigure 14. Percentage of Patients in Each Group of FiO₂ in the First Three Days According to the Allocation Group

eFigure 15. Cumulative Fluid Balance in the First Five Days According to the Allocation Group

eFigure 16. Patients Who Survived and Were Extubated During the First 28 Days After Randomization

eFigure 17. Patients Who Survived and Were Discharged Alive From the ICU and Hospital During the First 28 Days After Randomization

eFigure 18. Kaplan-Meier Estimates for Patients in the Lower and Higher PEEP Groups **eReferences**

This supplemental material has been provided by the authors to give readers additional information about their work.

eAppendix 1. Lists of committees, investigators and study sites

1.1 Writing committee members

The writing committee was composed by Anna Geke Algera (Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the Netherlands), Luigi Pisani (Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the Netherlands), Ary Serpa Neto (Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil & Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Monash University, Melbourne, Australia & Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the Netherlands), Marcelo Gama de Abreu (Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Dresden, Germany), Paolo Pelosi (Department of Surgical Sciences and Integrated Diagnostics, San Martino Policlinico Hospital, IRCCS for Oncology, University of Genoa, Genoa, Italy), Marcus J. Schultz (Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the Netherlands & Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand), Frederique Paulus (Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the Netherlands & ACHIEVE Centre of Expertise, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands). All members of the writing committee contributed equally.

1.2 Steering committee members

(names are listed in alphabetical order)

Alexandra Cala	
Algera, Anna Geke	Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the
Deach Frenh F II	Netherlands
Bosch, Frank F.H.	Department of Intensive Care, Rijnstate, Arnhem, the Netherlands
Bruin, Karina	Department of Intensive Care, Westfriesgasthuis, Hoorn, the Netherlands
den Boer, Sylvia	Department of Intensive Care, Spaarne Gasthuis, Haarlem and Hoofddorp, the Netherlands
Gama de Abreu, Marcelo	Pulmonary Engineering Group, University Hospital Carl Gustav Carus,
	Dresden, Germany
Klooster, Pauline M.	Department of Intensive Care, Haaglanden MC, The Hague, the Netherlands
Nowitzky, Ralph O.	Department of Intensive Care, Haga Hospital, The Hague, the Netherlands
Paulus, Frederique	Department of Intensive Care, Amsterdam UMC location AMC,
	Amsterdam, the Netherlands
	ACHIEVE Centre of Expertise, Faculty of Health, Amsterdam University of
	Applied Sciences, Amsterdam, The Netherlands
Pelosi, Paolo	Department of Surgical Sciences and Integrated Diagnostics, San Martino
,	Policlinico Hospital, IRCCS for Oncology, University of Genoa, Genoa,
	Italy
Pisani, Luigi	Department of Intensive Care & Laboratory of Experimental Intensive Care
, , , , , , , , , , , , , , , , , , , ,	and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the
	Netherlands
Purmer, Ilse M.	Department of Intensive Care, Haga Hospital, The Hague, the Netherlands
Serpa Neto, Ary	Department of Critical Care Medicine, Hospital Israelita Albert Einstein,
~	São Paulo, Brazil
	Australian and New Zealand Intensive Care Research Centre (ANZIC-RC),
	Monash University, Melbourne, Australia
	Department of Intensive Care & Laboratory of Experimental Intensive Care
	and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the
	Netherlands
Slabbekoorn, Mathilde	Department of Intensive Care, Haaglanden MC, The Hague, the Netherlands
Spronk, Peter E.	Department of Intensive Care, Gelre Hospitals, Apeldoorn, the Netherlands
Schultz, Marcus J.	Department of Intensive Care & Laboratory of Experimental Intensive Care
Solutiz, Marcus J.	and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the
	Netherlands
	Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol
	University, Bangkok, Thailand
	University, Dangkok, Thanana

Van Vliet, Jan	Department of Intensive Care, Rijnstate, Arnhem, the Netherlands
Van der Meer, Nardo	Department of Intensive Care, Amphia Hospital, Breda, the Netherlands
J.M.	
Weenink, Jan J.	Department of Intensive Care, Spaarne Gasthuis, Haarlem and Hoofddorp,
	the Netherlands

1.3 Statistician

Ary Serpa Neto (Department of Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil & Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Monash University, Melbourne, Australia & Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the Netherlands).

1.4 Data safety and monitoring committee

Patient data and safety was monitored by a committee, which was composed of a chairperson (Ignacio Martin-Loeches) and three further members (Paolo Severgnini, Frank van Haren and Antonio Artigas). The DSMB was supported by Ary Serpa Neto, who provided the data and safety monitoring committee with reports for review. The committee monitored the safety by monitoring the ventilation specific complications in both ventilation groups, the overall status of the trial (e.g. progress of patient enrollment, general adherence to protocol and completeness of data entry).

1.5 RELAx investigators

(*, indicates local principal investigators; names are listed in alphabetical order) Algera Anna Geke Department of Intensive Care & Laboratory

Algera, Anna Geke	Department of Intensive Care & Laboratory of Experimental
	Intensive Care and Anesthesiology, Amsterdam UMC location
	AMC, Amsterdam, the Netherlands
Bergmans, Dennis C.J.J.	Department of Intensive Care, Maastricht UMC, Maastricht, the
	Netherlands
Bos, Lieuwe	Department of Intensive Care & Laboratory of Experimental
	Intensive Care and Anesthesiology & Respiratory Medicine,
	Amsterdam UMC location AMC, Amsterdam, the Netherlands
Bosch, Frank F.H.*	Department of Intensive Care, Rijnstate, Arnhem, the Netherlands
Braber, Annemarije	Department of Intensive Care, Gelre Hospitals, Apeldoorn, the
	Netherlands
Bruin, Karina	Department of Intensive Care, Westfriesgasthuis, Hoorn, the
	Netherlands
de Borgie, Corianne	Clinical Research Unit, Amsterdam UMC location AMC,
	Amsterdam, the Netherlands
den Boer, Sylvia*	Department of Intensive Care, Spaarne Gasthuis, Haarlem and
	Hoofddorp, the Netherlands
Cherpanath, Thomas G.	Department of Intensive Care, Amsterdam UMC location AMC,
	Amsterdam, the Netherlands
Determann, Rogier M.	Department of Intensive Care, Onze Lieve Vrouwe Gasthuis,
	Amsterdam, the Netherlands
Dondorp, Arjen	Department of Intensive Care, Amsterdam UMC location AMC,
	Amsterdam, the Netherlands; Mahidol-Oxford Tropical Medicine
	Research Unit (MORU), Mahidol University, Bangkok, Thailand
Dongelmans, Dave A.	Department of Intensive Care, Amsterdam UMC location AMC,
	Amsterdam, the Netherlands
Endeman, Henrik	Department of Intensive Care, Erasmus MC, Rotterdam, the
	Netherlands
Flim, Marleen	Department of Intensive Care, Gelre Hospitals, Apeldoorn, the
	Netherlands
Gama de Abreu, Marcelo	Pulmonary Engineering Group, University Hospital Carl Gustav
	Carus, Dresden, Germany
Haringman, Jasper J.	Department of Intensive Care, Isala Clinics, Zwolle, the
	Netherlands
Hofhuis, Jose G.M.	Department of Intensive Care, Gelre Hospitals, Apeldoorn, the
1011010, 0000 0.101.	Netherlands

Horn, Janneke	Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the Netherlands
Jansen, Marjolein	Department of Intensive Care, Gelre Hospitals, Apeldoorn, the Netherlands
Juffermans, Nicole P.	Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the Netherlands & Department of Intensive Care Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
Kant, Merijn K.M.	Department of Intensive Care, Amphia Hospital, Breda, the Netherlands
Klooster, Pauline M.	Department of Intensive Care, Haaglanden MC, The Hague, the Netherlands
Merkus, Maruschka P.	Clinical Research Unit, Amsterdam UMC location AMC, Amsterdam, the Netherlands
Moeniralam, Hazra S.	Department of Intensive Care, Sint Antonius Hospital, Nieuwegein, the Netherlands
Nowitzky, Ralph O.	Department of Intensive Care, Haga Hospital, The Hague, the Netherlands
Paulus, Frederique*	Department of Intensive Care, Amsterdam UMC location AMC, Amsterdam, the Netherlands
Pelosi, Paolo	ACHIEVE Centre of Expertise, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands Department of Surgical Sciences and Integrated Diagnostics, San Martino Policlinico Hospital, IRCCS for Oncology, University of Genoa, Genoa, Italy
Pisani, Luigi	Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the Netherlands
Purmer, Ilse M.*	Department of Intensive Care, Haga Hospital, The Hague, the Netherlands
Rijpstra, Tom A.	Department of Intensive Care, Amphia Hospital, Breda, the Netherlands
Serpa Neto, Ary	Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Monash University, Melbourne, Australia Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the Netherlands
Slabbekoorn, Mathilde*	Department of Intensive Care, Haaglanden MC, The Hague, the Netherlands
Spronk, Peter E.*	Department of Intensive Care, Gelre Hospitals, Apeldoorn, the Netherlands
Schultz, Marcus J. *	Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the Netherlands; Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
Teitink, Yvonne	Department of Intensive Care, Rijnstate, Arnhem, the Netherlands
Tuinman, Pieter Roel	Department of Intensive Care Amsterdam UMC location Vrije Universiteit Amsterdam, The Netherlands
Van den Berg, Lettie	Department of Intensive Care, Haga Hospital, The Hague, the Netherlands
Van der Horst, Femke	Department of Intensive Care, Haaglanden MC, The Hague, the Netherlands
Van der Meer, Nardo J.M.*	Department of Intensive Care, Amphia Hospital, Breda, the Netherlands

Van Vliet, Jan	Department of Intensive Care and Anesthesiology, Rijnstate, Arnhem, the Netherlands
Vlaar, Alexander P.J.	Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC location AMC, Amsterdam, the Netherlands
Vogelesang, Helene	Department of Intensive Care, Rijnstate, Arnhem, the Netherlands
Weenink, Jan J.	Department of Intensive Care, Spaarne Gasthuis, Haarlem and Hoofddorp, the Netherlands
Wijnhoven, JanWillem	Department of Intensive Care, Amphia Hospital, Breda, the Netherlands
Winters, Tineke	Department of Intensive Care, Amsterdam UMC location AMC, Amsterdam, the Netherlands

eAppendix 2. Supplementary Methods

Key exclusion criteria

Next to ARDS, other exclusion criteria were age younger than 18 years; pregnancy; ventilation lasting longer than 12 hours before admission to the ICU; COPD GOLD class III/IV; restrictive pulmonary disease; increased and uncontrollable intracranial pressure; delayed cerebral ischemia; ongoing cardiac ischemia; morbid obesity; necrotizing fasciitis; severe untreatable anemia; neurologic diagnosis that could prolong duration of mechanical ventilation; carbon monoxide poisoning; receiving ECMO, participation in another study with similar endpoint, and previously randomized in this trial.

Ventilation protocol

The commonly used ventilator modes (volume controlled ventilation, pressure controlled ventilation and pressure support ventilation) are highly recommended, but all ventilator modes are allowed as long as they do not automatically adjust PEEP and FiO₂. Tidal volume size is between 6-8 ml/kg predicted body weight (PBW), which is calculated according to the following formula [58]: 50 + 0.91 x (centimeters of height – 152.4) for males and 45.5 + 0.91 x (centimeters of height – 152.4) for females. The respiratory rate is adjusted to obtain a normal arterial blood pH (7.35 to 7.45). In case of metabolic acidosis or alkalosis, a lower or higher than normal PaCO₂ can be accepted, which is left to the discretion of the attending physician. Recruitment maneuvers are allowed when deemed necessary, but the decision to perform a recruitment maneuver is also left to the discretion of the attending physician.

Weaning from the ventilator

Daily assessment of the ability to breathe with pressure support ventilation was conducted when FiO_2 was less than or equal to 0.4, or when FiO_2 was lower than the day before. In addition, the ventilator was switched to pressure support ventilation if the attending nurse or physician considered the patient awake enough to breathe with pressure support ventilation. Assessment of the ability to breathe with pressure support ventilator asynchrony was noticed.

A patient was assumed to be ready for extubation if responsive and cooperative, with adequate cough reflex, $PaO_2/FiO_2 > 200 \text{ mmHg}$ at $FiO_2 \le 0.40$ and a respiratory rate between 8 to 30 breath per minute with no signs of respiratory distress, for at least 30 minutes. Patients assigned to the low PEEP strategy were weaned and extubated at the lowest PEEP used. A patient assigned to the high PEEP strategy was extubated at 8 cm H₂O, or PEEP could be set at 5 cm H₂O for 1 to 2 hours to check for extubation readiness. The attending physician made the final decision for extubation. If a patient needed to be re-intubated within 28 days after randomization, ventilation followed the previous assigned PEEP strategy.

Tracheostomy was preferably not performed within 10 days after the initiation of invasive ventilation. Indications included expected duration of ventilation >14 days, a persistent Glasgow Coma Scale <7 with inadequate swallow or cough reflex or retention of sputum, severe ICU-acquired weakness evaluated by clinical inspection, and repeated respiratory failure after successive tracheal extubations.

Standard Care

Standard care followed local clinical guidelines and was performed by independent board-certified ICU physicians and board-certified ICU nurses not involved in the trial. The nurse-to-patient ratio in the participating centers varied from 1:1 to 1:2, depending on severity of illness. ICU physicians rotated in 24/7 shifts, meaning that there was always an ICU physician present in the ICU. Physician and nursing staffs used restrictive sedation, preferring analgo-sedation over hypno-sedation, and restrictive intravenous fluid resuscitation. ICU nurses performed standard airway care, including endotracheal suctioning, and tracheostomy care if applicable. Endotracheal suction was performed only when clinically indicated and according to current guidelines.¹

Infection prevention

Infection prevention strategies consisted of frequent oral care (tooth brushing and rinsing of the oral cavity every six hours), head–of–bed elevation, hand washing, and use of selective decontamination of the digestive tract.²

Outcomes	Definition
Ventilator–free days at day 28	Start time: day of randomization (the same as the day of intubation due to the strict time for inclusion) Timeframe: 28 days Successful extubation: >24 hours without reintubation in a 28–day survivor Interval reintubation: counted from the day of the last successful extubation if there were repeated intubation episodes in the first 28 days Non–invasive ventilation: not counted Tracheostomy: same as above (>24 hours off positive pressure ventilation) 28–day non–survivors: 0 ventilator–free days even if extubated in the period Death after 28 days: censored and considered the duration of ventilation only
Duration of ventilation in survivors	Duration, in days, between intubation and successfully extubation, defined as a patient breathing without invasive assistance of the mechanical ventilator for at least 24 consecutive hours. All relevant data will be taken into account and collected, including all additional periods of ventilation during the first 28 days. Only patients surviving the first 28 days will be considered
Incidence of new ARDS	According to the Berlin definition ^a Only ARDS occurring after the first 48 hours of randomization will be considered and the degree of severity will be reported
Incidence of early or late suspected VAP	 New or progressive radiographic infiltrate plus at least two of the following: Temperature >38.5°C; and/or Leukocytosis (>12,000 cells/mm³) or leucopenia (<4,000 cells/mm³); and/or Purulent secretions. Only suspected VAP occurring after the first 48 hours of randomization will be considered
Incidence of early or late confirmed VAP	 New or progressive radiographic infiltrate, with microbiological confirmation and plus at least two of the following: Temperature >38.5°C; and/or Leukocytosis (>12,000 cells/mm³) or leucopenia (<4,000 cells/mm³); and/or Purulent secretions. Only confirmed VAP occurring after the first 48 hours of randomization will be considered
Incidence of early or late severe atelectasis	At least complete lobar atelectasis of a lung on chest radiograph or other kind of imaging suitable for diagnosis severe atelectasis Any severe atelectasis occurring after the randomization will be considered
Incidence of early or late severe hypoxemia	$SpO_2 < 88\%$ or $PaO_2 < 55$ mm Hg and needing a rise of the oxygen fraction to more 0.6 and/or a rise of the PEEP level to more than 5 cm H ₂ O (in low PEEP arm) or more than 8 cm H ₂ O (in liberal PEEP arm) Any severe hypoxemia occurring after the randomization will be considered

eTable 1. Definitions of Secondary Outcomes

Outcomes	Definition					
Incidence of early or late pneumothorax	Air in the pleural space with no vascular bed surrounding the visceral pleura on chest radiograph or other kind of imaging suitable for diagnosis pneumothorax Any pneumothorax occurring after the randomization will be considered					
Need for early or late rescue strategies for severe hypoxemia or severe atelectasis	 Need of one of the following: Recruitment maneuvers; and/or Prone positioning; and/or Bronchoscopy for opening atelectasis Any need for rescue occurring after the randomization will be considered and the maneuvers will be reported as a collapsed composite of need for rescue and also individually 					
Days with hemodynamic support	Number of ICU days with any use of vasopressors/inotropes for more than 1 hour on a day.					
Days with sedation	Number of ICU days with any use of sedatives for more than 1 hour on a day.					
ICU length of stay	Number of days from ICU admission till ICU discharge					
Hospital length of stay	Number of days from hospital admission till hospital discharge					
ICU mortality	Any death occurring during ICU stay					
Hospital mortality	Any death occurring during hospital stay					
28–day mortality	Any death occurring during the first 28 days after randomization					
90–day mortality	Any death occurring during the first 90 days after randomization					

eTable 1. Definitions of Secondary Outcomes (continued)

Abbreviations: ARDS, acute respiratory distress syndrome; VAP, ventilator-associated pneumonia; ICU, intensive care unit

SI conversion factors: to convert PaO₂ to kPa, divide by 7.5

^a ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012;307:2526-33.

	After Randomization					
	Lower PEEP (<i>n</i> = 476)	Higher PEEP (<i>n</i> = 493)	p value	Lower PEEP (<i>n</i> = 476)	Higher PEEP (<i>n</i> = 493)	<i>p</i> value
Number of patients, No. %	472 (99.2)	492 (99.8)		413 (92.0)	441 (94.3)	
PEEP, median (IQR), cm H ₂ O	5.0 (3.0 – 7.0)	8.0 (8.0 - 8.0)	< 0.001	1.8 (0.0 – 5.0)	8.0 (8.0 - 8.0)	< 0.001
Tidal volume, median (IQR), mL/kg PBW	6.7 (5.9 – 7.8)	7.0 (6.2 – 8.1)	0.004	7.0 (6.1 – 8.6)	7.1 (6.3 – 8.5)	0.27
Plateau pressure, median (IQR), cm H ₂ O	19.0 (15.0 – 23.0)	21.0 (18.0 – 24.9)	< 0.001	15.0 (11.0 – 21.0)	19.0 (16.0 – 22.9)	< 0.001
Total respiratory rate, median (IQR), breaths/min	20.0 (17.0 – 23.0)	20.0 (16.0 – 22.0)	0.07	19.0 (16.0 – 24.0)	19.0 (16.0 – 24.0)	0.75
Driving pressure, median (IQR), cm H ₂ O	14.0 (11.0 – 17.0)	13.0 (10.0 – 16.0)	0.23	13.0 (10.0 – 16.0)	12.0 (8.0 – 14.0)	0.001
FiO ₂ , median (IQR)	0.48 (0.40 - 0.60)	0.45 (0.35 – 0.60)	0.02	0.38 (0.30 – 0.50)	0.32 (0.25 – 0.42)	< 0.001
PaO ₂ / FiO ₂ ratio, median (IQR), mm Hg	204.4 (137.9 - 304.4)	217.0 (142.8 - 330.7)	0.33	225.0 (158.5 – 294.0)	274.4 (186.7 – 356.3)	< 0.001
PaCO ₂ , median (IQR), mm Hg	40.5 (36.0 – 47.3)	40.5 (35.3 – 46.5)	0.79	39.0 (34.5 – 45.0)	39.0 (34.5 – 44.3)	0.90
Arterial pH, median (IQR)	7.33 (7.25 – 7.41)	7.33 (7.25 – 7.40)	0.76	7.39 (7.33 – 7.44)	7.38 (7.31 – 7.43)	0.18
SpO ₂ , median (IQR), %	97.0 (94.4 - 99.6)	98.0 (95.0 – 100.0)	0.10	96.0 (94.2 - 97.5)	96.5 (94.8 – 98.0)	0.003
SpO ₂ / FiO ₂ ratio, median (IQR), mm Hg	202.0 (158.3 – 250.0)	222.2 (163.3 – 285.7)	0.02	257.3 (195.5 – 322.9)	305.8 (227.4 – 385.0)	< 0.001
Heart rate, median (IQR), beats/min	88.0 (73.0 – 107.0)	89.0 (70.0 – 106.0)	0.62	85.0 (69.0 – 103.0)	84.0 (69.0 – 103.0)	0.82
Mean arterial pressure, median (IQR), mm Hg	75.0 (66.0 – 87.0)	76.0 (67.0 – 87.0)	0.54	74.5 (67.0 – 83.0)	75.0 (68.0 - 83.0)	0.50

eTable 2. Daily Ventilatory Variables, Arterial Blood Gases and Vital Signs in the First Three Days after Randomization

eTable 2. Daily Ventilatory Variables, Arterial Blood Gases and Vital Signs in the First Three Days after Randomization (continued)				
	Day 02	Day 03		

	3			,			
	Lower PEEP (<i>n</i> = 476)	Higher PEEP (<i>n</i> = 493)	p value	Lower PEEP (<i>n</i> = 476)	Higher PEEP (<i>n</i> = 493)	<i>p</i> value	
Number of patients, No. %	270 (73.2)	266 (69.6)		199 (70.7)	200 (70.7)		
PEEP, median (IQR), cm H₂O	1.5 (0.0 – 5.0)	8.0 (8.0 - 8.0)	< 0.001	2.5 (0.0 - 6.0)	8.0 (8.0 - 8.0)	< 0.001	
Tidal volume, median (IQR), mL/kg PBW	7.3 (6.1 – 8.7)	7.3 (6.4 – 9.0)	0.18	7.0 (6.0 - 8.8)	7.6 (6.5 – 9.2)	0.02	
Plateau pressure, median (IQR), cm H ₂ O	15.0 (10.0 – 21.0)	18.0 (14.0 – 23.0)	< 0.001	16.0 (12.0 – 21.0)	18.0 (14.0 – 22.0)	0.001	
Total respiratory rate, median (IQR), breaths/min	20.0 (16.0 – 24.0)	20.0 (15.0 – 24.0)	0.81	21.0 (16.0 – 26.0)	19.0 (15.0 – 24.0)	0.03	
Driving pressure, median (IQR), cm H ₂ O	12.0 (8.0 – 16.0)	11.0 (7.0 – 15.0)	0.007	13.0 (9.0 – 16.0)	10.4 (7.0 – 15.0)	0.002	
FiO ₂ , median (IQR)	0.40 (0.30 – 0.50)	0.32 (0.25 – 0.42)	< 0.001	0.40 (0.31 – 0.52)	0.32 (0.25 – 0.42)	< 0.001	
PaO ₂ / FiO ₂ ratio, median (IQR), mm Hg	203.1 (146.3 – 275.0)	248.1 (174.5 – 326.8)	< 0.001	188.8 (133.7 – 246.9)	244.5 (174.9 – 326.3)	< 0.001	
PaCO ₂ , median (IQR), mm Hg	39.8 (35.3 – 45.0)	39.8 (35.3 – 45.4)	0.94	41.3 (36.8 – 47.3)	40.5 (36.8 – 46.5)	0.53	
Arterial pH, median (IQR)	7.41 (7.35 – 7.46)	7.40 (7.35 – 7.45)	0.33	7.43 (7.36 – 7.47)	7.43 (7.36 – 7.47)	0.47	
SpO ₂ , median (IQR), %	95.5 (94.0 – 97.0)	96.4 (94.6 – 97.8)	< 0.001	95.1 (93.8 – 96.8)	96.2 (94.5 – 97.2)	< 0.001	
SpO ₂ / FiO ₂ ratio, median (IQR), mm Hg	249.5 (195.6 – 313.3)	306.1 (229.6 – 384.2)	< 0.001	236.9 (186.7 – 313.3)	310.8 (231.0 – 388.9)	< 0.001	
Heart rate, median (IQR), beats/min	91.0 (76.0 – 107.0)	89.0 (74.0 – 103.0)	0.19	92.0 (74.2 – 107.8)	87.0 (75.0 – 100.0)	0.02	
Mean arterial pressure, median (IQR), mm Hg	79.0 (69.0 – 89.0)	77.0 (69.0 – 89.0)	0.80	80.0 (70.0 – 91.0)	79.0 (70.0 – 92.0)	0.89	

Percentages may not total 100 because of rounding

Abbreviations: FiO₂, denotes fraction of inspired oxygen; PaO₂, partial pressure of arterial oxygen; PaCO₂, partial pressure of carbon dioxide; PBW, predicted body weight; PEEP, positive end-expiratory pressure and SpO₂ oxygen saturation as measured by pulse oximetry.

SI conversion factors: to convert $PaCO_2$ and SpO_2 / FiO_2 to kPa, divide by 7.5

eTable 3. Daily Sedation, Fluids, Transfusion and Vasopressors

493) val 00.0) 0.1 02.0) 0.1 26.3) 0.3 73.3) 0.2 76.0) 0.2	p value 0.19 0.31
0 – -2.0) 0.1 26.3) 0.3 73.3) 0.2 76.0) 0.2	0.31
26.3) 0.3 73.3) 0.2 76.0) 0.2	0.31
26.3) 0.3 73.3) 0.2 76.0) 0.2	0.31
73.3) 0.2 76.0) 0.2	
76.0) 0.2	0.27
,	0.27
	0.25
- 24.0) 0.0	0.08
- 29.0) 0.4	0.54
5 – 2873.8) 0.;	0.29
J – 384.0) 0. ⁻	0.16
o∂ – 3175.2) 0.0	0.03
	0.05
3) 0. ⁻	0.18
- 2.0) 0. ⁻	0.12
	0.12
- 3.0) 0./	0.84
5 C 6 1 2	5 - 2873.8) 0 - 384.0) 6 - 3175.2) 146.0 - 3.0) 5.3) - 2.0) 2.2)

eTable 3. Daily Sedation, Fluids, Transfusion and Vasopressors (continued)

	After Randomization					
	Lower PEEP (<i>n</i> = 476)	Higher PEEP (<i>n</i> = 493)	р value	Lower PEEP (<i>n</i> = 476)	Higher PEEP (<i>n</i> = 493)	р value
Platelets, No. (%)	22 (4.6)	25 (5.1)	0.77	7 (1.5)	8 (1.6)	0.99
Units of platelets, median (IQR) ^d	1.0 (1.0 – 2.8)	1.0 (1.0 – 2.0)	0.95	1.0 (1.0 – 2.0)	1.0 (1.0 – 1.2)	0.30
Vasopressors						
Continuous infusion of vasopressors, No. (%)	334 (70.6)	375 (76.5)	0.04	311 (69.9)	334 (72.1)	0.47
Hours under vasopressors, median (IQR)	9.0 (4.0 - 15.0)	8.0 (4.0 – 13.0)	0.20	21.0 (11.0 – 24.0)	18.0 (10.0 – 24.0)	0.13
Cumulative hours since randomization, median (IQR)	9.0 (4.0 – 15.0)	8.0 (4.0 – 13.0)	0.18	24.0 (11.2 – 32.0)	23.0 (12.0 – 31.0)	0.13
SOFA, median (IQR) ^e	9.0 (7.0 – 12.0)	10.0 (8.0 – 12.0)	0.43	8.0 (6.0 – 11.0)	8.0 (5.0 – 11.0)	0.22

Percentages may not total 100 because of rounding

Abbreviations: RASS, Richmond Agitation-Sedation Scale; SOFA, Sequential Organ Failure Assessment

^a RASS scores ranges from -5 to +4, with higher scores indicating a more combative and aggressive patient.

^b Light sedation defined when $+2 \le RASS \le +2$.

^c Deep sedation defined when RASS \leq -3.

^d Calculate only among who received it.

^e SOFA score ranges from 0 to 24, with higher scores indicating more severe disease and a higher risk of death.

	Day 02			Day 03		
	Lower PEEP (<i>n</i> = 476)	Higher PEEP (<i>n</i> = 493)	р value	Lower PEEP (<i>n</i> = 476)	Higher PEEP (<i>n</i> = 493)	<i>p</i> value
Number of patients, No. (%)	373 (78.0)	384 (77.9)		295 (62.0)	286 (58.0)	
Sedation						
Lowest RASS, median (IQR) ^a	-3.0 (-5.0 – -1.0)	-3.0 (-5.0 – 0.0)	0.671	-2.0 (-5.0 - 0.0)	-3.0 (-5.0 – 0.0)	0.224
Light sedation, No. (%) ^b	151 (48.4)	157 (48.0)	0.937	124 (50.4)	110 (45.5)	0.279
Deep sedation, No. (%) ^c	159 (51.0)	166 (50.8)	0.999	120 (48.8)	132 (54.5)	0.206
Continuous infusion of sedatives, No. (%)	182 (49.5)	186 (48.8)	0.884	130 (45.1)	125 (44.5)	0.933
Hours under sedatives, median (IQR)	21.0 (11.0 – 24.0)	20.0 (10.2 – 24.0)	0.732	20.0 (11.0 – 24.0)	20.0 (10.0 – 24.0)	0.817
Cumulative hours since randomization, median IQR)	23.0 (8 – 45)	24.0 (9 – 44)	0.725	23.0 (8 - 53.0)	24.0 (9.0 - 50.0)	0.816
Fluids						
Crystalloids, median (IQR), mld	939.0 (482.0 – 1711.0)	1007.5 (423.2 – 1760.0)	0.569	790.5 (360.0 – 1327.8)	741.0 (360.0 – 1309.5)	0.973
Colloids, median (IQR), ml ^d	200.0 (100.0 – 212.0)	200.0 (100.0 – 300.0)	0.880	200.0 (100.0 – 225.0)	100.0 (90.0 – 200.0)	0.398
Fluid balance, median (IQR), ml	592.0 (-302.0 – 1936.0)	762.0 (-160.8 – 2027.5)	0.340	190.0 (-754.0 – 1338.0)	417.0 (-570.0 – 1347.0)	0.283
Cumulative fluid balance since randomization, median IQR), ml	3171.0 (777.5 – 6395.0)	3726.0 (1153.0 – 6688.0)	0.081	3299.0 (727.5 – 6915.5)	3868.0 (999.0 – 7621.0)	0.073
Fransfusion						
Red blood cell, No. (%)	21 (5.6)	28 (7.3)	0.378	23 (7.8)	11 (3.8)	0.051
Units of red blood cell, median (IQR) ^d	1.0 (1.0 – 2.0)	1.0 (1.0 – 2.0)	0.275	1.0 (1.0 – 1.0)	2.0 (1.0 – 2.0)	0.058
Fresh frozen plasma, No. (%)	1 (0.3)	0 (0.0)	0.493	2 (0.7)	0 (0.0)	0.499

eTable 3. Daily sedation, fluids, transfusion and vasopressors (continued)

eTable 3. Daily sedation, fluids, transfusion and vasopressors (continued)

	Day 02			Day 03		
-	Lower PEEP (<i>n</i> = 476)	Higher PEEP (<i>n</i> = 493)	р value	Lower PEEP (<i>n</i> = 476)	Higher PEEP (<i>n</i> = 493)	р value
Units of fresh frozen plasma, median (IQR) ^d	1.0 (1.0 – 1.0)			2.5 (1.8 – 3.2)		
Platelets, No. (%)	8 (2.1)	4 (1.0)	0.26	7 (2.4)	0 (0.0)	0.02
Units of platelets, median (IQR) ^d	1.0 (1.0 – 1.2)	1.0 (1.0 – 1.0)	0.29	1.0 (1.0 – 1.5)		
Vasopressors						
Continuous infusion of vasopressors, No. (%)	182 (49.6)	189 (49.6)	0.99	121 (42.2)	108 (38.4)	0.39
Hours under vasopressors, median (IQR)	21.5 (11.0 – 24.0)	17.0 (11.0 – 24.0)	0.14	24.0 (11.0 – 24.0)	22.0 (9.8 - 24.0)	0.31
Cumulative hours since randomization, median (IQR)	29.0 (13.0 – 49.0)	25.0 (13.0 – 46.0)	0.15	30.0 (13.0 – 59.7)	26.0 (13.0 – 49.0)	0.13
SOFA, median (IQR) ^e	7.0 (5.0 – 10.0)	7.0 (4.0 – 11.0)	0.330	7.0 (4.0 – 11.0)	7.0 (5.0 – 10.2)	0.50

Percentages may not total 100 because of rounding

Abbreviations: RASS, Richmond Agitation-Sedation Scale; SOFA, Sequential Organ Failure Assessment

^a RASS scores ranges from -5 to +4, with higher scores indicating a more combative and aggressive patient.

^b Light sedation defined when $+2 \le RASS \le +2$.

^c Deep sedation defined when RASS \leq -3.

^d Calculate only among who received it.

^e SOFA score ranges from 0 to 24, with higher scores indicating more severe disease and a higher risk of death.

eTable 4. Adherence to the Protocol with Respect to PEEP, FiO₂ and SpO₂ in the First Five Days^a

	Lower PEEP (<i>n</i> = 476)	Higher PEEP (<i>n</i> = 493)	Median Difference (95% Cl) ^b	<i>p</i> value
Measurements PEEP ≤5 cm H ₂ O per patient				
Ratio per observations ^c	1.0 (0.6 – 1.0)	0.0 (0.0 – 0.0)	0.91 (0.86 to 0.96)	< 0.001
Total number of observations	5.0 (2.0 – 11.0)	0.0 (0.0 - 0.0)	5.00 (3.08 to 6.91)	< 0.001
Measurements PEEP <5 cm H ₂ O per patient				
Ratio per observations ^c	0.7 (0.2 – 1.0)	0.0 (0.0 - 0.0)	0.66 (0.54 to 0.77)	< 0.001
Total number of observations	3.0 (1.0 – 9.0)	0.0 (0.0 - 0.0)	3.00 (1.94 to 4.06)	< 0.001
Measurements PEEP 0 cm H ₂ O per patient				
Ratio per observations ^c	0.2 (0.0 - 0.7)	0.0 (0.0 - 0.0)	0.34 (0.25 to 0.44)	< 0.001
Total number of observations	1.0 (0.0 – 4.0)	0.0 (0.0 - 0.0)	1.00 (-0.38 to 2.38)	0.16
Measurements PEEP 8 cm H ₂ O per patient				
Ratio per observations ^c	0.0 (0.0 - 0.0)	0.9 (0.4 – 1.0)	-0.91 (-1.17 to -0.65)	< 0.001
Total number of observations	0.0 (0.0 - 0.0)	4.0 (1.0 – 11.0)	-4.00 (-6.20 to -1.80)	< 0.001
Measurements PEEP 8 cm H ₂ O per patient				
Ratio per observations ^c	0.0 (0.0 - 0.1)	0.0 (0.0 - 0.2)	0.07 (-0.01 to 0.14)	0.09
Total number of observations	0.0 (0.0 - 1.0)	0.0 (0.0 – 1.0)	-0.00 (-0.17 to 0.17)	0.99
Measurements FiO ₂ >0.60 per patient				
Ratio per observations ^c	0.0 (0.0 - 0.1)	0.0 (0.0 - 0.0)	0.01 (-0.01 to 0.04)	0.20
Total number of observations	0.0 (0.0 - 1.0)	0.0 (0.0 – 1.0)	0.00 (-0.00 to 0.00)	0.002
Measurements FiO ₂ 1.00 per patient				
Ratio per observations ^c	0.0 (0.0 - 0.0)	0.0 (0.0 - 0.0)	0.00 (-0.00 to 0.01)	0.16
Total number of observations	0.0 (0.0 - 0.0)	0.0 (0.0 - 0.0)	0.10 (0.02 to 0.18)	0.02
Measurements FiO ₂ 0.21 per patient				
Ratio per observations ^c	0.0 (0.0 - 0.0)	0.0 (0.0 - 0.2)	-0.09 (-0.15 to -0.00)	0.03
Total number of observations	0.0 (0.0 - 0.0)	0.0 (0.0 – 1.0)	0.00 (-0.00 to 0.00)	0.99
Measurements SpO ₂ <92% per patient				
Ratio per observations ^c	0.0 (0.0 - 0.1)	0.0 (0.0 - 0.0)	0.02 (0.00 to 0.04)	0.03
Total number of observations	0.0 (0.0 - 1.0)	0.0 (0.0 – 1.0)	-0.00 (-0.06 to 0.06)	0.99
Measurements SpO ₂ <88% per patient				
Ratio per observations ^c	0.0 (0.0 - 0.0)	0.0 (0.0 - 0.0)	0.00 (-0.01 to 0.02)	0.52
Total number of observations	0.0 (0.0 - 0.0)	0.0 (0.0 - 0.0)	-0.00 (-0.03 to 0.03)	0.99
Measurements SpO ₂ >96% per patient				
Ratio per observations ^c	0.4 (0.2 – 0.8)	0.6 (0.3 – 0.8)	-0.14 (-0.22 to -0.06)	< 0.001
Total number of observations	3.0 (1.0 – 6.0)	3.0 (1.0 – 7.0)	-0.50 (-1.27 to 0.27)	0.20

Data are median (quartile 25% - quartile 75%).

Abbreviations: CI, confidence interval; FiO₂, fraction of inspired oxygen; PEEP, positive end-expiratory pressure; and SpO₂, oxygen saturation as measured by pulse oximetry.

^a PEEP, FiO₂ and SpO₂ obtained from values recorded every six hours until day 5 post-randomization or until extubation.

^b Median difference estimated using mixed-effect quantile models with random effect for centers. Quantile models considered a T = 0.50 and an asymmetric Laplace distribution. *p* values and confidence intervals were extracted after 1,000 bootstrap samplings.

^c Ratio calculated as the number of observations in the proposed range divided by the total number of observations available per patient.

eTable 5. Per-protocol Analysis of the Primary Outcome

	Lower PEEP (<i>n</i> = 411)	Higher PEEP (<i>n</i> = 441)	Effect Estimate (95% CI)	p value
Ventilator-free days at day 28				
Mean (SD)	14.3 (12.4)	13.5 (12.5)	1.08 (0.97 to ∞)	0.003
Median (IQR)	19.7 (0.0 – 26.6)	17.7 (0.0 – 26.4)		

Abbreviations: CI, confidence interval; PEEP, positive end-expiratory pressure.

eTable 6. Adjusted Analyses for the Primary and Secondary Outcomes

	Lower PEEP (<i>n</i> = 476)	Higher PEEP (<i>n</i> = 493)	Effect Estimate* (95% CI)	p value
Primary outcome				
Ventilator-free days at day 28				
Mean (SD)	13.8 (12.4)	13.4 (12.5)	1.04 (0.93 to ∞) ^a	0.02 ^b
Median (IQR)	17.7 (0.0 – 26.6)	16.7 (0.0 – 26.5)		
Secondary outcomes				
Duration of ventilation in survivors, days				
Mean (SD)	5.5 (7.4)	4.8 (6.6)	0.88 (0.73 to 1.06) ^c	0.19
Median (IQR)	2.0 (0.8 - 6.8)	2.0 (1.0 – 5.7)		
ARDS, No. (%)	13 (2.7)	5 (1.0)	2.97 (0.93 to 9.48) ^d	0.07
Suspected VAP, No. (%)	10 (2.1)	10 (2.0)	0.93 (0.37 to 2.32) ^d	0.88
Confirmed VAP, No. (%)	6 (1.3)	7 (1.4)	0.73 (0.23 to 2.33) ^d	0.60
Severe atelectasis, No. (%)	20 (4.2)	15 (3.0)	1.63 (0.75 to 3.53) ^d	0.22
Severe hypoxemia, No. (%)	98 (20.6)	87 (17.6)	1.67 (1.11 to 2.51) ^d	0.01
Pneumothorax, No. (%)	19 (4.0)	12 (2.4)	1.76 (0.84 to 3.70) ^d	0.14
Need for rescue strategy, No. (%)	94 (19.7)	72 (14.6)	1.70 (1.14 to 2.54) ^d	0.009
Recruitment maneuvers	62 (13.0)	39 (7.9)	2.06 (1.24 to 3.42) ^d	**
Prone positioning	25 (5.3)	29 (5.9)	1.24 (0.64 to 2.40) ^d	**
Bronchoscopy for atelectasis	30 (6.3)	26 (5.3)	1.01 (0.56 to 1.83) ^d	**
Days with continuous vasopressor				
Mean (SD)	3.1 (3.7)	3.1 (3.5)	0.12 (-0.41 to 0.66) ^e	0.65
Median (IQR)	2.0 (1.0 – 4.0)	2.0 (1.0 – 3.0)		
Days with continuous sedation				
Mean (SD)	3.5 (3.9)	3.3 (3.8)	0.45 (-0.09 to 0.99) ^e	0.10
Median (IQR)	2.0 (1.0 – 4.0)	2.0 (1.0 – 4.0)		
ICU length of stay				
Mean (SD)	8.1 (11.5)	7.2 (10.3)	0.93 (0.78 to 1.11) ^c	0.41
Median (IQR)	4.0 (2.0 - 10.0)	4.0 (2.0 - 8.0)		
Hospital length of stay				
Mean (SD)	19.9 (22.1)	19.0 (21.4)	0.99 (0.82 to 1.20) ^c	0.90
Median (IQR)	12.0 (5.0 – 26.2)	12.0 (4.0 – 24.0)		
Mortality, No. (%)				
ICU	163 / 476 (34.2)	185 / 492 (37.6)	0.86 (0.62 to 1.20) ^d	0.37
Hospital	185 / 472 (39.2)	208 / 489 (42.5)	0.85 (0.61 to 1.18) ^d	0.34
28-day	183 (38.4)	207 (42.0)	0.96 (0.76 to 1.21) ^c	0.72
90-day	196 / 471 (41.6)	218 / 492 (44.3)	1.00 (0.80 to 1.25) ^c	0.99

Percentages may not total 100 because of rounding

Abbreviations: ARDS, acute respiratory distress syndrome; CI, confidence interval; ICU, intensive care unit; IQR, interquartile range; PEEP, positive endexpiratory pressure and VAP, ventilator-associated pneumonia.

* all models were adjusted by age, gender, APACHE IV and considered site as random effect

^a Effect estimate is mean ratio (one-sided 95% confidence interval) from a generalized additive model for location scale and shape (GAMLSS) considering

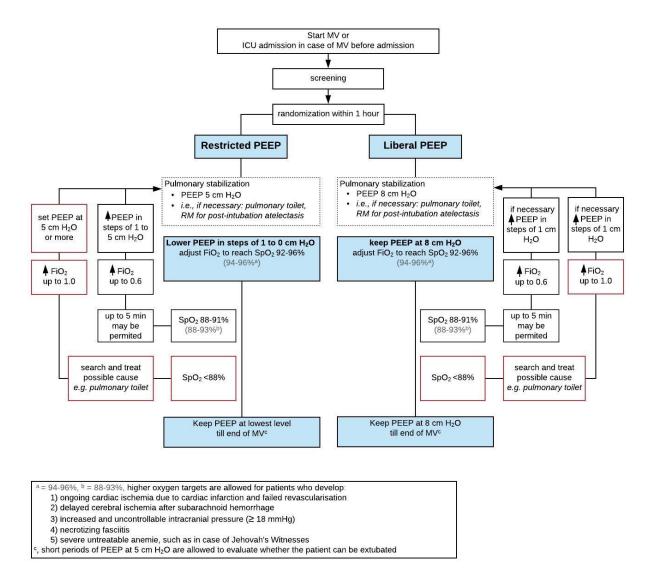
a zero-inflated beta distribution and using the delta method to estimate the confidence interval.

^b *p* value for noninferiority.

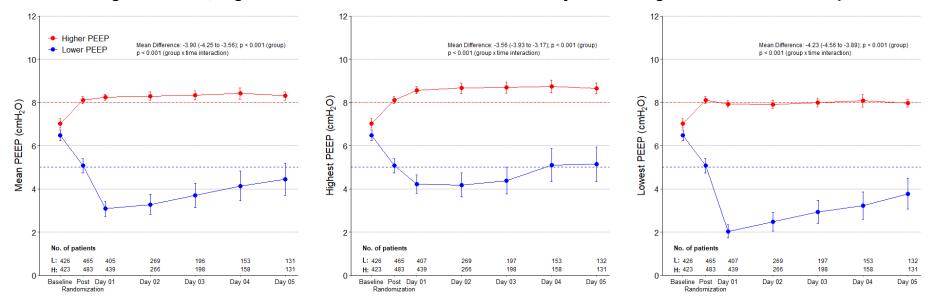
^c Effect estimate is hazard ratio (two-sided 95% confidence interval) from a (shared-frailty) Cox proportional hazard model: *p* value for the Schoenfeld residuals is 0.310 for duration of ventilation in survivors, 0.772 for ICU length of stay, 0.772 for hospital length of stay, 0.507 for 28-day mortality and 0.257 for 90-day mortality.

^d Effect estimate is odds ratio (two-sided 95% confidence interval) from mixed-effect generalized linear model with binomial distribution.

^e Effect estimate is mean difference (two-sided 95% confidence interval) from a mixed-effect generalized linear model with Gaussian distribution.

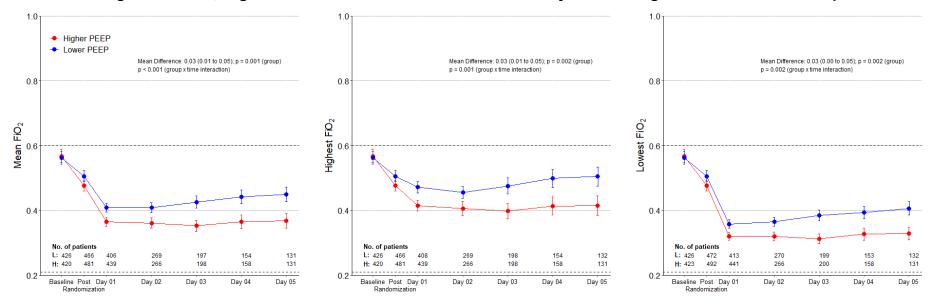

	Unadjusted	Corrected
	<i>p</i> value	<i>p</i> value ^a
Need for rescue strategy	0.03363912	0.5382259
ARDS	0.05739909	0.8609864
Pneumothorax	0.16840820	1.0000000
Severe hypoxemia	0.24419260	1.0000000
28-day mortality	0.26874700	1.0000000
ICU mortality	0.27639520	1.0000000
Hospital mortality	0.29228750	1.0000000
Severe atelectasis	0.33368880	1.0000000
Duration of ventilation in survivors	0.37096350	1.0000000
Days with continuous sedation	0.37380150	1.0000000
90-day mortality	0.38139980	1.0000000
ICU length of stay	0.69219170	1.0000000
Days with continuous vasopressor	0.82849270	1.0000000
Confirmed VAP	0.82931610	1.0000000
Hospital length of stay	0.86010650	1.0000000
Suspected VAP	0.93679940	1.0000000

eTable 7. Significance Levels for Secondary Outcomes in Table 2 of Paper after Correction for Multiple Comparisons

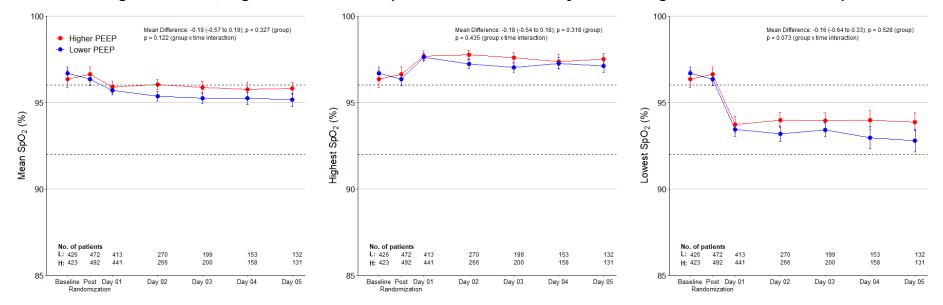

Abbreviations: ARDS, acute respiratory distress syndrome; ICU, intensive care unit and VAP, ventilatorassociated pneumonia

^a Holm-Bonferroni procedure for multiple statistical tests controlling for the 16 comparisons in the table. The overall table-wise Type I error rate is controlled at 5%.

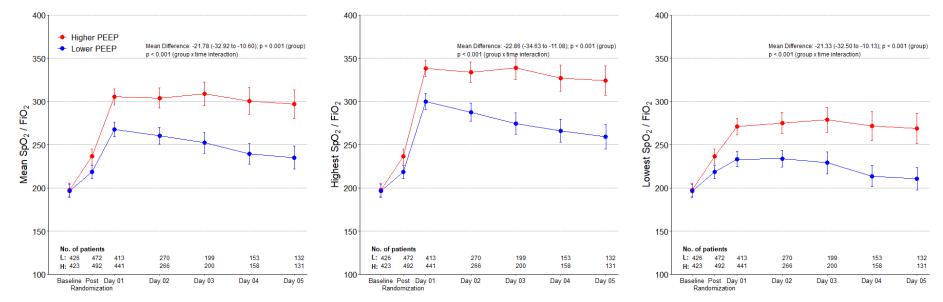
eFigure 1. Flowchart of Ventilator Settings in the Two Ventilation Strategies



Abbreviations: PEEP, positive end-expiratory pressure; MV, mechanical ventilation; PBW, predicted body weight; RM, recruitment maneuver.

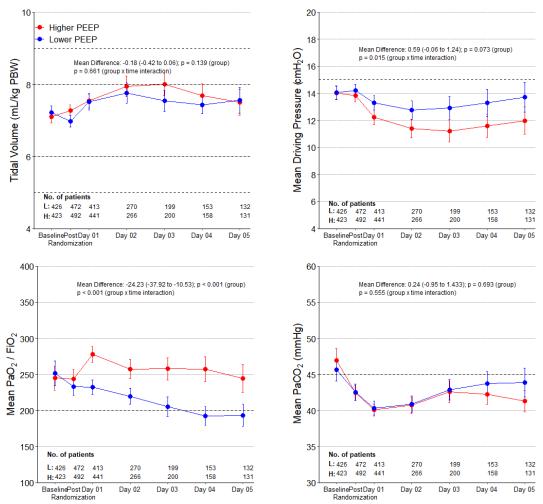

eFigure 2. Mean, Highest and Lowest PEEP in the First Five Days According to the Allocation Group

Circles are mean and error bars 95% confidence interval. Mean, highest and lowest PEEP recorded from measurements of PEEP taken every six hours while the patient was invasively ventilated. Mean difference and 95% confidence interval is the overall mean difference for the period calculated from a mixed-effect linear model with an interaction among treatment arm and time (treated as a continuous variable) and with random effect for patients (to account for repeated measurements) and centers. Baseline values were not considered in the mixed-effect model. Blue dashed line represents the upper limit of the target of the lower PEEP group, and the red dashed line represents the target of the higher PEEP group.

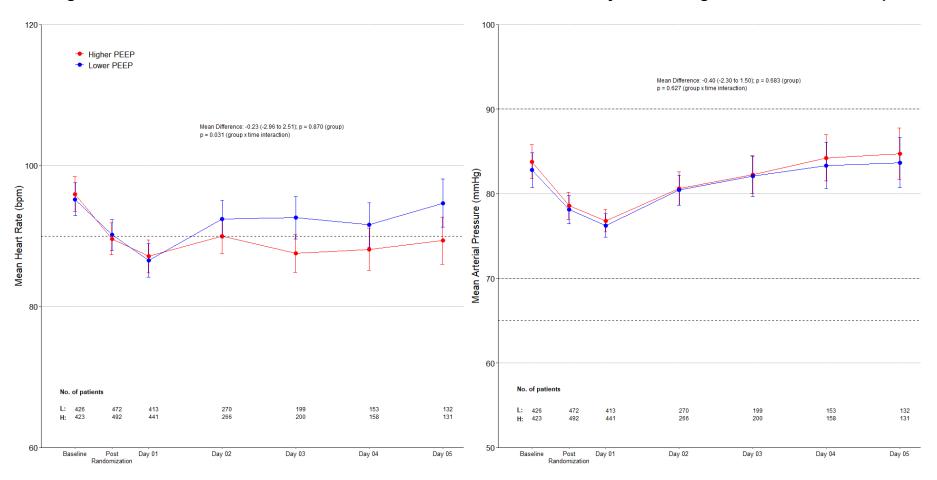

eFigure 3. Mean, Highest and Lowest FiO₂ in the First Five Days According to the Allocation Group

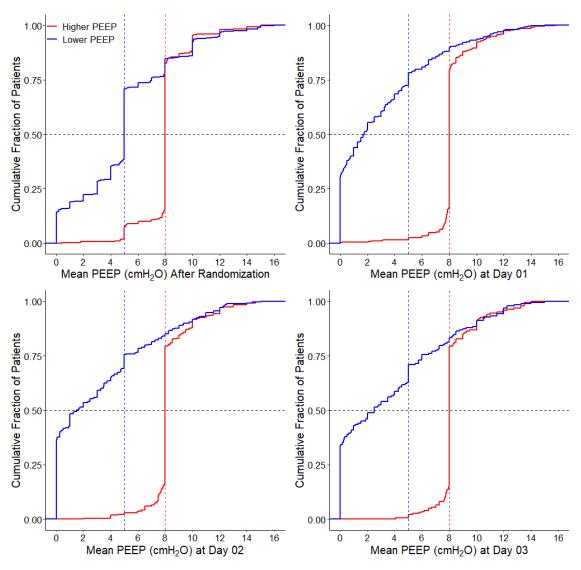
Circles are mean and error bars 95% confidence interval. Mean, highest and lowest FiO₂ recorded from measurements of FiO₂ taken every six hours while the patient was invasively ventilated. Mean difference and 95% confidence interval is the overall mean difference for the period calculated from a mixed-effect linear model with an interaction among treatment arm and time (treated as a continuous variable) and with random effect for patients (to account for repeated measurements) and centers. Baseline values were not considered in the mixed-effect model. Black dashed lines represent the upper and lower targets of the intervention.

eFigure 4. Mean, Highest and Lowest SpO₂ in the First Five Days According to the Allocation Group


Circles are mean and error bars 95% confidence interval. Mean, highest and lowest SpO₂ recorded from measurements of SpO₂ taken every six hours while the patient was invasively ventilated. Mean difference and 95% confidence interval is the overall mean difference for the period calculated from a mixed-effect linear model with an interaction among treatment arm and time (treated as a continuous variable) and with random effect for patients (to account for repeated measurements) and centers. Baseline values were not considered in the mixed-effect model. Black dashed lines represent the upper and lower targets of the intervention.

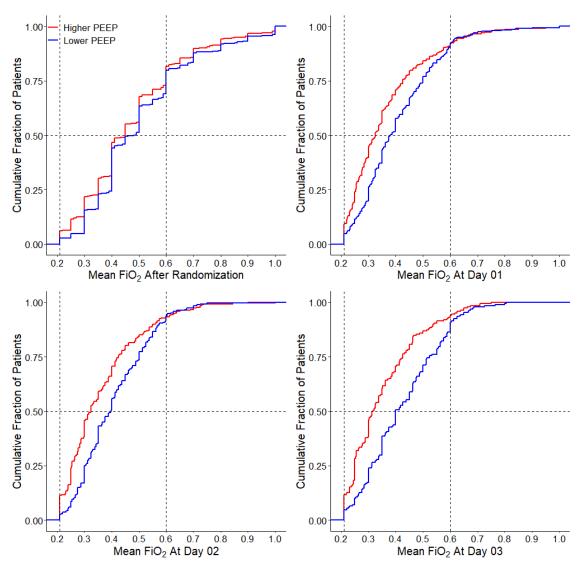
eFigure 5. Mean, Highest and Lowest SpO₂ / FiO₂ in the First Five Days According to the Allocation Group


Circles are mean and error bars 95% confidence interval. Mean, highest and lowest SpO₂ / FiO₂ recorded from measurements of SpO₂ / FiO₂ taken every six hours while the patient was invasively ventilated. Mean difference and 95% confidence interval is the overall mean difference for the period calculated from a mixed-effect linear model with an interaction among treatment arm and time (treated as a continuous variable) and with random effect for patients (to account for repeated measurements) and centers. Baseline values were not considered in the mixed-effect model.


Circles are mean and error bars 95% confidence interval. Mean difference and 95% confidence interval is the overall mean difference for the period calculated from a mixed-effect linear model with an interaction among treatment arm and time (treated as a continuous variable) and with random effect for patients (to account for repeated measurements) and centers. Baseline values were not considered in the mixed-effect model. Black dashed lines represent well accepted safety cut-offs for the variables presented.

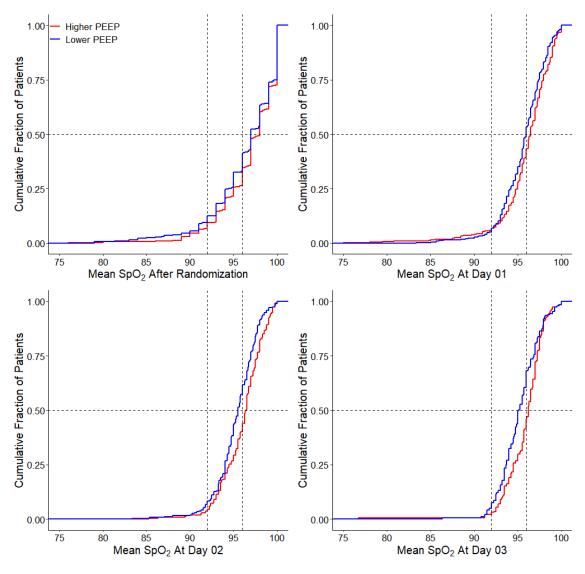
© 2020 American Medical Association. All rights reserved.

eFigure 7. Mean Heart Rate and Mean Arterial Pressure in the First Five Days According to the Allocation Group


Circles are mean and error bars 95% confidence interval. Mean difference and 95% confidence interval is the overall mean difference for the period calculated from a mixed-effect linear model with an interaction among treatment arm and time (treated as a continuous variable) and with random effect for patients (to account for repeated measurements) and centers. Baseline values were not considered in the mixed-effect model. Black dashed lines represent well accepted safety cut-offs for the variables presented.

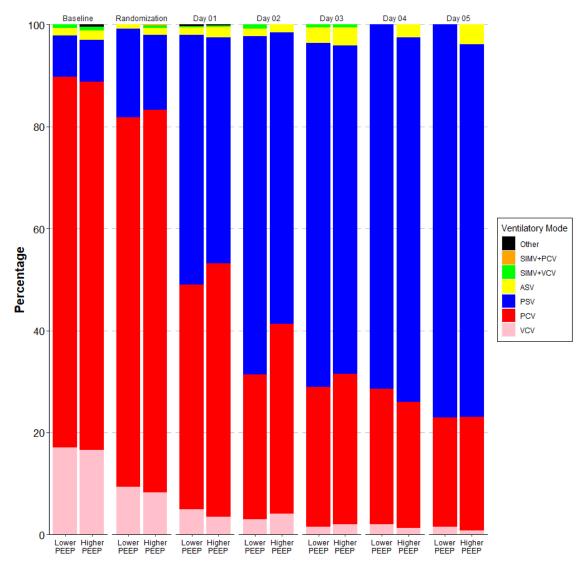
eFigure 8. Cumulative Distribution of PEEP in the First Three Days According to the Allocation Group

Cumulative distribution plot showing the mean PEEP by treatment group. The mean PEEP was calculated from recordings of PEEP taken every six hours. Black horizontal dashed line represents 50% of patients, and blue and red vertical dashed lines represent the targets of

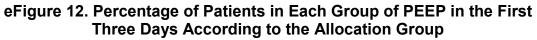

the intervention in each group.

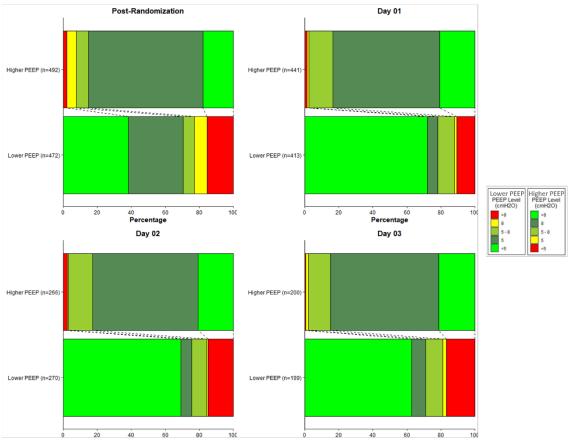
eFigure 9. Cumulative Distribution of FiO₂ in the First Three Days According to the Allocation Group

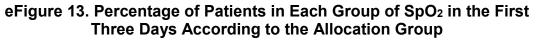
Cumulative distribution plot showing the mean FiO_2 by treatment group. The mean FiO_2 was calculated from recordings $of FiO_2$ taken every six hours. Black horizontal dashed line represents 50% of patients, and black vertical dashed lines represent the upper and lower

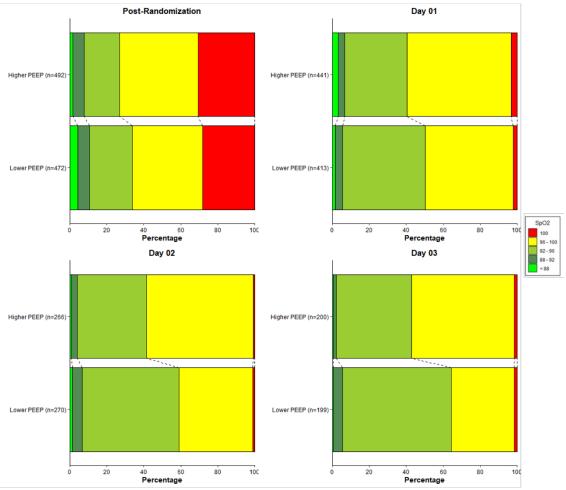

targets of FiO2.

eFigure 10. Cumulative Distribution of SpO₂ in the First Three Days According to the Allocation Group

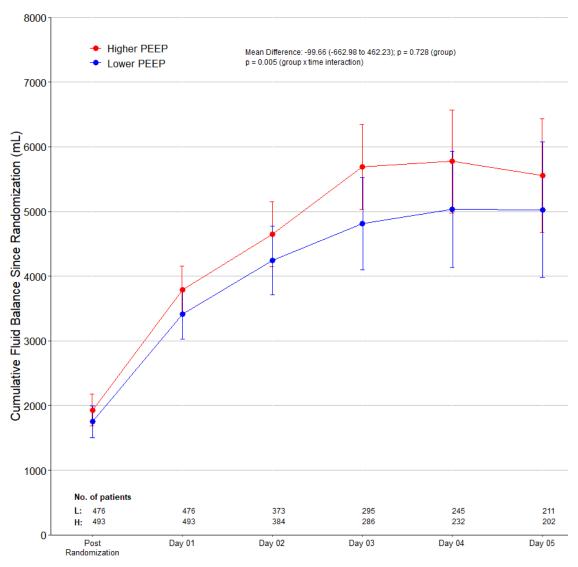

Cumulative distribution plot showing the mean SpO₂ by treatment group. The mean SpO₂ was calculated from recordings of SpO₂ taken every six hours. Black horizontal dashed line represents 50% of patients, and black vertical dashed lines represent the upper and lower


targets of SpO₂.

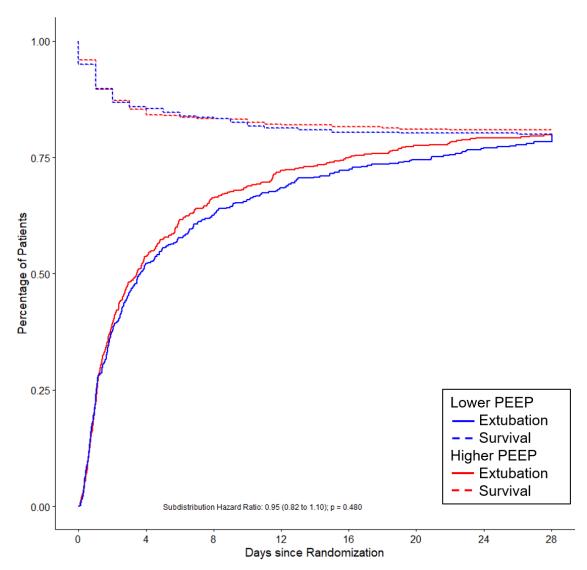

eFigure 11. Ventilatory Modes in the First Five Days According to the Allocation Group


VCV denotes volume-controlled ventilation, PCV pressure-controlled ventilation, PSV pressure support ventilation, ASV adaptive support ventilation, SIMV+VCV synchronized intermittent mandatory volume controlled-ventilation and SIMV+PCV synchronized intermittent mandatory pressure controlled-ventilation.

Categories calculated according to the mean of measurements of PEEP took every six hours.

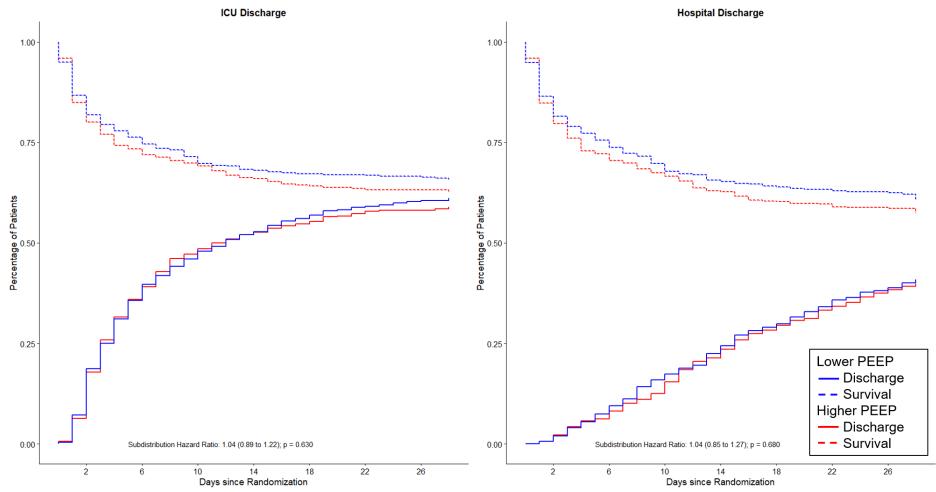

Categories calculated according to the mean of measurements of SpO₂ took every six hours.

eFigure 14. Percentage of Patients in Each Group of FiO₂ in the First Three Days According to the Allocation Group



Categories calculated according to the mean of measurements of FiO_2 took every six hours.

eFigure 15. Cumulative Fluid Balance in the First Five Days According to the Allocation Group


Circles are mean and error bars 95% confidence interval. Mean difference and 95% confidence interval is the overall mean difference for the period calculated from a mixed-effect linear model with an interaction among treatment arm and time (treated as a continuous variable) and with random effect for patients (to account for repeated measurements) and centers.

eFigure 16. Patients Who Survived and Were Extubated during the First 28 Days after Randomization

Cumulative Incidence Function for the time until freedom of invasive ventilation in all patients in both groups with death before extubation treated as competing risk and with an unadjusted subdistribution hazard ratio and 95% confidence interval calculated from a Fine–Gray model

Cumulative Incidence Function for the time until being discharged alive from the ICU or hospital in all patients in both groups with death before discharge treated as competing risk and with an unadjusted subdistribution hazard ratio and 95% confidence interval calculated from a Fine–Gray model

eFigure 18. Kaplan–Meier Estimates for Patients in the Low and High PEEP groups

Kaplan–Meier curve for the 28–day survival in both groups. An unadjusted hazard ratio and 95% confidence interval calculated from a Cox proportional hazard model is presented.

eReferences

1. American Association for Respiratory C. AARC Clinical Practice Guidelines. Endotracheal suctioning of mechanically ventilated patients with artificial airways 2010. Respir Care. 2010;55(6):758-764. doi:10.4037/ajcc2014424.

2. Oostdijk EAN, Kesecioglu J, Schultz MJ, et al. Notice of Retraction and Replacement: Oostdijk et al. Effects of Decontamination of the Oropharynx and Intestinal Tract on Antibiotic Resistance in ICUs: A Randomized Clinical Trial. JAMA . 2014;312(14):1429-1437. JAMA. 2017;317(15):1583. doi: 10.1001/jama.2017.1282.