

Expanded View Figures

Figure EV1. Schematic of Drosophila experimental regime and results obtained using Drosophila Quick Mix Blue food.

- A Parental *Drosophila* strains were crossed at 18°C and the progeny collected for 2 days post-eclosion. After 2 days together, adult male and females flies were shifted at 29°C, where they were maintained and transferred to new vials with fresh food every two days. Experimental flies were dissected at 3 and/or 7 days post-temperature shift at 29°C.
- B Representative example of DBS-S-QF activation in (red, immunostaining anti-HA) from flies reared in Drosophila Quick Mix Media (Blue) following the experimental regime described in (A); note the widespread activation of the DBS-S-QF reporter 7 days post-temperature shift at 29°C. DAPI (blue) labels the nuclei. Genotype: w^{1118} DBS-S-QF, UAS-mCD8-GFP, QUAS-tomato-HA.
- C Representative example of the ReDDM labelling in a *Drosophila* intestine reared in *Drosophila* Quick Mix Media (Blue) following the experimental regime described in A; esg expression (green, GFP) labels intestinal progenitor cells (ISCs and EBs) and Histone-RFP (red) acts as a semi-permanent marker of differentiated intestinal cells as either EEs or ECs, after the esg promoter is silenced. Note the high number of Histone-RFP-positive cells without GFP signal as an indication of epithelial replenishment. Genotype: w^{1118} ; esg-Gal4 UAS-CD8-GFP/Cyo; TubG80^{ts} UAS-Histone-RFP
- D Quantification of the ReDDM experiment shown in (C); note the significant increase of esg (****P < 0.0001) and Histone-RFP (***P = 0.0004) labelled cells (Quantifications were made using $N \ge 2$ biological replicates; unpaired two-tailed *t*-test, 3d n = 14, 7d n = 34). Error bars represent standard error of the mean. w^{1118} ; esg-Gal4 UAS-CD8-GFP/Cyo; TubG80^{ts} UAS-Histone-RFP.

Figure EV2. Genome engineering of the Dronc locus and Dronc alleles.

- Schematic diagrams showing the wild-type configuration of the Dronc locus before (upper lane) and after (bottom lane) targeting with CRISPR/Cas9; note the А replacement of the first exon of the gene (orange box) with and attP-integration site (red box).
- Agarose gel showing the PCR amplification of the genomic region around exon 1 of Dronc from larvae of the following genotypes (first lane, Wild-type +/+), В heterozygous mutant flies (second lane, Dronc^{KO} +/-) and homozygous mutant flies (third lane, Dronc^{KO} -/-). Genotypes: (ω^{1118}); ($\omega^{$ Dronc^{KO}/Dronc^{KO}).
- The new Dronc^{KO}-mutant allele is homozygous lethal in pupal stages in homozygous conditions, but also in trans-heterozygous combinations with other amorphic С alleles (*Dronc*¹²⁹) as shown in the figure. Genotype: w^{1118} ; *Dronc*^{KO}/*Dronc*¹²⁹.
- Heterozygous Dronc^{KO} mutant fly (Dronc^{KO}/+). Genotype: w^{1118} ; Dronc^{KO}/+. D
- The insertion of a wild-type cDNA of Dronc into the Dronc^{KO} allele can rescue at large extent the Dronc insufficiency (Dronc^{KO-Dronc-WT}/Dronc^{KO}); notice that only the Е adult wings were less transparent (arrow) than in the heterozygous controls (d) and sometimes are improperly extended. Genotype: w¹¹¹⁸; Dronc^{KO}/ Dronc^{KO-FL-DroncWT-Suntag-HA}
- F-L Plasmid configuration of the different constructs inserted into the *Dronc*^{KO} attP site.
 M Western blot showing the expression of FLWT (*Dronc*<sup>KO-FLWT-suntag-HA-Cherry/+), FLCAEA (*Dronc*^{KO-FLCAEA-suntag-HA-Cherry/+)} and dCAEA (*Dronc*<sup>KO-dCAEA-suntag-HA-Cherry/+).
 </sup></sup> constructs inserted into the endogenous *Dronc* locus, note that each of the constructs appear to be expressed at the same levels. Genotypes: (w^{1118} ; *Dronc*^{KO-FLWT-suntag-HA-Cherry}/+), (w^{1118} ; *Dronc*^{KO-FLWT-suntag-HA-Cherry}/+).
- N Plasmid configuration of a Gal4 constructs inserted into the *Dronc*^{KO} attP site.

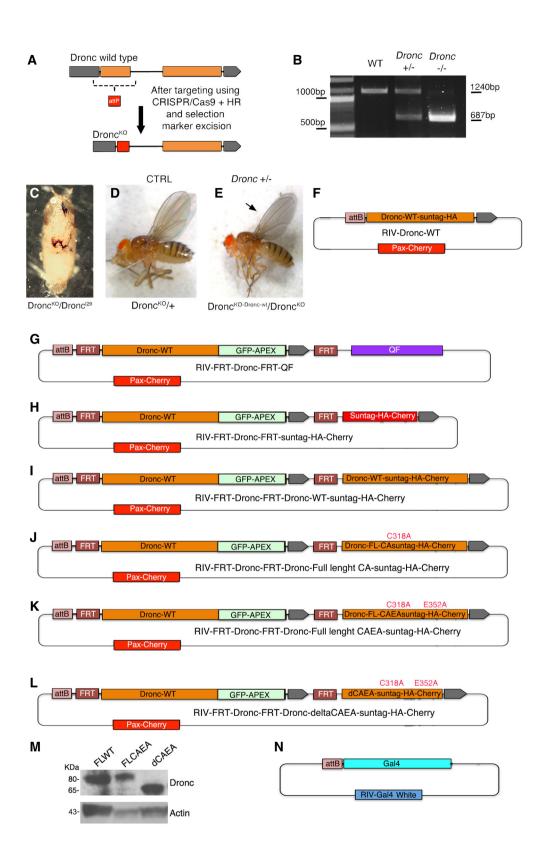


Figure EV2.

Figure EV3. Dronc functions are related to its enzymatic activity.

- A Representative image of a *Dronc* WT intestine, reared in Oxford Medium under an experimental regime which protects epithelial integrity, showing ReDDM activation for 7 days post-temperature shift at 29°C. The Flippase-mediated excision of the FRT-flanked wild-type cDNA of Dronc allows the expression of a wild-type construct of Dronc tagged with Suntag, HA and cherry that does not cause epithelial alterations. DAPI (blue) labels the nuclei in all the figure. Genotype: w^{1118} ; esg-Gal4 UAS-*CD8-GFP/+*; *TubG80*^{ts} UAS-*Histone-RFP Dronc*^{KO}/UAS-*Flippase* FRT *Dronc-GFP-APEX* FRT *Dronc-FLWT-suntag-HA-Cherry*.
- B Representative image of a *Dronc* heterozygous intestine (see full genotype description in Materials and Methods), reared in Oxford Medium under an experimental regime which protects epithelial integrity, showing ReDDM activation for 7 days post-temperature shift at 29°C; *esg* expression (green) labels the intestinal progenitor cells, Histone-RFP (red) is a semi-permanent marker retained in differentiated cells. Genotype: w^{1118} ; *esg*-Gal4 UAS-*CD8-GFP*/+; *TubG80^{ts}* UAS-*Histone-RFP Dronc^{KO}/+*.
- C Representative image of ReDDM labelling showing a *Dronc*-mutant intestine, expressing a catalytically inactive form of Dronc (FLCA) in progenitor cells (*esg*-positive cells, green) in an *Dronc* KO genetic background for 7 days post-temperature shift at 29°C; notice that *esg*-labelled cells appear enlarged and guts appear hyperplastic compared with (A). Genotype: w^{1118} ; *esg*-Gal4 UAS-*CD8-GFP*/+; *TubG80*^{ts} UAS-*Histone-RFP Dronc*^{KO}/UAS-*Flippase* FRT *Dronc-GFP-APEX* FRT *Dronc-FLCA-suntag-HA-Cherry*.
- D Representative image of ReDDM labelling showing a *Dronc* mutant intestine expressing in progenitor cells (esg-positive cells, green) a catalytically inactive and noncleavable form of Dronc (FLCAEA) in an heterozygous KO Dronc mutant genetic background for 7 days post-temperature shift at 29°C; notice that esg-labelled cells appear enlarged and guts appear hyperplastic compared with (A). Genotype: w^{1118} ; esg-Gal4 UAS-*CD8-GFP*/+; *TubG80^{ts}* UAS-*Histone-RFP Dronc*^{KO}/UAS-*Flippase* FRT *Dronc-GFP-APEX* FRT *Dronc-FLCAEA-suntag-HA-Cherry*.
- E Equivalent to the experiment described in (B) and (C) but in this case *esg*-progenitor cells are forced to express a catalytically inactive form of Dronc without the CARD domain (delta-CAEA, dCAEA). Genotype: w^{1118} ; *esg*-Gal4 UAS-*CD8-GFP*/+; *TubG80^{ts}* UAS-*Histone-RFP Dronc^{KO}/UAS-Flippase* FRT *Dronc-GFP-APEX* FRT *Dronc-delta-CAEA*-suntag-HA-Cherry.
- F Quantification of the percentage of *esg*-expressing cells relative to DAPI; note the increase of *esg*-expressing cells in the different mutant conditions in comparison with a *Dronc* heterozygous mutant background (FLCA, ****P < 0.0001; FLCAEA *P = 0.0212; Δ CAEA, ****P < 0.0001) (Quantifications were made using $N \ge 2$ biological replicates; Dunnett's multiple comparisons test, +/- n = 61, -/FLCA n = 21 -/FLCAEA n = 26, -/ Δ CAEA n = 37). Error bars represent standard deviation of the mean. Quantifications in graph refer to genotypes from (A–E).
- G Quantification of average cell size of esg-expressing cells (μm^2 ; FLCA, ***P = 0.0002; FLCAEA, ***P = 0.0007; Δ CAEA, **P = 0.0058) (Quantifications were made using $N \ge 2$ biological replicates; Dunnett's multiple comparisons test, +/- n = 61, -/FLCA n = 23, -/FLCAEA n = 26, -/ Δ CAEA n = 37). Error bars represent standard deviation of the mean. Quantifications in graph refer to genotypes from (A–E).
- H Quantification of the percentage of Histone-RFP cells without GFP signal relative to DAPI; notice that the number of cells only expressing Histone-RFP is significantly higher in the FLCA (****P < 0.0001), FLCAEA (****P < 0.0001) and Δ CAEA (****P = 0.0001) genetic backgrounds (Quantifications were made using $N \ge 2$ biological replicates; Dunnett's multiple comparisons test, +/- N = 39, -/FLCA n = 16, -/FLCAEA n = 19, -/ Δ CAEA n = 14). Error bars represent standard deviation of the mean. Quantifications in graph refer to genotypes from (A–E).

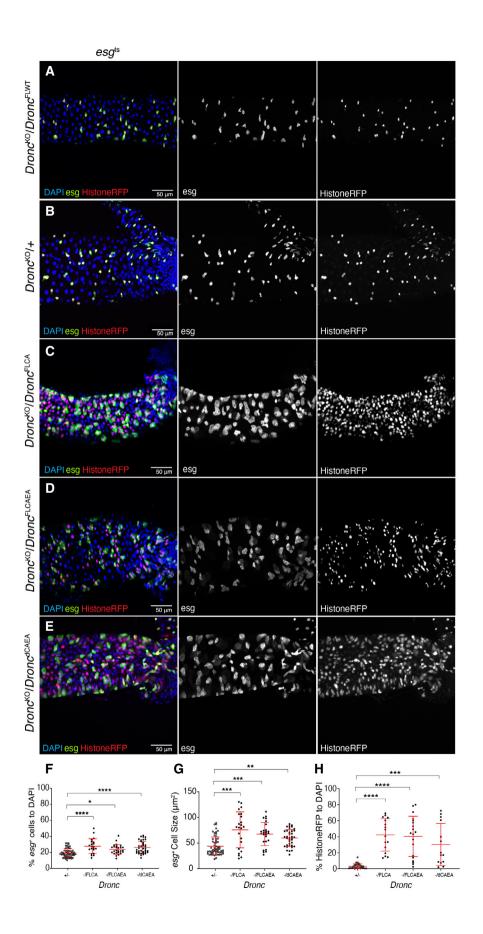
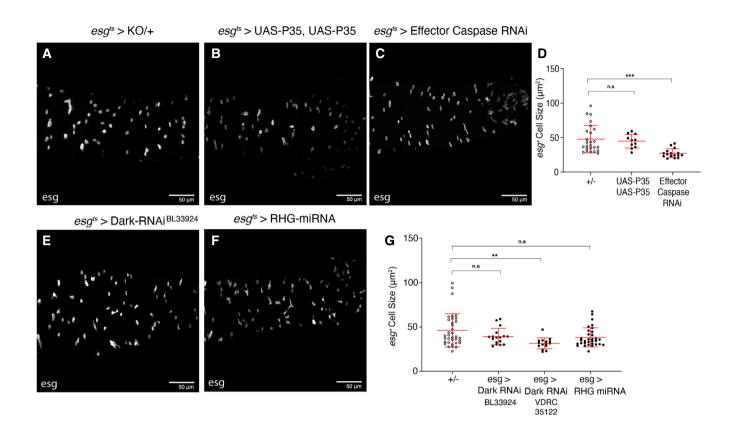



Figure EV3.

Figure EV4. Dronc regulates EB cellular properties independently of the effector caspases and upstream pro-apoptotic factors.

- A 7d post-temperature shift to 29°C. Dronc heterozygous intestine. All of the experiments described in the figure were performed in Oxford medium following an experimental regime which protects epithelial integrity. esg-Gal4 UAS-GFP labels ISCs and EBs in the panel A–C, E and F. Genotypes: w^{1118} ; esg-Gal4 UAS-CD8-GFP/+; TubC80^{ts} UAS-Histone-RFP Dronc^{KO}/+.
- B The overexpression of two copies of the effector caspase activity inhibitor (P35) under the regulation of *esg*-Gal4 does not cause morphological defects or an increase in cell size of intestinal progenitor cells (*P* = 0.8307). Genotypes: *w*¹¹¹⁸; *esg*-Gal4 UAS-CD8-GFP/UAS-P35; *TubG80*^{ts} UAS-Histone-RFP *Dronc*^{KO}/UAS-P35.
- C Concomitant overexpression of RNAi against all known *Drosophila* effector caspases under the regulation of *esg*-Gal4. The knockdown of all effector caspases fails to recapitulate the increase in cell size observed following loss of *Dronc* (*P* = 0.0002). Genotype: *w*¹¹¹⁸; *esg*-Gal4 UAS-*CD8-GFP*/UAS-*Drice RNAi* UAS-*Decay RNAi* (Pascal Meier); *TubG80*¹⁵ UAS-*Histone-RFP Dronc*^{KO}/UAS-*Damm RNAi* UAS-*DCP1 RNAi* (Pascal Meier).
- D Quantification of average esg cell size (μ m²) (n.s. P > 0.5; ***P = 0.001) (Quantifications were made using $N \ge 2$ biological replicates; Dunn's multiple comparisons test, +/- n = 25, 2 × P35 n = 11, Effector Caspase RNAi N = 16). Error bars represent standard deviation of the mean. Quantifications in graph refer to genotypes from (A–C).
- E The overexpression of RNAi against Dark. There is not significant change in cell size compared with +/- (P = 0.2222). Genotype: w^{1118} ; esg-Gal4 UAS-CD8-GFP/+; TubG80^{ts} UAS-Histone-RFP Dronc^{KO}/UAS-Dark RNAi (BL33924).
- F Overexpression of a miRNA against the pro-apoptotic factors. hid, reaper and grim. Note, the inhibition of these factors does not result in any noticeable phenotypes (ns; P = 0.0521). Genotype: w¹¹¹⁸; esg-Gal4 UAS-CD8-GFP/+; TubG80^{ts} UAS-Histone-RFP Dronc^{KO}/UAS-miRNA-RHG (I. Hariharan).
- G Quantification of average esg cell size (μ m²). There is no increase in cell size following overexpression of two different Dark RNAis (n.s. P = 0.2222 and **P = 0.0020) or a miRNA against the pro-apoptotic factors (n.s. P = 0.0521) (Quantifications were made using $N \ge 2$ biological replicates; Dunn's multiple comparisons test, +/- n = 36, esg > Dark RNAi (1) n = 17, esg > Dark RNAi (2) n = 16, esg > RHG miRNA n = 35). Error bars represent standard deviation of the mean. Quantifications in graph refer to genotypes from Fig 4E and F and an extra Dark RNAi (VDRC 35122).