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MATERIAL AND METHODS 

Genotyping and ancestry assignment 

Genotyping microarrays used in UK Biobank are Affymetrix Axiom array (90%) 

and Affymetrix BiLEVE array (10%), which share more than 95% of SNPs. We removed 

those who had discordance between inferred gender and submitted gender, outliers 

based on heterozygosity and missing rates, those with excessive relatives who have 

more than 10 putative third-degree relatives, and those with putatively carrying sex 

chromosome configurations that are not either XX or XY using the quality control (QC) 

metrics provided by UK Biobank[1]. This genotype QC process retained 486,355 

individuals. To assign European ancestry, we projected the UK Biobank samples onto the 

first 20 principal components (PCs) estimated from the 1000 Genome Phase 3 project 

data[2] (1000G) using FastPCA version 2[3]. Projections used a curated set of 38,511 LD-
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pruned HapMap Release 3 (HapMap3)[4] bi-allelic SNPs that were shared between the 

1000G and UK Biobank datasets (minor allele frequency > 1%, minor allele count > 5, 

genotyping call rate > 95%, Hardy-Weinberg p > 1.0 x 10-6, and regions of extensive LD 

removed).  Expectation Maximization (EM) clustering (implemented in R using 

“EMCluster” [https://github.com/snoweye/EMCluster]) was used to compute 

probabilities of cluster membership based on a finite mixture of multivariate Gaussian 

distributions with unstructured dispersion. Eigenvectors 1, 2 and 5 were used for 

clustering as they represented the smallest number of eigenvectors that were able to 

resolve the British 1000G subpopulation (GBR) from other ethnicities. Twelve 

predefined clusters were chosen for EM clustering as sensitivity analyses suggested that 

this number provided a good compromise between model fit (as quantified by log 

likelihood, Bayesian information criterion, and Akaike information criterion) and 

computational burden. Detail on this method are discussed in our previous report[5]. 

Here, we defined 458,861 UK Biobank participants as European that clustered together 

with 1000G European superpopulation (see Figure S1 and Table S1). Out of 458,861 

European participants, 458,164 participants with non-missing genotype information of 

rs28929474 and rs17580 were used for the downstream analyses (Figure S2). 9,243 

participants of African-descent, 3,111 participants of Admixed American-descent, 2,475 
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participants of East Asian, and 11,391 participants of South Asian were also defined 

along with European ancestry (Table S3).  

 

Definition of the presence of respiratory symptoms 

We defined the presence of respiratory symptoms through touchscreen 

questionnaire responses completed at the assessment centres or online follow-ups and 

included as symptoms: wheeze or whistling in the chest in last year (Data-Field 2316), 

shortness of breath walking on level ground (Data-Field 4717), cough on most days 

(Data-Field 22502) and bringing up phlegm/sputum/mucus on most days (Data-Field 

22504). All the participants with missing data or “-3” (Prefer not to answer) were treated 

as without symptoms, which may decrease the frequency of symptoms.  

 

Spirometry quality control 

The quality control of spirometry data was based on the American Thoracic 

Society and European Respiratory Society (ATS/ERS) criteria[6] of acceptability and 

reproducibility and referred to the previous paper[7] which also analyzed UK Biobank 

spirometry data.  

Acceptability of blows 
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At first, 1,241,336 blows were available at baseline visits and we included to be 

acceptable those with the following values in the Vitalograph spirometer blow quality 

metrics (Data-Field 3061), namely “blank” (0), “TEST_DURATION (set if the test is less 

than 6 seconds)” (16), “USER_ACCEPTED” (32) and “TEST_DURATION and 

USER_ACCEPTED” (48). A total of 790,263 blows were retained. 

Next, to ensure the good start of blow, the extrapolated volume at the start of 

test was calculated using the data points of blow (Data-Field 3066) and was removed if 

the extrapolated volume was larger than 150ml or 5% of FVC. A total of 788,193 

acceptable blows were retained. 

Reproducibility of measurements 

To meet the criteria for reproducibility, we compared each blow to the other 

blows and kept them if the difference was within 250ml. Since epidemiological studies 

are not designed for monitoring the individual patients, this threshold of 250ml, was 

applied which was confirmed as reliable in previous study by comparing the longitudinal 

results of same individuals with intervals of years[7]. Finally, 373,693 blows for FEV1 and 

362,048 blows for FVC were defined as “acceptable” and “reproduced”. 

Best measurements 

The best measurements of FEV1 and FVC were defined as the highest 
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measurements from the “acceptable” and “reproduced” measurements. FEV1/FVC was 

derived from the best measurements of FEV1 and FVC, which means that the best FEV1 

and FVC of a single participant are not necessarily derived from the same blow. In total, 

354,522 participants from total population have final valid FEV1/FVC information. 

Calculation of percentage of predicted FEV1 value 

We calculated the percentage of predicted FEV1 value in R v3.5.0 by using 

“rspiro” package (https://github.com/thlytras/rspiro) which implements the Global 

Lung Function Initiative 2012 spirometry equations[8]. Age, height, and self – reported 

ethnicity information was obtained from Data-Field 21003, 50, and 21000, respectively. 

Table S5 shows the detailed information of the coding for ethnicity used for the 

calculation of %FEV1 predicted. 

Bronchodilator information 

Although 2,298 participants who had diagnoses of asthma used inhalers for 

chest within last hour (Data-Field 3090), we did not remove these participants. This is 

because UK Biobank dataset does not cover all the medication lists in asthmatic patients 

and excluding all asthmatic people in the analyses may cause a selection bias. 

 

Statistical analysis 

https://github.com/thlytras/rspiro
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Regression models were fitted to assess the associations of SERPINA1 

genotypes and clinical outcomes compared to PI*MM genotype. All the models were 

adjusted for age (Data-Field[DF] 21003), sex (DF 31), genotype arrays (DF 22000), 

assessment centre (DF 54) and the first five principal components (PC) in order to 

account for population structure. 

 

Definition of smoking status and exposure to smoke or polluted air in household or 

workplace 

Smoking status was defined by the questionnaire - based information as was 

previously reported[7]. “Never smokers” were people who answered “not smoking at 

present” and “never smoked in the past”, or who answered “not smoking at present, 

smoked occasionally or just tried once or twice in the past” but didn’t have more than 

100 episodes of smoking over their lifetime. “Current smokers” were those who smoke 

at present on most, or all days, or occasionally. “Past smokers” were those who do not 

smoke at present but smoked on most or all days in the past, who do not smoke at 

present and smoked occasionally or just tried once or twice in the past but had at least 

100 episodes of smoking over their lifetime, or who smoked on most or all days or 

occasionally with more than 100 episodes of smoking over their lifetime but prefer not 
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to answer whether they smoke at present. Table S4 summarizes the Data-Fields and the 

codes we curated for smoking status. “Current smokers” and “past smokers” were 

combined and termed as “ever-smokers” for the downstream regression analyses. We 

also defined “heavy-smokers” as those with more than 20 pack-years[9] using the Data-

Field 20161. With respect to exposure to smoke or polluted air in household or 

workplace, we selected all individuals with the answers of “at least one household 

member smokes” (coding “1” or “2”) in smoking/smokers in household (Data-Field 

1259) in addition to the individuals with the answers of “Often (-141)” or “Sometimes 

(-131)” in occupational exposure questions (Workplace very dusty [Data-Field 22609], 

Workplace full of chemical or other fumes [22610], Workplace had a lot of cigarette 

smoke from other people smoking Employment history [22611], Worked with materials 

containing asbestos [22612], Worked with paints, thinners or glues [22613], Worked 

with pesticides [22614], Workplace had a lot of diesel exhaust [22615]). 

 

Survival analysis 

We set the date of attending assessment centre (Data-Field 53) as the starting 

date and participants with the date of death (Data-Field 40000) were determined to 

have died while the rest of the participants without death registry information were 



 

 

8 

assumed to be alive until 2016/02/16, which is the last date included in the Data-Field 

40000. We used R package “survminer” for this analysis. 

(http://www.sthda.com/english/rpkgs/survminer/). “Cox.zph” function was used to 

test the proportional hazard assumption in Cox regression. As a sensitivity analysis, 

multivariate Cox proportional hazard model adjusted for age was also applied for 

survival analysis. 

 

Phenome-wide association study 

Mapping ICD codings to phecode 

We used the information in Data-Field 41203 / 40205 and 41202 / 40204 for 

ICD-9 and ICD-10, respectively. We mapped ICD -9 codes to phecodes in Phecode Map 

1.2 with ICD-9 Codes by the following method: First, we searched by exact matching of 

the code descriptions, followed by exact match of meaning description, and if the codes 

in UK Biobank start with the ICD-9 codes in Phecode Map, we also mapped them to the 

corresponding phecodes. For example, “V0299” in UK Biobank was treated to be same 

as “V02.9” in Phecode Map. We mapped similarily ICD-10 codes to phecodes by using 

both Phecode Map 1.2 with ICD-10 Codes (beta) and Phecode Map 1.2 with ICD-10cm 

Codes (beta)[10]. For the rest of the ICD-10 codes, we also included the match of the 

http://www.sthda.com/english/rpkgs/survminer/
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first 3 digits (for example, “A561” in UK Biobank was treated to be same as “A56.*” in 

Phecode Map). 43,928 (84%) out of 52,259 cumulative ICD-9 codings and 2,797,060 

(95%) out of cumulative 2,933,010 ICD-10 codings were successfully mapped to 

phecodes. The non-mapped codings are listed in Table S7 (ICD-9) and Table S8 (ICD-10). 

Table S8 includes mainly abortions, external causes of injury and poisoning (E) or factors 

influencing health status and contact with health services (V). For ICD-10 codes, several 

unmatched codings with prefixes from B to M were manually mapped to the phecodes 

listed in Table S8. Finally, the majority of phenotypes uncovered that were unmatched 

had prefixes from O to Z, which were predominantly pregnancy related outcomes, 

injuries or factors influencing health status.  

Selection of phecodes tested 

We first converted ICD-9 and ICD-10 codes to phecodes and created the matrix 

of the phenotypes of the participants using “createPhenotypes.R” function in PheWAS 

R package[11] with the parameters of min.code.count=1 and add.phecode.exclusions=T. 

We included the phecodes with at least 20 cases in total and at least 1 case in mutant 

genotype group in the analyses and then undertook a logistic regression model between 

the SERPINA1 genotypes and each phecode, adjusting for age, sex, genotyping array, 

assessment centre and first five principal components using “glm” function in R. We 
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applied both Bonferroni and Benjamini-Hochberg correction and reported the 

significant phenotypes (p < 0.05). 

Sensitivity analyses 

We performed two sets of sensitivity analyses. As case-control imbalance could 

cause high type I error rate, we first performed Firth test using “logistf” function 

(https://cran.r-project.org/web/packages/logistf/index.html) to all phenotypes, which 

is known to have as low type I error rate. Second, Hospital Episode Statistics are coded 

by administrative staff who referred to the patient notes of clinicians, our PheWAS 

design could be affected by the misclassification. Therefore, we reperformed PheWAS 

by restricting “cases” to only those with >= 2 entries of codes with the parameters of 

min.code.count=2 in “createPhenotypes.R” function to reduce errors due to incorrect 

codings. Here we included all the phecodes with at least one case in total. We 

acknowledge this approach is less sensitive as we have removed substantial true cases 

with only one entry. For instance, the number of those with asthma (phecode “495”) 

dropped from 25,331(6.5%) to 1,775(0.48%) in PI*ZZ and PI*MM individuals when we 

excluded those with only one entry of the code, which is much fewer than the 

prevalence of asthma (Table S14). We used same sets of covariates as the main analysis 

in all sensitivity analysis. Quantile-quantile plots were drawn using “qqman” function. 
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Polygenic risk score of spirometry data 

We first filtered SNPs for stringent quality control metrics, retaining only SNPs 

with a minor allele frequency > 0.05% and an imputation quality score > 0.3. We then 

hard-called all post-QC genotyped and imputed variants by PLINK[12]. We used GWAS 

summary statistics of FEV1/FVC derived from 79,055 European individuals in SpiroMeta 

consortium[7], in which the authors observed no overlap of samples compared to UK 

Biobank. Polygenic risk score(PRS) for FEV1/FVC was established by implementing 

LDpred[13] with LD radius of 400 using only HapMap3 SNPs, which is a recommended 

setting by the author. We randomly selected 5,000 individuals from the cluster of White 

British in the previous report[14] and used them as LD reference genotypes. The top-

performing PRS with the fraction of causal markers set to be 0.01, was selected among 

LDpred -inf (LDpred specialized to an infinitesimal prior) and LDpred with the fraction 

of causal markers set at various proportions: 1, 0.3, 0.1, 0.03, 0.01, 0.003 and 0.001. 

Although in theory this procedure is susceptible to overfitting, overfitting is considered 

to have a negligible effect in practice given its large sample size (n=328,638) and the 

small discrete set of parameter choices. To estimate the interactions between SERPINA1 

genotype and common variants (PRS), we applied multivariate logistic regression for 
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FEV1/FVC < 0.7 with SERPINA1 genotypes, PRS (for the sake of interpretation, it was first 

multiplied by -1 and standardized) and interaction terms between each other. 

 

RESULT 

Sensitivity analyses 

 When we included E88.0 in ICD-10 codes for the diagnosis of AATD, there were 

294 (0.064%) AATD diagnoses in the total European ancestry population, which is more 

frequent than the previous estimates[15]. We acknowledge that this likely represents 

an over-estimate of AATD diagnostic rate, given that this ICD-10 code includes other 

diseases. Twenty (14%, 95% CI: 9.4% – 21%) out of 140 PI*ZZ individuals were diagnosed 

as AATD and among 31 PI*ZZ individuals with COPD diagnosis, only 16 (52%, 95% CI: 

35% – 68%) were diagnosed as having AATD. We excluded 7,404 participants who have 

at least one relative identified in UK Biobank and reperformed the association studies. 

The results were similar to the main results (Table S13). Multivariate Cox proportional 

hazard model provided similar hazards to all-cause mortality compared to univariate 

analysis (Table S12). 

 

Phenome-wide association study (PheWAS) 
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In PheWAS, we tested 1,315 icd.phenotypes for PI*ZZ vs PI*MM individuals (n 

= 398,564), 1,311 icd.phenotypes for PI*SZ vs PI*ZZ individuals, 1,316 icd.phenotypes 

for PI*MZ vs PI*ZZ individuals and 1,317 icd.phenotypes for PI*SS vs PI*ZZ individuals 

(Table S14-S17). PI*ZZ genotype was associated with increased risk of other disorders 

of metabolism (including AATD) (OR: 124.7, 95%CI: 73.4 – 211.9, p = 3.2 x 10-71), 

emphysema (OR: 53.2, 95%CI: 31.2 – 90.7, p = 2.2 x 10-48), obstructive chronic bronchitis 

(OR: 16.4, 95%CI: 8.0 – 33.5, p = 1.5 x 10-14), chronic airway obstruction (OR: 8.4, 95%CI: 

4.6 – 15.3, p = 4.3 x 10-12), dependence on respirator or supplemental oxygen (OR: 15.5, 

95%CI: 4.8 – 50.1, p = 4.8 x 10-6), cachexia (OR: 69.2, 95%CI: 9.3 – 515.7, p = 3.6 x 10-5), 

and secondary polycythemia (OR: 19.7, 95%CI: 4.8 – 81.1, p = 3.6 x 10-5) with p < 

0.05/1,317, with p < 0.05/1,317, amongst which the first three were validated by two 

sensitivity analyses we performed (Table S14, Figure S3). PI*SZ was associated with 

increased risk of lipoprotein disorders (OR: 20.8, 95%CI: 5.0 – 86.0, p = 2.8 x 10-5) and 

open wound of neck (OR: 11.8, 95%CI: 3.7 – 37.2, p = 2.6 x 10-5) with p < 0.05/1,311, 

none of which was validated in the sensitivity analysis (Table S15, Figure S4). PI*MZ was 

associated with increased risk of cholelithiasis (OR: 1.3, 95%CI: 1.2 – 1.5, p = 7.8 x 10-10), 

calculus of bile duct (OR: 1.6, 95%CI: 1.3 – 1.8, p = 2.8 x 10-8), abnormal results of 

function study of liver (OR: 1.5, 95%CI: 1.3 – 1.7, p = 1.8 x 10-7), emphysema (OR: 1.6, 
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95%CI: 1.3 – 1.7, p = 1.3 x 10-6), and decreased risk of coronary atherosclerosis (OR: 0.8, 

95%CI: 0.8 – 0.9, p = 3.5 x 10-6) with p < 0.05/1,311, all of which were also significant 

with Firth test (Table S16, Figure S5). No phenotype remained associated with PI*SS 

after Benjamini-Hochberg correction (Table S17). 
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Figures 

FigureS1. Bivariate scatterplots of principal components 1, 2 and 5 of the genotypes 

of UK Biobank samples. 

 

(A) x axis=first principal component(PC) (PC1); y axis=second PC (PC2), (B) x axis=PC1, y 

axis=fifth PC(PC5), (C) x axis=PC2, y axis=PC5. Clusters 1 – 12 were the clusters identified 

by clustering method[5] with 1000G individuals[2]. The detailed methods are described 

above in the online supplement.  
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Figure S2. Flow diagram of the study participants, inclusion and exclusion for the 

analysis. 

 

Detailed methods of defining European descent is in the online supplement. 
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Figure S3. PheWAS Manhattan plot for PI*ZZ vs PI*MM genotypes. 

Logistic regression models were adjusted for age, sex, genotyping array, assessment 

centre and the first five genetic principal components. X axis=each phenotype ordered 

by phecode; Y axis=-log10(p value) from logistic regression. red line=p-value threshold 

after Bonferroni corrected value < 0·05; blue line=p-value < 0.05. annotated 

phenotypes=statistically significant (p < 0.05) after Benjamini-Hochberg correction. (A) 

Normal view. (B) Enlarged view. 
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Figure S4. PheWAS Manhattan plot for PI*SZ vs PI*MM. 

Logistic regression models were adjusted for age, sex, genotyping array, assessment 

centre and the first five genetic principal components. X axis=each phenotype ordered 

by phecode; Y axis=-log10(p value) from logistic regression. red line=p-value threshold 

after Bonferroni corrected value < 0.05; blue line=p-value < 0.05. annotated 

phenotypes=statistically significant (p < 0.05) after Benjamini-Hochberg correction. 
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Figure S5. PheWAS Manhattan plot for PI*MZ vs PI*MM. 

Logistic regression models were adjusted for age, sex, genotyping array, assessment 

centre and the first five genetic principal components. X axis=each phenotype ordered 

by phecode; Y axis=-log10(p value) from logistic regression. red line=p-value threshold 

after Bonferroni corrected value < 0.05; blue line=p-value < 0.05. annotated 

phenotypes=statistically significant (p < 0.05) after Benjamini-Hochberg correction. 
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Figure S6. Quantile-quantile plots of PheWAS. 

 

Quantile-quantile plots for PheWAS. (A) ZZ vs MM. (B) SZ vs MM. (C) MZ vs MM. All the 

test statistics were calculated with “glm” and “logistf”, respectively. 
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