
SI: PySurf - A Framework for Database

Accelerated Direct Dynamics

Maximilian F.S.J. Menger,* Johannes Ehrmaier, and Shirin Faraji*

Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of

Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.

E-mail: m.f.s.j.menger@rug.nl; s.s.faraji@rug.nl

Contents

1 SO2 calculations 2

1.1 SO2 LVC calculations . 3

2 Plugin 4

2.1 Tutorial: Add a Model System . 4

2.2 Tutorial: Write an Ab-Initio Interface . 9

2.3 Tutorial: Write an Interpolator . 15

3 Workflow 22

3.1 Tutorial: How to use the Workflow engine . 22

3.2 Tutorial: Write your own Workflow . 23

1

m.f.s.j.menger@rug.nl
s.s.faraji@rug.nl

1 SO2 calculations

Figure1: Populations for SO2 starting from the S1 state for the full QM (solid) and energy-only
(dotted) simulations with 1000 trajectories. black: S0; blue: S1; orange: S2;

Fig. 1 shows the populations of SO2 for 1000 reference calculations (solid) compared to energy-

only simulations (dotted). Population transfer is observed from the S1 to the S2 state within the first

20 fs. After 30 fs most of the population is back in the S1 state. For the energy-only simulations

the population transfer is more extended. After 100 fs more than 90% of the population is in the

S1 state, which is similar to the reference calculations. The results are consistent with previous

investigations based on wavepacket propagation or trajectory-surface hopping simulations.1–3 The

main differences can be explained by the different electronic-structure methods being used.

2

1.1 SO2 LVC calculations

Figure2: Populations for SO2 starting from the S2 state for the linear vibronic coupling (solid) and
the full QM (dashed) using Landau-Zener for simulations with 1000 trajectories. black: S0; blue:
S1; red: S2;

Fig. 2 shows the populations of SO2 for linear vibronic coupling (LVC) calculations (solid)

using the parameters presented in Ref. 4 (obtained at MR-CIS(6,6)/VDZP level of theory)

and considering only the singlet excited states are compared to the full QM (TDDFT/B3LYP)

simulations (dashed). In both cases the Landau-Zener surface hopping algorithm is used. and

1000 trajectories run. The population transfer is observed from the S2 to the S1 state within the

first 20 fs. for the first 40 fs both simulations give almost the same results and deviations start to

appear for longer simulation times. The results are consistent with previous investigations based

on wavepacket propagation or trajectory-surface hopping simulations.1–4 The main differences can

be explained by the different electronic-structure methods being used.

3

2 Plugin

Extension of PySurf is mainly done via plugins. It is straightforward to add your own custom

plugins to the PySurf framework. In the following we walk you through the process of creating a

few example plugins to illustrate the task.

2.1 Tutorial: Add a Model System

Models in PySurf have the dimensionality (N,1). For example, Some pyrazine models in normal

mode coordinates are already available in the package. To write your own model you simply have

to create a child-class of the PySurf Model class and put your python script into the plugin folder,

so that it gets automatically imported on start and is available in the whole environment.

2.1.1 Example: 1D Harmonic Oscillator

In this tutorial, we will implement a simple model with one or optionally two harmonic oscillators.

The user can decide, whether the second surface is included and how it should be shifted with

respect to the first surface. Additionally, the frequencies and the offset energy have to be specified

from the user.

In the following we will walk you through the complete implementation. First we will import some

helper classes from Pysurf, namely the Model class, which all models inherit from. Additionally

we use the Mode class, which provides some utilities to deal with normal modes.

1 from pysurf import Model
2 from pysurf.system import Mode

4

Basic Features

The Model is an abstract base class and all children of it have to provide the following class

attributes:

implemented , list of strings, defines which properties are provided by the model, e.g.

[‘energy’, ‘gradient’, ‘fosc’]

modes list of the ground state modes.

Additionally, two class methods need to be added: ‘from_config‘: which acts as a static constructor

to instantiate the class using the user data.

from_config: which acts as a static constructor to instantiate the class using the user

data.

get: fill the request with the demanded data

1 class HarmonicOscillator1D():
2 """ Model for a 1D harmonic oscillator with 1 or 2 PES """
3
4 implemented = ['energy', 'gradient']
5 crd = [0.0]
6 frequencies = [1.0]
7 displacements = [[1.0]]
8 modes = [Mode(freq, dis) for freq, dis in zip(frequencies, displacements)]
9

10 @classmethod
11 def from_config(cls, config):
12 """initialize class with a given questions config!"""
13
14 def get(self, request):
15 """get requested info"""

User Input

PySurf is build around the Colt framework, developed independently. To specify additional user

input for your class you simply define a _questions string as a class attribute.

In our example we will need user input for the shape of the potentials:

• E0/E1 offset energy of the corresponding potential

5

https://github.com/mfsjmenger/colt

• x0/x1 shift of the harmonic oscillator in x direction

• w0/w1 frequency of the corresponding PES

• npes number of PES. The parameters for the second PES are only asked if npes = 2

1 class HarmonicOscillator1D(Model):
2 """ Model for a 1D harmonic oscillator with 1 or 2 potential energy surfaces """
3
4 _questions = """
5 e0 = 0.0 :: float
6 w0 = 1.0 :: float
7 x0 = 0.0 :: float
8 # Number of potential energy surfaces
9 npes = 1 :: str ::

10
11 [npes(1)]
12
13 [npes(2)]
14 e1 = 1.0 :: float
15 w1 = 1.0 :: float
16 x1 = 1.0 :: float
17 """
18
19 implemented = ["energy", "gradient"]
20 masses = [1.0]
21 crd = [0.0]
22 frequencies = [1.0]
23 displacements = [[1.0]]
24 modes = [Mode(freq, dis) for freq, dis in zip(frequencies, displacements)]
25
26 @classmethod
27 def from_config(cls, config):
28 e0 = config['e0']
29 w0 = config['w0']
30 x0 = config['x0']
31 npes = int(config['npes'].value)
32
33 config_npes = config['npes']
34 return cls(e0, w0, x0, npes, config_npes)
35
36 def __init__(self, e0, w0, x0, npes, config_npes):
37 self.frequencies = [w0]
38 self.crd = [x0]
39 self.npes = int(npes)
40 self.w = [w0]
41 self.x = [x0]
42 self.e = [e0]
43
44 if self.npes == 2:
45 self.w += [config_npes['w1']]
46 self.x += [config_npes['x1']]
47 self.e += [config_npes['e1']]

According to the Colt style, all arguments in the main question block are given in the init method

explicitly, whereas other question blocks are passed as config of the block. This makes it easy to

initialize the class without user input and use it either within the framework or as a standalone.

6

Step 3: Implement _energy and _gradient function

The next step is to implement the actual model, i.e. the properties of the model. In our case we

want to provide the energies and the gradients of the surfaces and thus private methods for _energy

and _gradient are implemented.

1 class HarmonicOscillator1D(Model):
2 """ Model for a 1D harmonic oscillator with 1 or 2 potential energy surfaces """
3
4 ...
5
6 def _energy(self, x):
7 energy = []
8 for i in range(self.npes):
9 energy += [0.5*self.w[i]*(x - self.x[i])**2 + self.e[i]]

10 energy = np.array(energy).flatten()
11 return energy
12
13 def _gradient(self, x):
14 gradient = {}
15 for i in range(self.npes):
16 gradient[i] = np.array(self.w[i]*(x - self.x[i]))
17 return gradient

Implement energy and gradient function

The next step is to implement the actual model. In our case we want to provide the energies and

the gradients of the surfaces and thus we provide private helper functions for this: namely _energy

and _gradient.

1 class HarmonicOscillator1D(Model):
2 """ Model for a 1D harmonic oscillator with 1 or 2 potential energy surfaces """
3
4 ...
5
6 def _energy(self, x):
7 energy = []
8 for i in range(self.npes):
9 energy += [0.5*self.w[i]*(x - self.x[i])**2 + self.e[i]]

10 energy = np.array(energy).flatten()
11 return energy
12
13 def _gradient(self, x):
14 gradient = {}
15 for i in range(self.npes):
16 gradient[i] = np.array(self.w[i]*(x - self.x[i]))
17 return gradient

The _energy function takes a coordinate position, i.e. a numpy array and returns an array with one

or two entries, depending on whether the surface contains one or two potential energy surfaces.

7

The energy is calculated according to the formula

𝐸 = 0.5 · 𝜔 · (𝑥− 𝑥0)
2

The _gradient function takes a coordinate position, i.e. a numpy array and returns a dictionary.

The keys in the dictionary are the state numbers as integers, i.e. 1 or 2 and the values are the

gradients of the corresponding state. In our specific case, such a dictionary may look like: {1:

[0.5], 2: [0.2]}

Implement get

In PySurf every computation is performed based on a user based request, that contains the

properties that need to be computed. The get function is called with the request as parameter.

It has to fill the request object with the desired results from the model and return it.

1 class HarmonicOscillator1D(Model):
2 """ Model for a 1D harmonic oscillator with 1 or 2 potential energy surfaces """
3
4 ...
5
6 def get(self, request):
7 """the get function returns the adiabatic energies as well as the
8 gradient at the given position crd. Additionally the masses
9 of the normal modes are returned for the kinetic Hamiltonian.

10 """
11 crd = request.crd
12 print('crd', crd)
13 for prop in request:
14 if prop == 'energy':
15 request.set('energy', self._energy(crd))
16 if prop == 'gradient':
17 request.set('gradient', self._gradient(crd))
18 return request

With this we have created a very simple harmonic oscillator model.

8

2.2 Tutorial: Write an Ab-Initio Interface

Abinitio-Interfaces are Plugins for the SurfacePointProvider and are used to perform (electronic

structure) calculations on molecular systems (NAtoms, 3). In the following example

implementations are presented for a basic adapter class to the atomic simulation environment

(ASE)5 and a basic interface to PySCF.6

2.2.1 Example: Adapter to the ASE

The ASE is according to its documentation a set of tools and Python modules for setting up,

manipulating, running, visualizing and analyzing atomistic simulations under GNU LPGL licence.

Hereby, the ASE provides so-called Calculators, which are similar to the Abinitio-Interfaces used

in the SurfacePointProvider. In the following, we are going to construct an adapter class to use the

ASE calculators within our framework.

Basic Setup

To implement an Abinitio-Interface using the ASE we need to import some objects/methods. We

will use from the ASE:

• Atoms: which defines the basic molecule

• calculators: which gives access to the available calculators

Additionally, we will import the Abinitio base class from Pysurf.

1 from ase import Atoms
2 from ase import calculators
3 from pysurf import Abinitio

9

Abstractmethods in Abinitio

1 class ASEInterface(Abinitio):
2 implemented = ['energy', 'gradient']
3
4 @classmethod
5 def from_config(cls, config, atomids, nstates):
6 """used to initialize the class using userinput"""
7
8 def get(self, request):
9 """Compute requested properties and set results"""

The Abinitio base class defines two abstract methods and one property that need to be set:

• from_config: used to initialize the class using the userinput

• get: which is used to answer the request

• implemented: states which properties are implemented, the writer of the plugin

is responsible for correctness

If you write a new interface for an electronic-structure software, those are the methods you have to

implement.

The next thing is to add user input.

Adding user input for the Plugin

Before we are going to implement the abstract methods we are going to add some custom user-

input that we want to use in our Plugin. Herefor, we use the question DSL of Colt and add our own

questions to our class.

1 class ASEInterface(Abinitio):
2
3 _questions = """
4 calculator = qchem
5
6 [calculator(qchem)]
7 method = b3lyp
8 basis = 6-31g
9

10 [calculator(psi4)]
11 method = b3lyp
12 memory = 500MB
13 basis = 6-31g
14 """
15
16 implemented = ['energy', 'gradient']
17

10

18 @classmethod
19 def from_config(cls, config, atomids, nstates):
20 """used to initialize the class using userinput"""
21 if nstates != 1:
22 raise Exception("ASE does not support excited states")
23 return cls(config['calculator'], atomids)
24
25 def __init__(self, calculator, atomids):
26 # define the molecule in a basic manner
27 self.molecule = Atoms(numbers=atomids)
28 self.calculator = self._select_calculator(calculator)
29
30 def _select_calculator(self, calculator):
31 if calculator == 'psi4':
32 return calculators.psi4.Psi4(atoms=self.molecule, method=calculator['method'],
33 memory=Calculator['memory'], basis=calculator['basis'])
34 if calculator == 'qchem':
35 return calculators.qchem.QChem(atoms=self.molecule, method=calculator['method'],
36 basis=calculator['basis'])
37 raise NotImplementedError("calculator not implemented")

For education purpose we only show two calculators, the one for Q-Chem and the one for Psi4

software.

Implementing get

Now it is straight-forward to implement the get function

1 class ASEInterface(Abinitio):
2 ...
3
4 def get(self, request):
5 """Compute requested properties and set results"""
6 # set the coordinates
7 self.molecule.positions = request.crd
8 # compute energy
9 if 'energy' in request:

10 request['energy'].set(self.calculator.get_potential_energy())
11 # compute gradient
12 if 'gradient'in request:
13 request['gradient'].set(self.calculator.get_forces())
14 return request

With that done, we have a new Abinitio-Interface

2.2.2 Example: PySCF interface:

In this example we show how to write an interface for the PySCF program package, which also

supports excited states.

11

Step 0: Basic Setup

To implement an Abinitio-Interface using PySCF we need to import some objects/methods. We

will use from the PySCF

• gto: which defines the basic molecule

• dft, grad, tddft: which allow to perform dft and tddft calculations for energies and gradients

From PySurf we will import the Abinitio class which is the base class of all Abinitio interfaces

1 from pysurf import Abinitio
2 from pyscf import gto, dft, tddft, grad

Step 1: Abstract methods in Abinitio

1 class PySCF(Abinitio):
2
3 methods = {}
4 implemented = []
5
6 @classmethod
7 def from_config(cls, config, atomids, nstates):
8 """used to initialize the class using userinput"""
9

10 def get(self, request):
11 """Compute requested properties and set results"""

The Abinitio base class defines two abstract methods that need to be set as well as one property:

• from_config: used to initialize the class using the userinput

• get: which is used to answer the request

• implemented: states which properties are implemented

The next thing is to add user input.

12

Step 2: Adding user input for the Plugin

Before we are going to implement the abstract methods we are going to add some custom user-

input that we want to use in our Plugin. Herefor, we use the question DSL of Colt and add our own

questions to our class.

For each electronic-structure method of PySCF a separate class is implemented, the calculator

classes. These calculator classes have to have methods with the name do_prop where prop stands

for all the implemented properties, e.g. do_energy. Moreover it has to have a property implemented

which is copied to the PySurf class. PySurf will check the implemented property, whether the

interaface provides all necessary properties that are needed in the calculation.

1 class PySCF(Abinitio):
2
3 _questions = """
4 basis = 631g*
5 # Calculation Method
6 method = DFT/TDDFT :: str :: [DFT/TDDFT]
7 """
8
9 # implemented has to be overwritten by the individual classes for the methods

10 implemented = []
11
12 # dictionary containing the keywords for the method and the corresponding classes
13 methods = {'DFT/TDDFT': DFT}
14
15 @classmethod
16 def _extend_questions(cls, questions):
17 questions.generate_cases("method", {name: method.questions
18 for name, method in cls.methods.items()})
19
20 @classmethod
21 def from_config(cls, config, atomids, nstates):
22 method = config['method'].value
23 basis = config['basis']
24 config_method = config['method']
25 return cls(basis, method, atomids, nstates, config_method)
26
27
28 def __init__(self, basis, method, atomids, nstates, config_method):
29 """ """
30 self.mol = self._generate_pyscf_mol(basis, atomids)
31 self.nstates = nstates
32 self.atomids = atomids
33 self.basis = basis
34 # initializing the class for the corresponding method
35 self.calculator = self.methods[method].from_config(config_method, self.mol, nstates)
36 # update the implemented property
37 self.implemented = self.calculator.implemented

The code for the _generate_pyscf_mol function is shown in the next section. It is a PySCF specific

function that creates the molecule object for PySCF.

13

Step 3: Implementing get

The get function calls the corresponding functions of the calculator class. The

_generate_pyscf_mol function generates the basic molecule object of Pyscf.

1 class PySCF(Abinitio):
2 ...
3 def get(self, request):
4 # update coordinates
5 self.mol = self._generate_pyscf_mol(self.basis, self.atomids, request.crd)
6 for prop in request:
7 func = getattr(self.calculator, 'do_' + prop)
8 func(request, self.mol)
9 #

10 return request
11
12 @staticmethod
13 def _generate_pyscf_mol(basis, atomids, crds=None):
14 """ helper function to generate the mol object for Pyscf """
15 if crds is None:
16 crds = np.zeros((len(atomids), 3))
17 mol = gto.M(atom=[[atom, crd] for atom, crd in zip(atomids, crds)],
18 basis = basis, unit='Bohr')
19 return mol

Step 4: Implementing the DFT calculator class

For educational purposes we restrict ourselves to the calculation of energies. Like in all Colt

classes questions can be added, which are asked through the _extend_questions method of the

PySCF class. Answers are passed to the __init__ function via the from_config classmethod. At the

initialization the dft and tddft scanners are set up to make sure that calculations are started from

the last converged result. In the do_energy function the request is filled with the energies.

1 class DFT(Colt):
2 """ class which executes the DFT and TDDFT calculations using the PySCF package """
3
4 _questions = """
5 functional = :: str :: ['pbe0']
6 basis = ccpvdz :: str
7 """
8
9 implemented = ['energy']

10
11
12 @classmethod
13 def from_config(cls, config, mol, nstates):
14 """ """
15 functional = config['functional']
16 return cls(functional, mol, nstates)
17
18
19 def __init__(self, functional, mol, nstates):
20 self.mol = mol
21 self.nstates = nstates
22
23 mydft = dft.RKS(mol).x2c().set(xc=functional)
24 self.dft_scanner = mydft.as_scanner()

14

25
26 if self.nstates > 1:
27 mydft._numint.libxc = dft.xcfun
28 mytddft = tddft.TDDFT(mydft)
29 self.tddft_scanner = mytddft.as_scanner()
30 self.tddft_scanner.nstates = self.nstates - 1
31
32
33 def do_energy(self, request, mol):
34 if self.nstates == 1:
35 en = [self.dft_scanner(mol)]
36 else:
37 en = self.tddft_scanner(mol)
38
39 request.set('energy', en)

2.3 Tutorial: Write an Interpolator

In case you want to extend the interpolation facilities you can write an additional Interpolator.

First, it has to be decided what interpolator should be implemented. In this tutorial a trivial nearest

neighbor interpolator is implemented. A Nearest Neighbor Interpolator just looks to the points

closest to the point we want to interpolate. Then, the properties of this nearest dataset are returned

for the requested coordinates. Our implementation in this tutorial will use scipy’s nearest neighbor

search algorithm for a fast search and overall performance.

2.3.1 Example: Nearest Neighbor Interpolator

Interpolator inherite from the Interpolator base class. The base class takes care of the basic logic,

which are common to any interpolator, e.g. coordinate transformation and energy-only calculations

etc. During the example we will encounter a few of them and explain them, whenever they appear.

1 from scipy.spatial import cKDTree
2 from pysurf.spp import Interpolator

15

Basic Features

Every Interpolator has to implement 5 functions:

def get(self, request): fill the request with the demanded data and additionally a flag

has to be returned, whether the result is trustworthy If fit_only of the SPP is False,

an electronic structure calculation is started, else the result of the interpolator is

taken. If fit_only is True, the result of the interpolator will be used anyway.

def get_interpolators(self, db, properties): for each property that is requested, a

separate interpolator is set up. The function has to return a dictionary that

contains the property name and the interpolator for the property

def save(self, filename): The save method is primarily for machine learning

algorithms. The weights have to be put in a file.

def get_interpolators_from_file(self, filename, properties): This function reads the

weights-file and sets up the interpolators for the properties from the weights-

file. Specifically in machine learning algorithms, it is not necessary to train the

algorithm again.

def _train(self): This function uses the input data to train the interpolator. It is

primarily used in machine learning interpolators.

def loadweights(self, filename): The weights are loaded from a file.

1 class NearestNeighborInterpolator(Interpolator):
2 """Nearest Neighbor Interpolator"""
3
4 @classmethod
5 def from_config(cls, config, db, properties, logger, energy_only, weightsfile, crdmode,
6 fit_only):
7 """ This classmethod overwrites the from_config method of the factory and is needed
8 if interpolator specific user input is implemented
9 """

10
11 def __init__(self, db, properties, logger, energy_only=False, weightsfile=None,
12 crdmode='cartesian', fit_only=False)
13 """ This init overwrites the init of the interpolator factory. Therefor, it is
14 advisable to call the init of the interpolator factory to make sure that all
15 functionality is working and only additional features are added here.
16 """
17 super().__init__(db, properties, logger, energy_only, weightsfile, crdmode=crdmode,
18 fit_only=fit_only)

16

19
20
21 def get(self, request):
22 """fill request
23
24 Return request and if data is trustworthy or not
25 """
26
27 def get_interpolators(self, db, properties):
28 """ """
29
30 def save(self, filename):
31 """Save weights"""
32
33 def get_interpolators_from_file(self, filename, properties):
34 """setup interpolators from file"""
35
36 def _train(self):
37 """train the interpolators using the existing data"""
38
39 def loadweights(self, filename):
40 """load weights from file"""

User Input

PySurf is build around the Colt framework, developed independently. To specify custom user input

needed for your class you simply use the _questions string: In our example we will need 4 user

inputs:

• trust_radius_general, float the radius to decide whether an interpolation is trustworthy

• trust_radius_ci, float the radius in the region of small energy gaps to decide whether an

interpolation is trustworthy

• energy_threshold, float the threshold to distinguish between regions with small and large

energy gap

• norm, str the norm that is used to measure the distance between points

1 class NearestNeighborInterpolator(Interpolator):
2 """Basic Rbf interpolator"""
3
4 _questions = """
5 trust_radius_general = 0.75 :: float
6 trust_radius_ci = 0.25 :: float
7 energy_threshold = 0.02 :: float
8 norm = euclidean :: str :: [euclidean]
9 """

10 @classmethod
11 def from_config(cls, config, db, properties, logger, energy_only, weightsfile, crdmode, fit_only):
12 trust_radius_general = config['trust_radius_general']
13 trust_radius_CI = config['trust_radius_ci']
14 energy_threshold = config['energy_threshold']
15 #
16 # convert input for norm in corresponding input (p-Norm) for the cKDTree
17 # for more information go to the cKDTree.query documentation

17

https://github.com/mfsjmenger/colt

18 if config['norm'] == 'manhattan':
19 norm = 1
20 elif config['norm'] == 'max':
21 norm = 'infinity'
22 else:
23 norm = 2
24 #
25 return cls(db, properties, logger, energy_only=energy_only, weightsfile=weightsfile,
26 crdmode=crdmode, trust_radius_general=trust_radius_general,
27 trust_radius_CI=trust_radius_CI, energy_threshold=energy_threshold,
28 fit_only=fit_only, norm=norm)
29
30 def __init__(self, db, properties, logger, energy_only=False, weightsfile=None,
31 crdmode='cartesian', fit_only=False, trust_radius_general=0.75,
32 trust_radius_CI=0.25, energy_threshold=0.02, norm='euclidean'):
33 self.trust_radius_general = trust_radius_general
34 self.trust_radius_CI = trust_radius_CI
35 self.energy_threshold = energy_threshold
36 self.tree = None
37 self.norm = norm
38 # Call the init method of the Interpolator Factory
39 super().__init__(db, properties, logger, energy_only, weightsfile,
40 crdmode=crdmode, fit_only=fit_only)

Parameters

db: databse containing the datasets, on which the interpolation is based on

properties: list properties (e.g. [‘energy’, ‘gradient’]) that should be fitted

logger: logger to log any incident

energy_only: bool, optional if energy_only is True, gradients are derived from the

energy surface

weightsfile: str, optional filepath, where to save the weights. Not used in the case of

the NearestNeighborInterpolator, but needed for the overall framework.

crdmode: str, optional Variable to determine whether a coordinate transformation is

applied before fitting.

fit_only: bool, optional Flag to determine, whether no new QM calculations are

performed

trust_radius_general: float, optional radius to determine whether fitted result is

trustworthy in regions of a large energy gap

trust_radius_CI: float, optional radius to determine whether fitted result is

18

trustworthy in regions of a small energy gap

energy_threshold: float, optional Threshold to distinguish regions of small and

large energy gaps.

norm: str, optional Determining the norm for the nearest neighbor search.

‘manhattan’ corresponds to the 1-norm, ‘euclidean’ is the 2-norm, and ‘max’

is the infinity norm.

Implement get_interpolators function

The next step is to implement the get_interpolators method and the helper class for the

NearestNeighborInterpolator of each property NNInterpolator. For each property, an Interpolator

is set up, which is an instance of the NNInterpolator class. Each interpolator has to be callable and

to return the desired property.

1 class NearestNeighborInterpolator(Interpolator):
2 """Nearest Neighbor Interpolator"""
3
4 ...
5 def get_interpolators(self, db, properties):
6 """ """
7 self.tree = cKDTree(self.crds)
8 return {prop_name: NNInterpolator(db, self.tree, prop_name)
9 for prop_name in properties}, len(db)

10
11
12 class NNInterpolator():
13 def __init__(self, db, ckdtree, prop):
14 self.db = db
15 self.tree = ckdtree
16 self.prop = prop
17
18 def __call__(self, crd, request=None, idx=None):
19 if idx is None:
20 dist, idx = self.tree.query(crd)
21 return self.db.get(self.prop, idx)

The get_interpolators method returns a dictionary with the property names as keys and the

interpolator for that specific property as value. For each property a separate interpolator has to be

set up so that the interpolator factory can handle the interpolators for the properties independently,

which allows e.g. the energy_only calculations. Implementing the interpolators in this way, they

naturally are included in the code package and the full functionality is available.

19

To avoid that the cKDTree is set up several times, the NNInterpolator takes the tree as a Parameter.

Moreover, if NNInterpolator is called with an index, no nearest neighbor search is performed, but

the property of the dataset with the index is returned. This is important in the case when several

properties are demanded so that the nearest neighbor search is done only once, cf. Step 4 and the

get function.

Implement get function

The get function is called with the request as parameter. It has to fill in the desired results from the

fit into the request instance and state whether the fit is trustworthy.

1 class NearestNeighborInterpolator(Interpolator):
2 """Nearest Neighbor Interpolator"""
3
4 ...
5
6 def get(self, request):
7 #
8 # Convert coordinate into desired format
9 if self.crdmode == 'internal':

10 crd = internal(request.crd)
11 else:
12 crd = request.crd
13 #
14 # Make nearest neighbor search once and pass it to all interpolators
15 dist, idx = self.tree.query(crd, p=self.norm)
16 for prop in request:
17 request.set(prop, self.interpolators[prop](crd, request, idx))
18 #
19 # Determine whether result is trustworthy, using the trust radii
20 diffmin = np.min(np.diff(request['energy']))
21 is_trustworthy = False
22 if diffmin < self.energy_threshold:
23 if dist < self.trust_radius_CI: is_trustworthy = True
24 else:
25 if dist < self.trust_radius_general: is_trustworthy = True
26 #
27 return request, is_trustworthy

The get function first has to make sure that the interpolators get the right coordinates. Subsequently,

the interpolators for all the desired properties are called and the results are put into the request

instance. Finally, it is checked, whether the requested point is within the trusted region. The

trusted region is devided into two parts, depending whether the smallest energy gap between two

potential energy surfaces is small or large. The threshold is given as the energy_threshold as user

input as well as the radii trust_radius_ci and trust_radius_general.

20

Implement the save, load and _train methods

The NearestNeighborInterpolator does not use a save and load function, which can be used to store

data in a file and read afterwards, to avoid multiple training sessions. For this particular case, the

training of the Nearest Neighbor interpolator is just the update of the cKDTree. Therefor, these

functions are not really used, but implemented in a way to make sure that the full functionality is

available.
1 class NearestNeighborInterpolator(Interpolator):
2 """Nearest Neighbor Interpolator"""
3
4 ...
5
6 def loadweights(self, filename):
7 """ Weights are loaded for the interpolators from a file. As the
8 NearestNeighborInterpolator is not using the save option, also
9 here, interpolators are just set up from the database

10
11 Parameters:
12 -----------
13 filename, str:
14 filepath of the file containing the weights. Not used here!
15 """
16 #
17 self.logger.warning("NearestNeighborInterpolator cannot load weights, interpolators are " +
18 "set up from DB")
19 # As saving is not used, interpolators are set up from the database
20 self.get_interpolators(self.db, self.properties)
21
22 def save(self, filename):
23 """ Method to save the interpolators to a file. Not used here!
24
25 Parameters:
26 -----------
27 filename:
28 filepath where to save the information. Not used here!
29 """
30 #
31 self.logger.warning("NearestNeighborInterpolator cannot be saved to a file")
32
33 def _train(self):
34 """ Method to train the interpolators. In the case of the NearestNeighborInterpolator
35 the cKDTree has to be updated.
36 """
37 #update cKDTree
38 self.tree = cKDTree(self.crds)

21

3 Workflow

3.1 Tutorial: How to use the Workflow engine

In this tutorial we will show how to perform an ab-initio single point calculation using the PySurf

framework. If you have any other electronic structure program installed that is supported by

PySurf, you can just use it. Otherwise you can download the PySCF program package and install

it via:
1 pip install pyscf

PySCF is free of charge. In this tutorial we use it to do a TDDFT calculation.

To start you need a folder for the calculation and an xyz file of your molecule. There is an example

("<pysurf>/examples/so2/so2.xyz") of a SO2 geometry. Go to your favorite place and make a

folder for the test calculation and copy your coordinate file:

1 mkdir test_so2
2 cd test_so2
3 cp <so2.xyz> ./

<so2.xyz> stands for the path of your SO2 coordinate file.

Finally you have to run the sp_calc.py workflow for a single point calculation. <pysurf> is the path

where your PySurf package is installed

1 python <pysurf>/bin/sp_calc.py so2.xyz 2 energy

The sp_calc.py script takes three positional arguments. The first is the path of the coordinate file,

the second is the number of states and the third is a list of the properties that you want to calculate.

If you also want to have the gradients you have to write:

1 python <pysurf>/bin/sp_calc.py so2.xyz 2 "energy, gradient"

For help text of the script type:

1 python <pysurf>/bin/sp_calc.py -h

22

Subsequently PySurf will guide you through all the questions of the SurfacePointProvider and the

electronic structure interface. You can take the defaults or choose your own. The Colt framework

helps you that your answers are consistent. In this case, we accept all the defaults up to the point

for the software. There we choose PySCF. Subsequently we take the defaults again. The PySCF

calculation is started and the output is printed to the screen. The results are saved in the database

that was put in the input (the default is just db.dat). To see all the parameters of your calculation,

you can open the spp.inp file, where the whole input is stored. If you want to repeat the calculation

with the same settings for a different geometry, you can just exchange the coordinate file. Typing

again:

1 python <pysurf>/bin/sp_calc.py so2.xyz 2 "energy, gradient"

will start a new calculation. This time no questions will be asked, but all the answers are read from

the spp.inp file.

Congratulations, you just performed your first single point calculation with PySurf!

3.2 Tutorial: Write your own Workflow

Every scientist is after their own ideas and visions to move the boarders of knowledge. Therefor,

it is natural that predefined tools can never be sufficient for all tasks that scientists want to do. The

PySurf Workflow engine provides a toolbox of nodes, which can be combined like “Lego Bricks”

to new powerful algorithms. If your desired functionality is not yet in the toolbox, you can easily

add it and you can of course include the full functionality of the Workflow nodes in your Python

scripts. The Workflow engine comes with its own domain specific language to combine all different

nodes like in a normal script. The engine checks that the input and output of the nodes fit together.

Let’s see how it works. As an example we take the workflow of the single point calculation, which

you just performed in the previous section.

23

3.2.1 Workflow framework

For the Workflow framework, the engine has to be imported from pysurf.workflow. With the

command engine.create_workflow() the workflow is generated. The first argument is an arbitrary

name given to the workflow, the second argument is a multiline string which contains the workflow.

With the command workflow.run() the workflow is executed.

1 from pysurf.workflow import engine
2
3
4 workflow = engine.create_workflow("populations", """
5 ...
6 """)
7
8 wf = workflow.run()

3.2.2 Single Point Calculation as Workflow

Here, the Workflow for a single point calculation is shown.

1 workflow = engine.create_workflow("sp_calc", """
2 crd = read_xyzfile_crd(crd_file)
3 atomids = read_xyzfile_atomids(crd_file)
4 spp = spp_calc("spp.inp", atomids, nstates, properties=properties)
5 res = sp_calc(spp, crd, properties=properties)
6 """)

• read_xyzfile_crd: node that returns the xyz coordinates from a xyz file

• read_xyzfile_atomids: node that returns the atomids from a xyz file

• spp_calc: node that initializes a SPP using an inputfile ("spp.inp"), atomids (as integer list),

number of states (as integer) and the desired properties (as list)

• sp_calc: node that sends the request to an initialized SPP. To start a calculation it is

important that the SPP has been initialized with spp_calc and not spp_analyse. The

second uses interpolation to produce the results. As arguments it takes the SPP (spp),

the coordinates (crd) and the properties (list)

Variables which are not defined within the workflow are asked via the command line. In this case

the user has to specify the xyz file (crd_file), the number of states (nstates) and the properties that

24

should be calculated as list, e.g. if you want to calculate energies, gradients and oscillator strengths

you have to pass the list "energy, gradient, fosc"

3.2.3 Using the results

All variables of a workflow are saved in a dictionary. Either results are used and processed within

the workflow, or you can read them from the dictionary and use them in your own script.

1 workflow = engine.create_workflow("populations", """
2 ...
3 res = sp_calc(spp, crd, properties=properties)
4 """)
5
6 wf = workflow.run()
7 print(wf['res']['energy'])

3.2.4 Appendix: How to put data into the Workflow

It is not only possible to take data out of the workflow, but also to put it in via a dictionary when

the workflow is executed.
1 workflow = engine.create_workflow("populations", """
2 ...
3 """)
4
5 wf = workflow.run({"properties": ['energy']})

References

(1) Müller, H.; Köppel, H. Adiabatic wave-packet motion on conically intersecting potential

energy surfaces. The case of 𝑆𝑂2(
1𝐵1

1𝐴2). Chem. Phys. 1994, 183, 107 – 116.

(2) Lévêque, C.; Komainda, A.; Taïeb, R.; Köppel, H. Ab initio quantum study of the

photodynamics and absorption spectrum for the coupled 11𝐴2 and 11𝐵1 states of 𝑆𝑂2. J.

Chem. Phys. 2013, 138, 044320.

(3) Mai, S.; Marquetand, P.; González, L. Non-adiabatic and intersystem crossing dynamics in

25

𝑆𝑂2. II. The role of triplet states in the bound state dynamics studied by surface-hopping

simulations. J. Chem. Phys. 2014, 140, 204302.

(4) Plasser, F.; Gómez, S.; Menger, M. F. S. J.; Mai, S.; González, L. Highly efficient surface

hopping dynamics using a linear vibronic coupling model. Phys. Chem. Chem. Phys. 2019,

21, 57–69.

(5) Larsen, A. H. et al. The atomic simulation environment-a Python library for working with

atoms. J. Phys.: Condens. Matter 2017, 29, 273002.

(6) Sun, Q.; Berkelbach, T. C.; Blunt, N. S.; Booth, G. H.; Guo, S.; Li, Z.; Liu, J.; McClain, J. D.;

Sayfutyarova, E. R.; Sharma, S.; Wouters, S.; Chan, G. K.-L. PySCF: the Python-based

simulations of chemistry framework. WIREs Comput. Mol. Sci. 2018, 8, e1340.

26

	SO2 calculations
	SO2 LVC calculations

	Plugin
	Tutorial: Add a Model System
	Tutorial: Write an Ab-Initio Interface
	Tutorial: Write an Interpolator

	Workflow
	Tutorial: How to use the Workflow engine
	Tutorial: Write your own Workflow

