Selenium, antioxidants, cardiovascular disease, and all-cause mortality: a systematic review and meta-analysis of randomized controlled trials

David JA Jenkins ONLINE SUPPORTING MATERIAL

Selenium, antioxidants, cardiovascular disease, and all-cause mortality: a systematic review and meta-analysis of randomized controlled trials.

David JA Jenkins, MD, PhD^{1,2,3,4,5}; David Kitts, PhD⁶; Edward L Giovannucci, MD, ScD⁷; Sandhya Sahye-Pudaruth, MPH, RD^{1,4}; Melanie Paquette, MSc, RD^{1,4}; Sonia Blanco Mejia, MD MSc^{1,3,4}, Darshna Patel, BA^{1,4}; Meaghan Kavanagh, MSc^{1,4}; Tom Tsirakis, BA⁴; Cyril WC Kendall^{1,3,4,11}, PhD; Sathish C. Pichika, MSc⁴; John L Sievenpiper, MD, PhD^{1,2,3,4,5}

¹Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; ²Li Ka Shing Knowledge Institute, ³Toronto 3D Knowledge Synthesis and Clinical Trials Unit, ⁴Clinical Nutrition Risk Factor Modification Centre, and ⁵Division of Endocrinology and Metabolism, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario, Canada; ⁶Food Nutrition and Health, Faculty of Land and Food Systems, University of British Columbia, Vancouver, B.C, Canada, ⁷Department of Nutrition and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA; ¹¹College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.

Supplementary Tables

Supplementary Table 1. Search Strategy.

Supplementary Table 2. NNT/NNH calculations (Methods A and B)

Supplementary Table 3. Characteristics of included RCT studies for CVD, CVD outcomes, cancer, cancer mortality, and all-cause mortality.

Supplementary Table 4. GRADE assessment for antioxidants and CVD, CVD outcomes, cancer, cancer mortality, and all-cause mortality.

Supplementary Table 5. GRADE assessment for selenium and CVD, CVD outcomes, cancer, cancer mortality, and all-cause mortality.

Supplementary Figures

Supplementary Figure 1. Search Summary.

Supplementary Figure 2. Risk of bias summary for antioxidant supplementation and CVD, CVD outcomes, cancer, cancer mortality, and all-cause mortality.

Supplementary Figure 3. Risk of bias summary for selenium supplentation only and CVD, CVD outcomes, cancer, cancer mortality, and all-cause mortality.

Supplementary Figure 4. Forest plot of selenium supplementation only and total CVD risk.

Supplementary Figure 5. Forest plot of selenium supplementation only and total CHD risk

Supplementary Figure 6. Forest plot of selenium supplementation only and MI risk.

Supplementary Figure 7. Forest plot of selenium supplementation only and stroke risk.

Supplementary Figure 8. Forest plot of selenium supplementation only and CVD mortality risk.

Supplementary Figure 9. Forest plot of selenium supplementation only and CHD mortality risk.

Supplementary Figure 10. Forest plot of selenium supplementation only and MI mortality risk.

Supplementary Figure 11. Forest plot of selenium supplementation only and stroke mortality risk.

Supplementary Figure 12. Forest plot of selenium supplementation only and total cancer risk.

Supplementary Figure 13. Forest plot of selenium supplementation only and cancer mortality risk.

Supplementary Figure 14. Forest plot of selenium supplementation only and all-cause mortality risk.

Supplementary Figure 15. Funnel plot of selenium supplementation and all-cause mortality risk.

Supplementary Figure 16. Forest plot of antioxidant supplementation and total CVD risk.

Supplementary Figure 17. Forest plot of antioxidant supplementation and total CHD risk

Supplementary Figure 18. Forest plot of antioxidant supplementation and MI risk.

Supplementary Figure 19. Forest plot of antioxidant supplementation and stroke risk.

Supplementary Figure 20. Forest plot of antioxidant supplementation and CVD mortality risk.

Supplementary Figure 21. Forest plot of antioxidant supplementation and CHD mortality risk.

Supplementary Figure 22. Forest plot of antioxidant supplementation and MI mortality risk.

Supplementary Figure 23. Forest plot of antioxidant supplementation and stroke mortality risk.

Supplementary Figure 24. Forest plot of antioxidant supplementation and total cancer risk.

Supplementary Figure 25. Forest plot of antioxidant supplementation and cancer mortality risk.

Supplementary Figure 26. Forest plot of antioxidant supplementation and all-cause mortality risk.

Supplementary Figure 27. Funnel plot of antioxidant supplementation and total CVD, MI, stroke, CVD mortality, and all-cause mortality risk.

Supplementary Figure 28. Sensitivity analysis of antioxidant supplementation and total CVD risk for studies with and without selenium.

Supplementary Figure 29. Sensitivity analysis of antioxidant supplementation and total CHD risk for studies with and without selenium.

Supplementary Figure 30. Sensitivity analysis of antioxidant supplementation and MI risk for studies with and without selenium.

Supplementary Figure 31. Sensitivity analysis of antioxidant supplementation and stroke risk for studies with and without selenium.

Supplementary Figure 32. Sensitivity analysis of antioxidant supplementation and CVD mortality risk for studies with and without selenium.

Supplementary Figure 33. Sensitivity analysis of antioxidant supplementation and CHD mortality risk for studies with and without selenium.

Supplementary Figure 34. Sensitivity analysis of antioxidant supplementation and MI mortality risk for studies with and without selenium.

Supplementary Figure 35. Sensitivity analysis of antioxidant supplementation and stroke mortality risk for studies with and without selenium.

Supplementary Figure 36. Sensitivity analysis of antioxidant supplementation and total cancer risk for studies with and without selenium.

Supplementary Figure 37. Sensitivity analysis of antioxidant supplementation and cancer mortality risk for studies with and without selenium.

Supplementary Figure 38. Sensitivity analysis of antioxidant supplementation and all-cause mortality risk for studies with and without selenium.

Supplementary Figure 39. Forest plot showing the dose response analysis of selenium supplementation only and all-cause mortality.

Supplementary Figure 40. Forest plot showing the dose response analysis of antioxidant supplementation and all-cause mortality for studies with selenium.

Supplementary Figure 41. Linear dose-response relationship between selenium intake and all-cause mortality risk in trials with antioxidant intake.

Supplementary Figure 42. Non-linear dose-response relationship between selenium intake and all-cause mortality risk in trials with antioxidant intake

Supplementary Figure 43. Forest plot showing antioxidants (with and without selenium) and total CVD by risk group.

Supplementary Figure 44. Forest plot showing antioxidants (with and without selenium) and CVD mortality by risk group.

Supplementary Figure 45. Forest plot showing antioxidants (with and without selenium) and all-cause mortality by risk group.

Supplementary Figure 46. Sensitivity analysis of antioxidant supplementation and total CVD risk for studies with and without vitamin A.

Supplementary Figure 47. Sensitivity analysis of antioxidant supplementation and total CHD risk for studies with and without vitamin A.

Supplementary Figure 48. Sensitivity analysis of antioxidant supplementation and MI risk for studies with and without vitamin A.

Supplementary Figure 49. Sensitivity analysis of antioxidant supplementation and stroke risk for studies with and without vitamin A.

Supplementary Figure 50. Sensitivity analysis of antioxidant supplementation and CVD mortality risk for studies with and without vitamin A.

Supplementary Figure 51. Sensitivity analysis of antioxidant supplementation and CHD mortality risk for studies with and without vitamin A.

Supplementary Figure 52. Sensitivity analysis of antioxidant supplementation and MI mortality risk for studies with and without vitamin A.

Supplementary Figure 53. Sensitivity analysis of antioxidant supplementation and stroke mortality risk for studies with and without vitamin A.

Supplementary Figure 54. Sensitivity analysis of antioxidant supplementation and total cancer risk for studies with and without vitamin A.

Supplementary Figure 55. Sensitivity analysis of antioxidant supplementation and cancer mortality risk for studies with and without vitamin A.

Supplementary Figure 56. Sensitivity analysis of antioxidant supplementation and all-cause mortality risk for studies with and without vitamin A.

Supplementary Figure 57. Sensitivity analysis of antioxidant supplementation and total CVD risk for studies with and without vitamin C.

Supplementary Figure 58. Sensitivity analysis of antioxidant supplementation and total CHD risk for studies with and without vitamin C.

Supplementary Figure 59. Sensitivity analysis of antioxidant supplementation and MI risk for studies with and without vitamin C.

Supplementary Figure 60. Sensitivity analysis of antioxidant supplementation and stroke risk for studies with and without vitamin C.

Supplementary Figure 61. Sensitivity analysis of antioxidant supplementation and CVD mortality risk for studies with and without vitamin C.

Supplementary Figure 62. Sensitivity analysis of antioxidant supplementation and CHD mortality risk for studies with and without vitamin C.

Supplementary Figure 63. Sensitivity analysis of antioxidant supplementation and MI mortality risk for studies with and without vitamin C.

Supplementary Figure 64. Sensitivity analysis of antioxidant supplementation and stroke mortality risk for studies with and without vitamin C.

Supplementary Figure 65. Sensitivity analysis of antioxidant supplementation and total cancer risk for studies with and without vitamin C.

Supplementary Figure 66. Sensitivity analysis of antioxidant supplementation and cancer mortality risk for studies with and without vitamin C.

Supplementary Figure 67. Sensitivity analysis of antioxidant supplementation and all-cause mortality risk for studies with and without vitamin C.

Supplementary Figure 68. Sensitivity analysis of antioxidant supplementation and total CVD risk for studies with and without vitamin E.

Supplementary Figure 69. Sensitivity analysis of antioxidant supplementation and total CHD risk for studies with and without vitamin E.

Supplementary Figure 70. Sensitivity analysis of antioxidant supplementation and MI risk for studies with and without vitamin E.

Supplementary Figure 71. Sensitivity analysis of antioxidant supplementation and stroke risk for studies with and without vitamin E.

Supplementary Figure 72. Sensitivity analysis of antioxidant supplementation and CVD mortality risk for studies with and without vitamin E.

Supplementary Figure 73. Sensitivity analysis of antioxidant supplementation and CHD mortality risk for studies with and without vitamin E.

Supplementary Figure 74. Sensitivity analysis of antioxidant supplementation and MI mortality risk for studies with and without vitamin E.

Supplementary Figure 75. Sensitivity analysis of antioxidant supplementation and stroke mortality risk for studies with and without vitamin E.

Supplementary Figure 76. Sensitivity analysis of antioxidant supplementation and total cancer risk for studies with and without vitamin E.

Supplementary Figure 77. Sensitivity analysis of antioxidant supplementation and cancer mortality risk for studies with and without vitamin E.

Supplementary Figure 78. Sensitivity analysis of antioxidant supplementation and all-cause mortality risk for studies with and without vitamin E.

Supplementary Figure 79. Sensitivity analysis of antioxidant supplementation and total CVD risk for studies with and without beta-carotene.

Supplementary Figure 80. Sensitivity analysis of antioxidant supplementation and total CHD risk for studies with and without beta-carotene.

Supplementary Figure 81. Sensitivity analysis of antioxidant supplementation and MI risk for studies with and without beta-carotene.

Supplementary Figure 82. Sensitivity analysis of antioxidant supplementation and stroke risk for studies with and without beta-carotene.

Supplementary Figure 83. Sensitivity analysis of antioxidant supplementation and CVD mortality risk for studies with and without beta-carotene.

Supplementary Figure 84. Sensitivity analysis of antioxidant supplementation and CHD mortality risk for studies with and without beta-carotene.

Supplementary Figure 85. Sensitivity analysis of antioxidant supplementation and MI mortality risk for studies with and without beta-carotene.

Supplementary Figure 86. Sensitivity analysis of antioxidant supplementation and stroke mortality risk for studies with and without beta-carotene.

Supplementary Figure 87. Sensitivity analysis of antioxidant supplementation and total cancer risk for studies with and without beta-carotene.

Supplementary Figure 88. Sensitivity analysis of antioxidant supplementation and cancer mortality risk for studies with and without beta-carotene.

Supplementary Figure 89. Sensitivity analysis of antioxidant supplementation and all-cause mortality risk for studies with and without beta-carotene.

Supplementary Figure 90. Sensitivity analysis of antioxidant supplementation and total CVD risk for studies with and without zinc.

Supplementary Figure 91. Sensitivity analysis of antioxidant supplementation and total CHD risk for studies with and without zinc.

Supplementary Figure 92. Sensitivity analysis of antioxidant supplementation and MI risk for studies with and without zinc.

Supplementary Figure 93. Sensitivity analysis of antioxidant supplementation and stroke risk for studies with and without zinc.

Supplementary Figure 94. Sensitivity analysis of antioxidant supplementation and CVD mortality risk for studies with and without zinc.

Supplementary Figure 95. Sensitivity analysis of antioxidant supplementation and CHD mortality risk for studies with and without zinc.

Supplementary Figure 96. Sensitivity analysis of antioxidant supplementation and MI mortality risk for studies with and without zinc.

Supplementary Figure 97. Sensitivity analysis of antioxidant supplementation and stroke mortality risk for studies with and without zinc.

Supplementary Figure 98. Sensitivity analysis of antioxidant supplementation and total cancer risk for studies with and without zinc.

Supplementary Figure 99. Sensitivity analysis of antioxidant supplementation and cancer mortality risk for studies with and without zinc.

Supplementary Figure 100. Sensitivity analysis of antioxidant supplementation and all-cause mortality risk for studies with and without zinc.

Supplementary Figure 101. Sensitivity analysis of antioxidant supplementation and total CVD risk for studies with and without retinol.

Supplementary Figure 102. Sensitivity analysis of antioxidant supplementation and total CHD risk for studies with and without retinol.

Supplementary Figure 103. Sensitivity analysis of antioxidant supplementation and MI risk for studies with and without retinol.

Supplementary Figure 104. Sensitivity analysis of antioxidant supplementation and stroke risk for studies with and without retinol.

Supplementary Figure 105. Sensitivity analysis of antioxidant supplementation and CVD mortality risk for studies with and without retinol.

Supplementary Figure 106. Sensitivity analysis of antioxidant supplementation and CHD mortality risk for studies with and without retinol.

Supplementary Figure 107. Sensitivity analysis of antioxidant supplementation and MI mortality risk for studies with and without retinol.

Supplementary Figure 108. Sensitivity analysis of antioxidant supplementation and stroke mortality risk for studies with and without retinol.

Supplementary Figure 109. Sensitivity analysis of antioxidant supplementation and total cancer risk for studies with and without retinol.

Supplementary Figure 110. Sensitivity analysis of antioxidant supplementation and cancer mortality risk for studies with and without retinol.

Supplementary Figure 111. Sensitivity analysis of antioxidant supplementation and all-cause mortality risk for studies with and without retinol.

Supplementary Figure 112. Forest plot showing antioxidants (without selenium) by region and all-cause mortality.

Supplementary Figure 113. Forest plot showing antioxidants (without selenium) by region and total CVD.

Supplementary Figure 114. Forest plot showing antioxidants (without selenium) by region and CVD mortality.

Supplementary Table 1. Search Strategy. Search was done from databse inception to June 5th 2020.

Databases	Search Terms
MEDLINE	1. exp Dietary Supplements/
	2. supplement*.mp.
	3. exp ANTIOXIDANTS/
	4. antioxidant*.mp.
	5. exp Vitamin A/
	6. vitamin A.mp.
	7. retinol.mp.
	8. vitamin C.mp.
	9. exp Ascorbic Acid/
	10. ascorbic acid.mp.
	11. exp Vitamin E/
	12. vitamin E.mp.
	13. alpha tocopherol.mp.
	14. beta carotene.mp.
	15. alpha carotene.mp.
	16. selenium.mp.
	17. zinc.mp.
	18. copper.mp
	19. exp Cardiovascular Diseases/
	20. cardiovascular disease*.mp.
	21. coronary heart disease*.mp.
	22. coronary artery disease*.mp.
	23. acute coronary syndrome*.mp.
	24. myocardial ischemia*.mp.
	25. ischemic heart disease*.mp.
	26. heart infarction*.mp.
	27. myocardial infarction*.mp.
	28. stroke*.mp.
	29. cerebrovascular*.mp.
	30. cardiovascular mortality.mp.
	31. cardiovascular death.mp.
	32. exp MORTALITY/
	33. mortality.mp.
	34. exp DEATH/
	35. death.mp.
	36. all cause mortality.mp.

- 37. exp Neoplasms/
- 38. neoplasm*.mp.
- 39. cancer*.mp.
- 40. 1 or 2
- 41. 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18
- 42. 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39
- 43. 40 and 41 and 42
- 44. "randomized controlled trial".pt.
- 45. (random\$ or placebo\$ or single blind\$ or double blind\$ or triple blind\$).ti,ab.
- 46. (retraction of publication or retracted publication).pt.
- 47. or/44-46
- 48. (animals not humans).sh.
- 49. ((comment or editorial or meta-analysis or practice-guideline or review or letter or journal correspondence) not "randomized controlled trial").pt.
- 50. (random sampl\$ or random digit\$ or random effect\$ or random survey or random regression).ti,ab. not "randomized controlled trial".pt.
- 51. 47 not (48 or 49 or 50)
- 52. (review or review, tutorial or review, academic).pt.
- 53. (medline or medlars or embase or pubmed or cochrane).tw,sh.
- 54. (scisearch or psychinfo or psycinfo).tw,sh.
- 55. (psychlit or psyclit).tw,sh.
- 56. cinahl.tw,sh.
- 57. ((hand adj2 search\$)) or (manual\$ adj2 search\$)).tw,sh.
- 58. (electronic database\$ or bibliographic database\$ or computeri?ed database\$ or online database\$).tw,sh.
- 59. (pooling or pooled or mantel haenszel).tw,sh.
- 60. (peto or dersimonian or der simonian or fixed effect).tw,sh.
- 61. (retraction of publication or retracted publication).pt.
- 62. or/53-61
- 63. 52 and 62
- 64. meta-analysis.pt.
- 65. meta-analysis.sh.
- 66. (meta-analys\$ or meta analys\$ or metaanalys\$).tw,sh.
- 67. (systematic\$ adj5 review\$).tw,sh.
- 68. (systematic\$ adj5 overview\$).tw,sh.
- 69. (quantitativ\$ adj5 review\$).tw,sh.
- 70. (quantitativ\$ adj5 overview\$).tw,sh.
- 71. (quantitativ\$ adj5 synthesis\$).tw,sh.
- 72. (methodologic\$ adj5 review\$).tw,sh.
- 73. (methodologic\$ adj5 overview\$).tw,sh.

	74. (integrative research review\$ or research integration).tw.
	75. or/64-74
	76. 63 or 75
	77. 43 and 51
	78. 43 and 76
	79. 77 or 78
	80. limit 79 to "all child (0 to 18 years)"
	81. 79 not 80
EMBASE	1. exp nutrition supplement/
LINDAGE	2. supplement*.mp.
	3. exp antioxidant/
	4. antioxidant*.mp.
	5. vitamin A.mp.
	6. retinol.mp.
	7. exp ascorbic acid/
	8. vitamin C.mp.
	9. ascorbic acid.mp.
	10. vitamin E.mp.
	11. alpha tocopherol.mp.
	12. beta carotene.mp.
	13. alpha carotene.mp.
	14. selenium.mp.
	15. zinc.mp.
	16.copper.mp
	17. exp cardiovascular disease/
	18. cardiovascular disease*.mp.
	19. coronary heart disease*.mp.
	20. coronary artery disease*.mp.
	21. coronary disease*.mp.
	22. acute coronary syndrome*.mp.
	23. ischemic heart disease*.mp.
	24. myocardial ischemia*.mp.
	25. heart infarction*.mp.
	26. acute heart infarction*.mp.
	27. myocardial infarction*.mp.
	28. stroke*.mp.
	29. cerebrovascular*.mp.
	30. cardiovascular mortality.mp.
	31. cardiovascular death.mp.
	32. exp mortality/

	100
	33. mortality.mp.
	34. exp death/
	35. death.mp.
	36. all cause mortality.mp.
	37. exp neoplasm/
	38. neoplasm*.mp.
	39. cancer*.mp.
	40. 1 or 2
	41. 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16
	42. 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35
	or 36 or 37 or 38 or 39
	43. 40 and 41 and 42
	44. (random\$ or placebo\$ or single blind\$ or double blind\$ or triple blind\$).ti,ab.
	45. RETRACTED ARTICLE/
	46. or/44-45
	47. (animal\$ not human\$).sh,hw.
	48. (book or conference paper or editorial or letter or review).pt. not exp randomized controlled trial/
	49. (random sampl\$ or random digit\$ or random effect\$ or random survey or random regression).ti,ab. not exp
	randomized controlled trial/
	50. 46 not (47 or 48 or 49)
	51. exp review/
	52. (literature adj3 review\$).ti,ab.
	53. exp meta analysis/
	54. exp "Systematic Review"/ 55. or/51-54
	56. (medline or medlars or embase or pubmed or cinahl or amed or psychlit or psychit or psychinfo or psycinfo
	or scisearch or cochrane).ti,ab.
	57. RETRACTED ARTICLE/
	58. 56 or 57
	59. 55 and 58
	60. (systematic\$ adj2 (review\$ or overview)).ti,ab.
	61. (meta?anal\$ or meta anal\$ or meta-anal\$ or metaanal\$ or metanal\$).ti,ab.
	62. 59 or 60 or 61
	63. 43 and 50
	64. 43 and 62
	65. 63 or 64
	66. limit 65 to (embryo <first trimester=""> or infant <to one="" year=""> or child <unspecified age=""> or preschool child <1</unspecified></to></first>
	to 6 years> or school child <7 to 12 years> or adolescent <13 to 17 years>)
	67. 65 not 66
COCHRANE	1. supplement*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct]

2. antioxidant*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 3. vitamin A.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 4. retinol.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 5. vitamin C.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 6. ascorbic acid.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 7. vitamin E.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 8. alpha tocopherol.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 9. beta carotene.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 10. alpha carotene.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 11. selenium.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 12. zinc.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 13. copper.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 14. cardiovascular disease*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 15. coronary heart disease*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 16. coronary artery disease*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 17. coronary disease*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 18. acute coronary syndrome*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 19. ischemic heart disease*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 20. myocardial ischemia*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 21. heart infarction*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 22. acute heart infarction*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 23. myocardial infarction*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 24. stroke*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 25. cerebrovascular*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 26. cardiovascular mortality.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 27. cardiovascular death.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 28. mortality.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 29. death.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 30. all cause mortality.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 31. cancer*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 32. neoplasm*.mp. [mp=ti, ot, ab, sh, hw, kw, tx, ct] 33. 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 34. 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 35. 1 and 33 and 34 36. limit 35 to (cochrane childhood cancer group or cochrane neonatal group or "cochrane pregnancy and childbirth group") [Limit not valid in CDSR; records were retained] 37. 35 not 36

Supplementary Table 2. NNT/NNH calculations

(Method A); NNT = 1/ARR, where ARR = CER*RRR; RRR = 1- RR

(Method B); NNT = 1/ARR, where ARR = CER - EER

A 41 1 1 4	10\10	(O4 11 141 O 1 1	`			
Antioxidants		(Studies with Seleniun	1)			
F1-	Control	OFF	l DD	DDD	400	NINIT
Events	Total	CER	RR	RRR	ARR	NNT
176	10691	0.0164624	0.77	0.23	0.0037863	264
<u>Antioxidants</u>		ality (Studies with Sele	enium)			
	Control					1
Events	Total	CER	RR	RRR	ARR	NNT
930	21016	0.0442519	0.9	0.1	0.0044251	226
Antioxidants	and all-cause morta	ality (Studies without S	Selenium)			
	Control					
Events	Total	CER	RR	RRR	ARR	NNH
3498	36067	0.0969861	1.09	-0.09	-0.0087287	115
Antioxidants	and Stroke mortalit	y (Studies with Retino	l)	<u>.</u>		
	Control					
Events	Total	CER	RR	RRR	ARR	NNT
77	3548	0.0217023	0.71	0.29	0.0062936	159
Antioxidants	and Cancer mortali	ty (Studies with Retino	ol)	1		1
	Control		•			
Events	Total	CER	RR	RRR	ARR	NNT
107	3548	0.0301578	0.75	0.25	0.0075394	133
Antioxidants		ality (Studies without F	Retinol)	1 5	1	1
	Control					
Events	Total	CER	RR	RRR	ARR	NNH
3724	44641	0.083421	1.04	-0.04	-0.0033368	300
		y (Studies with Zinc)	1		1	
Control		, (2:30:00 2)				
Events	Total	CER	RR	RRR	ARR	NNT
77	3548	0.0217023	0.71	0.29	0.0062936	159

Control							
Events	Total	CER		RR	RRR	ARR	NNH
3742	44371	0.0843	343	1.07	-0.07	-0.0059034	169
`	NNT = 1/ARR, where		,				
	ts and CVD mortality						
	Antioxidants		Control				
Events	Total	Events	Total	EER	CER	ARR	NNT
136	10694	176	10691	0.0127174	0.0164624	0.003745	267
	ts and all-cause mor		<u>vith Seleni</u>	um)			
Antioxidan		Control	•				
Events	Total	Events	Total	EER	CER	ARR	NNT
948	21445	930	21016	0.0442061	0.0442519	0.0000458	21834
	ts and all-cause mor		vithout Sel	enium)		1	
Antioxidan		Control					
Events	Total	Events	Total	EER	CER	ARR	NNH
4218	39678	3498	36067	0.1063057	0.0969861	-0.0093196	107
Antioxidan	ts and stroke mortal		n Retinol)				
Antioxidan		Control					
Events	Total	Events	Total	EER	CER	ARR	NNT
55	3570	77	3548	0.0154061	0.0217023	0.0062962	159
Antioxidan	ts and cancer morta	lity (Studies wit	h Retinol)				
Antioxidan		Control					
Events	Total	Events	Total	EER	CER	ARR	NNT
81	3570	107	3548	0.022689	0.0301578	0.0074688	134
Antioxidan	ts and all-cause mor		vithout Ref	inol)			
Antioxidan		Control					
Events	Total	Events	Total	EER	CER	ARR	NNH
4372	48133	3724	44641	0.0908316	0.083421	-0.0074106	135
Antioxidan	ts and stroke mortal	ity (Studies with	n Zinc)				
Antioxidan		Control	•				
Events	Total	Events	Total	EER	CER	ARR	NNT
55	3570	77	3548	0.0154061	0.0215686	0.0061625	162

Antioxidants and all-cause mortality (Studies without Zinc)							
Antioxidan	Antioxidants Control						
Events	Total	Events	Total	EER	CER	ARR	NNH
4409	48002	3742	44371	0.0918503	0.0843343	-0.007516	133

ARR, absolute risk reduction; CER, control event rate; EER, experimental event rate; CVD, cardiovascular disease; NNH, number needed to harm; NNT, number needed to treat; RR, relative risk; RRR, relative risk reduction.

Supplementary Table 3. Characteristics of included RCT studies for CVD, CVD outcomes, cancer, cancer mortality, and all-cause mortality

Study (reference)	Country	Health status	Age (year s)	Duration (mean, median or range)	Supplement intake assessment	Supplement exposure (median or range, units)	Participants (intervention /control)	Incident cases (intervention /control)	Outcome	Funding source
					ANTIOXID	ANTS ONLY				
McKeown- Eyssen et al., 1988(1)	Canada	History of polyp	58	2 years	Urine sample	Vitamin C – 400 mg Vitamin E – 400 mg	96/89	4/3	All-cause mortality	Industry
DeCosse et al., 1989(2)	USA	Familial Adenomat ous Polyposis	35	4 years	Interview, urine sample	Vitamin C – 4 g Vitamin E – 400 mg	36/22 36/22	0/1 0/1	Total CVD Stroke	Agency- industry
Blot et al., 1993 – Linxian Trial (3)	China	Healthy	40 – 69	5 years	Pill count	Retinol – 5000 IU Vitamin E – 30 mg Beta- Carotene – 15 mg Selenium – 50 mcg Zinc – 22.5 mg	3570/3548 3570/3548 3570/3548	55/77 81/107 250/280	Stroke mortality Cancer mortality All-cause mortality	Agency- Industry
Omenn et al., 1996 – CARET(4)	USA	Smoked cigarettes or who have had occupatio nal exposure to asbestos	45 – 74	4 years	Pill count	Retinol – 25 000 IU Beta- Carotene – 30 mg	9420/8894	544/424	All-cause mortality	Agency- industry
Girodon et	France	Institution	65 –	2 years	Pill count,	Vitamin C -	61/20	18/7	All-cause	Industry

Study (reference)	Country	Health status	Age (year s)	Duration (mean, median or range)	Supplement intake assessment	Supplement exposure (median or range, units)	Participants (intervention /control)	Incident cases (intervention /control)	Outcome	Funding source
al., 1997(5)		alized	102		plasma conc.	120 mg Vitamin E – 15 mg Beta- carotene – 6 mg Selenium – 100 mcg Zinc – 20 mg			mortality	
Tardif et al., 1997 - MVP(6)	Canada	Scheduled angioplast y	58.5	7 months	Pill count, plasma conc.	Vitamin C – 500 mg Vitamin E – 700 IU Beta- Carotene –	158/159 158/159 158/159 158/159	4/3 4/3 3/2 1/1	Total CVD Total CHD MI CVD mortality	Agency- industry
						30 000 IU	158/159 158/159	1/1	CHD mortality All-cause mortality	
Girodon et al., 1999 – MINVITOA X (7)	France	Long-term institution alized elderly patients	65 – 103	2 years	Pill count, plasma conc.	Vitamin C– 120 mg Vitamin E– 15 mg Beta- Carotene – 6 mg (1000 RE) Selenium Sulfide – 100 ug Zinc Sulfate – 20 mg	543/182	155/51	All-cause mortality	Agency- industry
Correa et al., 2000	Colombi a	History of precancer	29 – 69	6 years	Pill count, plasma	Vitamin C – 2	255/237	6/2	All-cause mortality	Agency- Industry

Study (reference)	Country	Health status	Age (year s)	Duration (mean, median or range)	Supplement intake assessment	Supplement exposure (median or range, units)	Participants (intervention /control)	Incident cases (intervention /control)	Outcome	Funding source
(8)		ous lesion			conc., interview	Beta- carotene – 30 mg				
Jacobson et al., 2000(9)	USA	Smokers	> 18	6 months	n/a	Vitamin C – 250 mg Vitamin E– 200 IU Beta- Carotene – 6mg	57/55	0/1	All-cause mortality	Agency- Industry
Leppala et	Finland	Smokers	50 –	6.1 years	Pill count,	Vitamin E –	7118/7153	258/252	Stroke	Agency
al., 2000 - ATBC(10)			69		plasma conc.	50 mg Beta- Carotene – 20 mg	7118/7153	46/34	Stroke mortality	
Salonen et	Denmar	Hyperchol	45 –	3 years	Pill count	Vitamin C –	130/130	1/1	Total CVD	Agency-
al., 2000 – ASAP(11)	k	esterolemi a	69			250 mg (136 IU)	130/130	1/1	CVD mortality	industry
						Vitamin E – 91 mg (136 IU)	130/130	1/1	All-cause mortality	
AREDS 2001(12)	USA	Advanced Acute Degenerat ion (AMD)	55 – 80	6.3 years	Pill count, plasma conc.	Vitamin C – 500 mg Vitamin E – 400 IU Beta- Carotene – 15 mg Zinc – 80 mg	2370/2387	251/240	All-cause mortality	Agency- industry
Brown et	USA	Previous	53	3 years	Pill count	Vitamin C –	84/76	6/8	Total CVD	Agency-
al., 2001 –		CHD (with				1000 mg	84/76	4/5	MI	industry
HATS (13)		clinical				Vitamin E – 800 IU	84/76	2/2	Stroke	-
		coronary disease				Beta-	84/76	1/1	CVD mortality	

Study (reference)	Country	Health status	Age (year s)	Duration (mean, median or range)	Supplement intake assessment	Supplement exposure (median or range, units)	Participants (intervention /control)	Incident cases (intervention /control)	Outcome	Funding source
		defined as previous MI, coronary interventions or confirmed angina)				Carotene – 25 mg Selenium – 100 mcg Simvastatin – Niacin	84/76	1/1	All-cause mortality	
Chylack et al., 2002 – REACT(14)	UK and USA	Cataract	67.8	3 years	Plasma conc.	Vitamin C – 750 mg Vitamin E – 600 mg	149/148 149/148	2/1	CVD mortality CHD	Agency- industry
						Beta- Carotene –	149/148	2/1	mortality MI mortality	
						18 mg	149/148 149/148	3/2	Cancer mortality All-cause	
HPS	UK	Previous	40 –	5 years	Capsule	Vitamin C –	10269/10267	2306/2312	mortality Total CVD	Agency-
Collaborativ e Group		CHD	80		count	250 mg Vitamin E –	10269/10267 10269/10267	1063/1047 464/467	Total CHD MI	industry
2002(15)						600 mg Beta- Carotene –	10269/10267 10269/10267	511/518 878/840	Stroke CVD	
						20 mg	10269/10267	664/630	mortality CHD mortality	
							10269/10267	108/107	Stroke mortality	
							10269/10267	1446/1389	All-cause mortality	
Waters et al., 2002 – WAVE(16)	USA and Canada	Coronary Stenosis	65 ± 9	3 years	Capsule count	Vitamin C – 500 mg Vitamin E –	212/211 212/211 212/211	26/18 14/8 4/4	Total CVD Total CHD MI	Agency
						400 IU	212/211	6/7	Stroke	

Study (reference)	Country	Health status	Age (year s)	Duration (mean, median or range)	Supplement intake assessment	Supplement exposure (median or range, units)	Participants (intervention /control)	Incident cases (intervention /control)	Outcome	Funding source
							212/211	10/4	CVD	
							0.10/0.14	0/5	mortality	-
							212/211	6/5	Total cancer	
							212/211	16/6	All-cause mortality	
Virtamo et al., 2003 –	Finland	Smokers	50 – 69	6.1 years	Pill count, plasma conc.	Vitamin E – 50 mg	7278/7287	579/551	Total cancer	Agency
ATBC(17)						Beta- Carotene – 20 mg	7278/7287	932/851	All-cause mortality	
Tornwall et al., 2004 –	Finland	Smokers	50 – 69	6.1 years	Pill count, plasma conc.	Vitamin E – 50 mg Beta-	6781/6849	511/534	Total CHD	Agency
ATBC(18)					,	Carotene –	497/438	123/93		
, ,						20 mg	6781/6849	289/296	MI	
							497/438	58/54		
							6781/6849	222/238	CHD	
							497/438	65/39	mortality	
Mooney et	USA	Smokers	31.2	2 years	Pill count,	Vitamin C –	142/142	1/0	Total CVD	Agency-
al.,			-	(Data is	plasma conc.	500 mg	142/142	1/0	Total CHD	industry
2005(19)			41.1	presente		Vitamin E –	142/142	1/0	MI	
				d on 15- month		400 IU	142/142	1/0	CVD mortality	
				follow- up?)			142/142	1/0	CHD mortality	
							142/142	1/0	MI mortality	
							142/142	1/1	Total cancer	
							142/142	1/0	All-cause mortality	
Stone et	USA	Previous	< 85	1 year	Pill count	Vitamin C –	101/96	7/8	Total CVD	Agency-

Study (reference)	Country	Health status	Age (year s)	Duration (mean, median or range)	Supplement intake assessment	Supplement exposure (median or range, units)	Participants (intervention /control)	Incident cases (intervention /control)	Outcome	Funding source
al.,		CHD				1000 mg/day	101/96	3/1	MI	industry
2005(20)						Vitamin E –	101/96	0/1	Stroke	
						800 mg/day	101/96	0/1	CVD mortality	
							101/96	0/1	All-cause mortality	
Bairati et al., 2006(21)	Canada	Stage I and II head and neck cancer	Not speci fies for this speci fic grou p	3 years, however, beta-carotene supplem entation stopped after first 156 enrolled. Duration period of beta-carotene supplem entation not specified	Pill count	Vitamin E – 400 IU Beta- Carotene – 30 mg	79/77	37/30	All-cause mortality	Agency- industry
CLIPS	Europe	Pulmonar	66	2 years	Capsule	Vitamin C –	185/181	16/11	Total CVD	Agency-
2007(22)		y Artery			count,	250 mg	185/181	9/4	MI	Industry
		Disease			interview	Vitamin E –	185/181	6/5	Stroke	-
						600 mg Beta-	185/181	6/3	CVD	
						Carotene –	185/181	2/2	mortality MI	
						20 mg	100/101	<u> </u>	mortality	
						9	185/181	3/0	Stroke	1
							100/101	0,0	mortality	
							185/181	1/1	Cancer	1

Study (reference)	Country	Health status	Age (year s)	Duration (mean, median or range)	Supplement intake assessment	Supplement exposure (median or range, units)	Participants (intervention /control)	Incident cases (intervention /control)	Outcome	Funding source
									mortality	
							185/181	7/4	All-cause mortality	
Cook et al., 2007- WACS (23)	USA	History of vascular disease or at least three cardiovas cular risk factors	60.6	9.4 years	Pill count	Vitamin C – 500 mg Vitamin E – 600 IU (every other day) Beta- Carotene – 50 mg (every other day)	4085/1022	507/124	All-cause mortality	Agency- industry
Plummer et		Vitamin C –	990/990	1/0	Total CVD	Agency-				
al., 2007(24)	ela	cancerous lesions of the stomach	69		750 mg Vitamin E – 600 mg Beta-	990/990	3/2	Total cancer	industry	
		otomac.				Carotene – 18 mg/day	990/990	16/11	All-cause mortality	
Sesso et	USA	Physician	64.3	7.6 years	Questionnair	Vitamin C –	3656/3653	310/316	Total CVD	Agency-
al., 2008 –		s	± 9.2		е	500 mg	3656/3653	133/144	MI	industry
PHS II (25)						Vitamin E –	3656/3653	104/113	Stroke	
			400 IU (every other day)	3656/3653	127/122	CVD mortality				
Lippman et	USA,	Healthy	62.5	7 years	Pill count,	Vitamin E –	8904/8910	1041/1050	Total CVD	Agency-
al., 2009 –	Canada,				plasma conc.	400 IU/day	8904/8910	111/100	Stroke	industry
SELECT(2				Selenium 200	8904/8910	117/142	CVD	1		
6)	Puerto					mcg/day		10/0	mortality	1
	Rico						8904/8910	12/8	Stroke	
							0004/0040	0.40/00.4	mortality	4
							8904/8910	846/824	Total	
	1	I						<u> </u>	cancer	L

Study (reference)	Country	Health status	Age (year s)	Duration (mean, median or range)	Supplement intake assessment	Supplement exposure (median or range, units)	Participants (intervention /control)	Incident cases (intervention /control)	Outcome	Funding source
							8904/8910	117/125	Cancer	
							8904/8910	359/382	All-cause mortality	
Hercberg et	France	Healthy	35 –	7.5 years	Questionnair	Vitamin C –	6377/6364	137/143	Total CHD	Agency-
al., 2010 – SUVIMAX			60		е	120 mg Vitamin E –	6377/6364	278/300	Total cancer	industry
(27)						30 mg Beta- Carotene – 6	6377/6364	77/99	All-cause mortality	
						mg Selenium – 100 mcg Zinc – 20 mg				
Ma et al., 2012 –	China	Healthy	35 – 64	7.3 years	Pill count	Vitamin C – 500 mg	1706/1705	18/33	CVD mortality	Agency- industry
SIT(28)						Vitamin E – 200 IU	1706/1705	10/14	Stroke mortality	
						Beta- Carotene –	1706/1705	41/42	Cancer mortality	
						15 mg (stopped early) Selenium – 75 mcg	1706/1705	82/101	All-cause mortality	
Arruda et	Brazil	Sickle cell	18 –	180 days	Pill count	Vitamin C –	46/42	2/0	Total CVD	Agency-
al.,		anaemia	68			1400 mg	46/42	2/0	Stroke	Industry
2013(29)		patients				Vitamin E – 800 mg	46/42	0/1	All-cause mortality	
Bonelli et al.,	Italy	Removal of adenoid	29 – 83	5 years (or until	interview	Vitamin A – 2 mg	200/211	1/2	Total cancer	Agency- industry

Study (reference)	Country	Health status	Age (year s)	Duration (mean, median or range)	Supplement intake assessment	Supplement exposure (median or range, units)	Participants (intervention /control)	Incident cases (intervention /control)	Outcome	Funding source
2013(30)		from large colon		recurrent adenoma occurren ce)		Vitamin C – 180 mg Vitamin E – 30 mg Selenium – 200 mcg Zinc – 30 mg	200/211	6/9	All-cause mortality	
Wang et al., 2014 – PHS II (31)	USA	Physician s	64.3 ± 9.2	7.6 years	Questionnair e	Vitamin C – 500 mg Vitamin E – 400 IU (every other day)	3656/3653 3656/3653	504/486	Total cancer All-cause mortality	Agency- industry
					SELENI	JM ONLY				
Korpela et al., 1989(32)	Finland	Previous MI	48- 68	6 months	Serum selenium status	Selenium – 100 mcg	40/41 40/41 40/41 40/41 40/41 40/41 40/41	1/6 1/6 1/6 0/4 0/4 0/4	Total CVD Total CHD MI CVD mortality CHD mortality MI mortality All-cause mortality	Unknown
Duffield- Lillico et al.,2002 – NPC (33)	USA China	Previous skin cancer	18- 80	7.4 years	Patient- reported and blood samples	Selenium – 200 mcg Selenium –	653/659 653/659	107/139 40/66	Total cancer Total cancer mortality Total CVD	Agency- Industry

Study (reference)	Country	Health status	Age (year s)	Duration (mean, median or range)	Supplement intake assessment	Supplement exposure (median or range, units)	Participants (intervention /control)	Incident cases (intervention /control)	Outcome	Funding source
al., 2005		al	68	months	direct	200 mcg	180/180	1/0	Total CHD	Industry
(34)		squamous			observation		180/180	1/0	MI	
		dysplasia					180/180	0/1	Stroke	
							180/180	1/0	CVD	
									mortality	
							180/180	1/0	CHD	
									mortality	
							180/180	1/0	MI	
									mortality	
							180/180	0/1	Total	
									cancer	
							180/180	1/0	All-cause	
									mortality	
Stranges et	USA	Previous	52-	7.6 years	Patient-	Selenium –	504/500	103/96	Total CVD	Agency-
al., 2006 –		skin	73		reported and	200 mcg	504/500	63/59	Total CHD	Industry
NPC (35)		cancer			blood		504/500	41/43	MI	
					samples		504/500	35/32	Stroke	
							504/500	40/31	CVD	
							504/500	0.40	mortality	
							504/500	9/8	MI	
							E04/E00	440/444	mortality	
							504/500	110/111	All-cause	
Linnerse	LICA	I look!	CO 5	7.425	Dill aggregation	Calania	47700/47770	0404/0004	mortality	A manageri
Lippman et	USA,	Healthy	62.5	7 years	Pill count,	Selenium -	17760/17773	2121/2084	Total CVD	Agency-
al., 2009 – SELECT	Canada, Puerto				plasma conc.	200 mcg/day	17760/17773	172/162	Stroke	Industry
(26)	Rico						17760/17773	246/261	CVD	
(20)	IXICO						17760/17773	21/17	mortality Stroke	
							17760/17773	21/17		
							17760/17773	1683/1680	mortality Total	
							17700/17773	1003/1000	cancer	
							17760/17773	245/231	Total	
							11100/11113	240/201	cancer	
									mortality	

Study (reference)	Country	Health status	Age (year s)	Duration (mean, median or range)	Supplement intake assessment	Supplement exposure (median or range, units)	Participants (intervention /control)	Incident cases (intervention /control)	Outcome	Funding source
							17760/17773	737/740	All-cause mortality	
Stratton et al., 2010	USA	Prostate cancer	72.8 ±	5 years	Pill count	Selenium – 200 mcg	94/46	5/4	Total cancer	Agency- Industry
(36)			6.65				94/46	4/1	All-cause mortality	
Rayman et al., 2011 – UK PRECISE (37)	UK	Healthy	60- 74	6 months	Pill count	Selenium – 100 mcg	380/121	1/0	All-cause mortality	Agency- Industry
Marshall et al., 2011 – SWOG (38)	USA	High risk for prostate cancer	>40 yrs	3 years	Pill count, plasma selenium conc.	Selenium – 200mcg	227/225	4/6	All-cause mortality	Agency
Algotar et al., 2013	USA and	Elevated PSA	65.4 ± 7.7	USA (5 years)	Pill count	Selenium – 200mcg or	467/232	52/29	Total cancer	Agency- Industry
(39)	New Zealand			New Zealand (3 years)		400 mcg	467/232	5/5	All-cause mortality	
Karp et al., 2013(40)	USA	Previous cancer	24- 93	4 years	Pill count, compliance form	Selenium – 200 mcg	1040/521	18/12	All-cause mortality	Agency- Industry
Goossens et al., 2016 - SELEBLAT (41)	Belgium	Previous cancer	46- 91	3 years	Pill count	Selenium – 200 mcg	151/141	1/0	All-cause mortality	Agency- Industry
Thompson et al., 2016 - SELCEL(42)	USA	Colorectal adenomas	40- 80	2.75 years	Pill count, plasma selenium conc.	Selenium – 200 mcg	910/914	17/16	All-cause mortality	Agency- Industry
Rayman et	Denmar	Healthy	60-	5 years	Pill count	Selenium –	365/126	7/2	CVD	Agency-

Study (reference)	Country	Health status	Age (year s)	Duration (mean, median or range)	Supplement intake assessment	Supplement exposure (median or range, units)	Participants (intervention /control)	Incident cases (intervention /control)	Outcome	Funding source
al., 2018 –	k		74			100mcg, 200			mortality	Industry-
DEN-						mcg, 300	365/126	14/4	Total	
MARK						mcg			cancer	
PRECISE									mortality	
(43)							365/126	23/8	All-cause	
									mortality	

ATBC, The Alpha- Tocopherol, Beta-Carotene Cancer Prevention Study; AMD, advanced acute degeneration; AREDS, Age-Related Eye Disease Study; ASAP, Antioxidant Supplementation in Atherosclerosis Prevention; CVD, cardiovascular disease; CARET, Carotene and Retinol Efficacy Trial; CHD, coronary heart disease; CLIPS, Critical Leg Ischaemia Prevention Study; HATS, HDL-Atherosclerosis Treatment Study; HPS, Heart Protection Study Collaborative Group; IU, international units; MI, myocardial infarction; MINVITOAX, Mineral Vitamin Antioxidant; MVP, Multivitamins and Probucol Study Group; NPC, The Nutritional Prevention of Cancer; PHS, The Physicians Health Study; PRECISE, Prevention of Cancer by Intervention with Selenium; REACT, The Roche European American Cataract Trial; SELCEL, The Selenium and Celecoxib (Sel/Cel) Trial; SELEBLAT, Selenium and Bladder Cancer Trial; SELECT, The Selenium and Vitamin E Cancer Prevention; SIT, Shadong Intervention Trial; SU.VI.MAX, The Supplémentation en Vitamines et Minéraux AntioXydants study; WAVE, Women's Angiographic Vitamin and Estrogen; WACS, The Women's Antioxidant Cardiovascular Study; SWOG, Southwest Oncology Group.

Supplementary Table 4. GRADE assessment for antioxidants and CVD, cancer, cancer mortality, and all-cause mortality

Outcomes	Anticipate	ed absolute effects* (95% CI)	Relative effect (95% CI)	№ of participants (studies)	Certainty of the evidence (GRADE)
	Risk with placebo	Risk with Antioxidants			
Antioxiants and Total CVD	150 per 1,000	150 per 1,000 (144 to 156)	RR 1.00 (0.96 to 1.04)	49792 (13 RCTs)	⊕⊕⊕ HIGH
Antioxidants and Total CHD	75 per 1,000	76 per 1,000 (71 to 80)	RR 1.01 (0.95 to 1.07)	48866 (7 RCTs)	⊕○○○ VERY LOW a,b,c,d
Antioxidants and MI	44 per 1,000	43 per 1,000 (40 to 47)	RR 0.98 (0.90 to 1.07)	44157 (10 RCTs)	⊕⊕○○ LOW e,f
Antioxidants and Stroke	32 per 1,000	32 per 1,000 (29 to 35)	RR 1.00 (0.92 to 1.09)	61222 (10 RCTs)	⊕⊕⊕○ MODERATE ^g
Antioxidants and Total CVD mortality	45 per 1,000	44 per 1,000 (39 to 50)	RR 0.98 (0.87 to 1.11)	51374 (12 RCTs)	⊕⊕⊕○ MODERATE ^h
Antioxidants and Total CHD mortality	50 per 1,000	53 per 1,000 (48 to 58)	RR 1.05 (0.95 to 1.15)	35999 (6 RCTs)	⊕○○○ VERY LOW ^{d,i,j,k}
Antioxidants and MI mortality	6 per 1,000	10 per 1,000 (2 to 38)	RR 1.51 (0.39 to 5.93)	947 (3 RCTs)	⊕○○○ VERY LOW ^{d,l,m}
Antioxidants and Stroke mortality	8 per 1,000	7 per 1,000 (6 to 10)	RR 0.99 (0.75 to 1.32)	63516 (6 RCTs)	⊕⊕⊕○ MODERATE ^{d,n}
Antioxidants and Total Cancer	78 per 1,000	80 per 1,000 (76 to 84)	RR 1.02 (0.97 to 1.08)	55527 (8 RCTs)	⊕⊕○○ LOW ^{d,o,p}
Antioxidants and Cancer Mortality	19 per 1,000	17 per 1,000 (14 to 20)	RR 0.88 (0.74 to 1.04)	29006 (5 RCTs)	⊕⊕⊕○ MODERATE ^{d,q}
Antioxidants and all-cause mortality	78 per 1,000	81 per 1,000 (76 to 85)	RR 1.04 (0.98 to 1.10)	118206 (27 RCTs)	⊕⊕⊕○ MODERATE r

CI, conficence interval; CVD, cardiovascular disease; CHD, coronary heart disease; GRADE, Grading of Recommendations Assessment Development and Evaluation; MI, Myocardial infaction; RR, risk ratio.

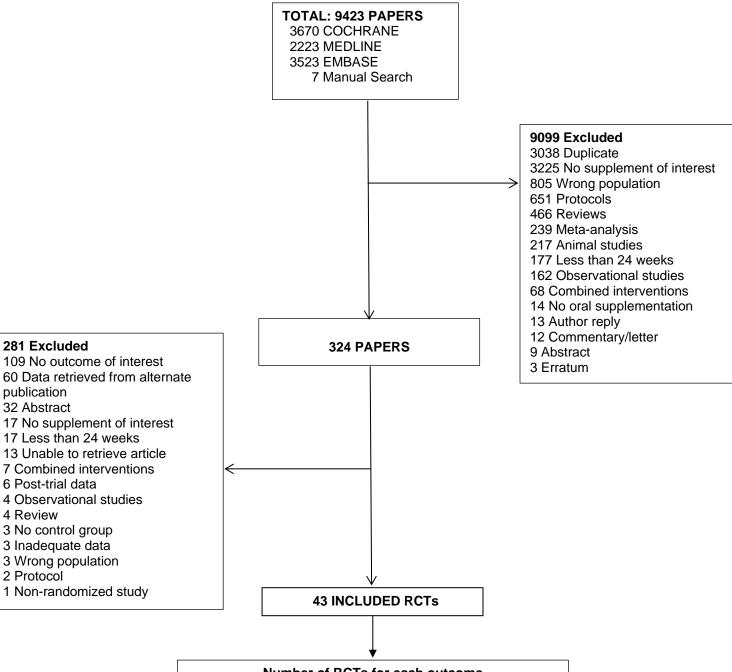
Explanations

- a. Serious risk of bias for antioxidant supplementation and Total CHD risk as both allocation concealment and incomplete outcome data was either high or unclear in >70% of studies.
- b. Serious indirectness for antioxidants supplementation and total CHD risk as the study population were mostly European (>95%) and all but one of the studies were conducted in specific populations: previous CHD (HPS Group, 2002); coronary stenosis (Waters et al., 2002); smokers (Tornwall et al., 2004 and Mooney et al., 2005; and in those undergoing angioplasty (Tardif et al., 1997).
- c. Serious imprecision for antioxidant supplementation and total CHD risk as the 95% CI (RR, 0.95-1.07) overlaps with the minimally important difference for clinical harm (RR>1.05).
- d. Publication bias was not assessed since there were <10 studies.
- e. Serious risk of bias for antioxidant supplementation and MI risk as both allocation concealment and incomplete outcome data was either high or unclear in 70% and 60% of studies respectively.
- f. Serious imprecision for antioxidant supplementation and MI risk as the 95% CI (RR, 0.90-1.07) includes both clinically important benefit (RR<0.95) and harm (RR>1.05).
- g. Serious imprecision for antioxidant supplementation and stroke risk as the 95% CI (RR, 0.91-1.09) includes both clinically important benefit (RR<0.95) and harm (RR>1.05).
- h. Serious imprecision for antioxidant supplementation and CVD mortality risk as the 95% CI (RR, 0.87-1.11) include both clinically important benefit (RR<0.95) and harm (RR>1.05).
- i. Serious risk of bias for antioxidant supplementation and CHD mortality risk as incomplete outcome data was either high or unclear in >65% of studies.
- j. Serious indirectness for antioxidants supplementation and CHD mortality risk as the study population were mostly European (>98%) and all of the studies were conducted in specific populations: previous CHD (HPS Group, 2002); smokers (Tornwall et al., 2004 and Mooney et al., 2005; in those undergoing angioplasty (Tardif et al., 1997) and in an older population with cataracts (Chylack et al., 2002).
- k. Serious imprecision for antioxidant supplementation and CHD mortality risk as the 95% CI (RR, 0.95-1.15) overlaps with the minimally important difference for clinical harm (RR>1.05).
- I. Serious indirectness for antioxidant supplementation and MI mortality risk, as the included studies were conducted in specific populations: smokers (Mooney et al., 2005), peripheral artery disease (CLIPS group 2007) and in an older population with cataracts (Chylack et al., 2002).
- m. Very serious imprecision for antioxidant supplementation and MI mortality risk as the 95% CI (RR, 0.39-5.93) include both clinically important benefit (RR<0.95) and harm (RR>1.05).
- n. Serious imprecision for antioxidant supplementation and stroke mortality risk as the 95% CI (RR, 0.75-1.32) include both clinically important benefit (RR<0.95) and harm (RR>1.05).
- o. Serious indirectness for antioxidant supplementation and total cancer risk as three studies accounting for more than 70% of the population were conducted in males only.
- p. Serious imprecision for antioxidant supplementation and total cancer risk as the 95% CI (RR, 0.97-1.08) overlaps with the minimally important difference for clinical harm (RR>1.05).
- q. Serious imprecision for antioxidant supplementation and cancer mortality risk as the 95% CI (RR, 0.74-1.04) overlaps with the minimally important difference for clinical benefit (RR<0.95).

r. Serious imprecision for antioxidant supplementation and all-cause mortality risk as the 95% CI (RR, 0.98-1.10) overlaps with the minimally important difference for clinical harm (RR>1.05).

Supplementary Table 5. GRADE assessment for selenium and CVD, cancer, cancer mortality, and all-cause mortality.

Outcomes	Anticipate	ed absolute effects [*] (95% CI)	Relative effect (95% CI)	№ of participants (studies)	Certainty of the evidence (GRADE)
	Risk with placebo	Risk with Selenium			
Selenium and total CVD	118 per 1,000	121 per 1,000 (114 to 128)	RR 1.02 (0.96 to 1.08)	36978 (4 RCTs)	⊕⊕○○ LOW ^{a,b,c}
Selenium and total CHD	90 per 1,000	71 per 1,000 (22 to 240)	RR 0.79 (0.24 to 2.66)	1445 (3 RCTs)	⊕○○○ VERY LOW ^{c,d,e}
Selenium and MI	68 per 1,000	50 per 1,000 (16 to 157)	RR 0.74 (0.24 to 2.31)	1445 (3 RCTs)	⊕○○○ VERY LOW ^{c,f,g}
Selenium and Stroke	11 per 1,000	11 per 1,000 (9 to 14)	RR 1.06 (0.87 to 1.29)	36897 (3 RCTs)	⊕⊕⊜ LOW ^{c,h,i}
Selenium and CVD mortality	16 per 1,000	16 per 1,000 (13 to 20)	RR 1.00 (0.81 to 1.22)	37469 (5 RCTs)	⊕⊕○○ LOW ^{c,j,k}
Selenium and CHD mortality	18 per 1,000	10 per 1,000 (0 to 248)	RR 0.54 (0.02 to 13.71)	441 (2 RCTs)	⊕○○○ VERY LOW ^{c,l,m}
Selenium and MI mortality	17 per 1,000	14 per 1,000 (3 to 57)	RR 0.85 (0.21 to 3.43)	1445 (3 RCTs)	⊕○○○ VERY LOW c,n,o
Selenium and Stroke mortality	1 per 1,000	1 per 1,000 (1 to 2)	RR 1.24 (0.65 to 2.34)	35533 (1 RCT)	⊕⊕⊖⊖ LOW c,p,q,r
Selenium and Total cancer	98 per 1,000	89 per 1,000 (77 to 105)	RR 0.91 (0.78 to 1.07)	38044 (5 RCTs)	⊕⊕○○ LOW ^{c,s,t}
Selenium and cancer mortality	16 per 1,000	14 per 1,000 (9 to 22)	RR 0.87 (0.56 to 1.37)	37336 (3 RCTs)	⊕○○○ VERY LOW c,u,v,w
Selenium and all-cause mortality	43 per 1,000	43 per 1,000 (39 to 47)	RR 0.99 (0.90 to 1.08)	42938 (12 RCTs)	⊕⊕○○ LOW ×,y

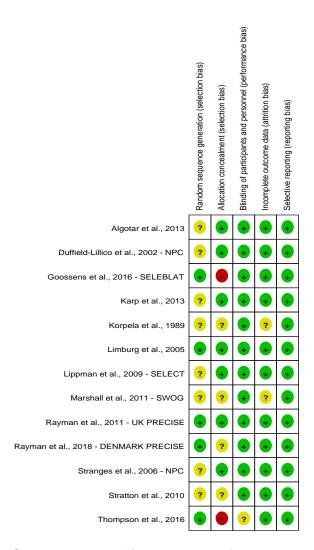

CI, conficence interval; CVD, cardiovascular disease; CHD, coronary heart disease; GRADE, Grading of Recommendations Assessment Development and Evaluation; MI, Myocardial infaction; RR, risk ratio.

Explanations

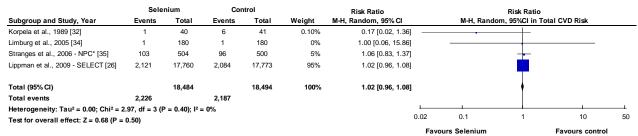
- a. Serious indirectness for selenium supplementation and total CVD risk as >98% of the population were men.
- b. Serious imprecision for selenium supplementation and total CVD risk as the 95% CI (RR, 0.96-1.08) overlaps with the minimally important difference for clinical harm (RR>1.05).
- c. Publication bias was not assessed since there were <10 studies.
- d. Serious indirectness for selenium supplementation and total CHD risk as all of the studies were conducted in specific populations: previous MI (Korpela et al., 1989); esophageal squamous dysplasia (Limburg et al., 2005) and previous skin cancer (Stranges et al., 2006).
- e. Very serious imprecision for selenium supplementation and total CHD risk as the 95% CI (RR, 0.24-2.66) includes both clinically important benefit (RR<0.95) and harm (RR>1.05).
- f. Serious indirectness for selenium supplementation and MI risk as all of the studies were conducted in specific populations: previous MI (Korpela et al., 1989); esophageal squamous dysplasia (Limburg et al., 2005) and previous skin cancer (Stranges et al., 2006).
- g. Very serious imprecision for selenium supplementation and MI risk as the 95% CI (RR, 0.24-2.31) includes both clinically important benefit (RR<0.95) and harm (RR>1.05).
- h. Serious indirectness for selenium supplementation and stroke risk as >98% of the population were men.
- i. Serious imprecision for selenium supplementation and stroke risk as the 95% CI (RR, 0.87-1.29) includes both clinically important benefit (RR<0.95) and harm (RR>1.05).
- j. Serious indirectness for selenium supplementation and CVD mortality risk as >95% of the population were men.
- k. Serious imprecision for selenium supplementation and CVD mortality risk as the 95% CI (RR, 0.81-1.22) includes both clinically important benefit (RR<0.95) and harm (RR>1.05).
- I. Serious indirectness for selenium supplementation and CHD mortality risk as both studies were conducted in specific populations: previous MI (Korpela et al., 1989) and esophageal squamous dysplasia (Limburg et al., 2005).
- m. Very serious imprecision for selenium supplementation and CHD mortality risk as the 95% CI (RR, 0.02-13.71) includes both clinically important benefit (RR<0.95) and harm (RR>1.05).
- n. Serious indirectness for selenium supplementation and MI mortality risk as all of the studies were conducted in specific populations: previous MI (Korpela et al., 1989); esophageal squamous dysplasia (Limburg et al., 2005) and previous skin cancer (Stranges et al., 2006).
- o. Very serious imprecision for selenium supplementation and MI mortality risk as the 95% CI (RR, 0.21-3.43) includes both clinically important benefit (RR<0.95) and harm (RR>1.05).
- p. Unable to assess inconsistency as only one study was included.
- q. Serious indirectness for selenium supplementation and stroke mortality risk as the sole study included was conducted in men only.
- r. Serious imprecision for selenium supplementation and stroke mortality risk as the 95% CI (RR, 0.65-2.34) includes both clinically important benefit (RR<0.95) and harm (RR>1.05).
- s. Serious indirectness for selenium supplementation and total cancer risk as >98% of the population were men.

- t. Serious imprecision for selenium supplementation and total cancer risk as the 95% CI (RR, 0.78-1.07) includes both clinically important benefit (RR<0.95) and harm (RR>1.05).
- u. Serious inconsistency for selenium supplementation and cancer mortality risk, as I² = 71% and P=0.03.
- v. Serious indirectness for selenium supplementation and cancer mortality risk as >98% of the population were men.
- w. Serious imprecision for selenium supplementation and cancer mortality risk as the 95% CI (RR, 0.56-1.37) includes both clinically important benefit (RR<0.95) and harm (RR>1.05).
- x. Serious indirectness for selenium supplementation and total cancer risk as >90% of the population were men.
- y. Serious imprecision for selenium supplementation and all-cause mortality risk as the 95% CI (RR, 0.90-1.08) includes both clinically important benefit (RR<0.95) and harm (RR>1.05).

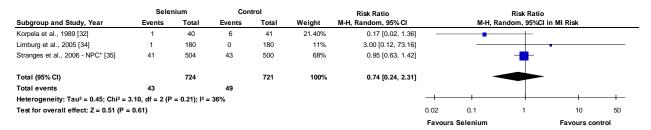
Antioxidant supplements and risk of CVD, cancer & all-cause mortality

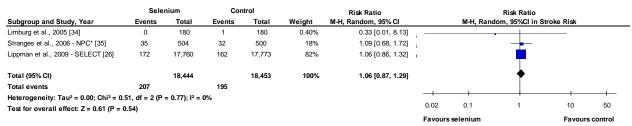


Number of RCTs for each outcome							
	Antioxidants	Selenium					
Total CVD	13	4					
Total CHD	7	3					
MI	10	3					
Stroke	10	3					
CVD mortality	12	5					
CHD mortality	6	2					
MI mortality	3	3					
Stroke mortality	6	1					
Cancer	8	5					
Cancer mortality	5	3					
All-cause mortality	27	12					

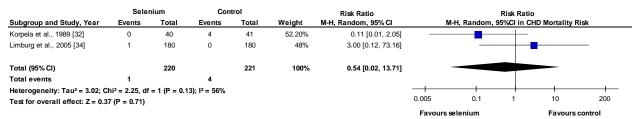

Supplementary Figure 1. Search Summary. Flow diagram outlining the search strategy used to identify publications that report RCT data on antioxidant supplementation and risk of CVD, CVD outcomes, cancer and all-cause mortality. The publications are from database inceptions to June 5, 2020 of single RCTs identified by searching Cochrane, Medline, Embase and by manual searches. Titles and abstracts were reviewed in the first stage of screening while full manuscript review was done in the second stage. RCT, randomized controlled trial; CVD, cardiovascular disease; CHD, coronary heart disease; MI, myocardial infarction.

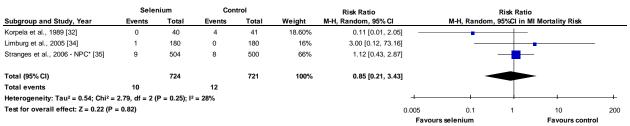
Supplementary Figure 2. Risk of bias summary for antioxidant supplementation and CVD, CVD outcomes, cancer, cancer mortality, and all-cause mortality. Review authors' judgments about each risk of bias item for each included study.


Supplementary Figure 3. Risk of bias summary for selenium supplementation and CVD, CVD outcomes, cancer, cancer mortality, and all-cause mortality. Review authors' judgments about each risk of bias item for each included study.

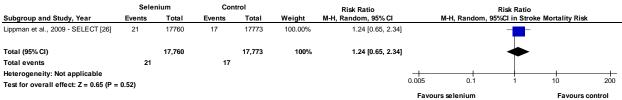

Supplementary Figure 4. Forest plot of selenium supplementation only and total CVD risk. M-H, Manthel-Haenszel, CVD, cardiovascular disease. *Stranges et al., 2006 was used as it contained data up until the end of treatment but only in those free of CVD at baseline (35). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the P12 statistic. An P2 value P3 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

Supplementary Figure 5. Forest plot of selenium supplementation only and total CHD risk. M-H, Manthel-Haenszel, CHD, coronary heart disease. *Stranges et al., 2006 was used as it contained data up until the end of treatment but only in those free of CVD at baseline (35). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the P12 statistic. An P2 value P3 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 6. Forest plot of selenium supplementation only and MI risk. M-H, Manthel-Haenszel, MI, myocardial infarction. *Stranges et al., 2006 was used as it contained data up until the end of treatment but only in those free of CVD at baseline (35). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

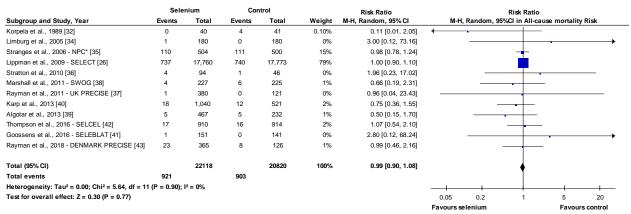

Supplementary Figure 7. Forest plot of selenium supplementation only and stroke risk. M-H, Manthel-Haenszel. *Stranges et al., 2006 was used as it contained data up until the end of treatment but only in those free of CVD at baseline (35). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

	Sele	nium	Cor	Control		Risk Ratio		Risk Ratio			
Subgroup and Study, Year	Events Total		Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95%CI in CVD Mortality Risk				
Korpela et al., 1989 [32]	0	40	4	41	0.50%	0.11 [0.01, 2.05]					
imburg et al., 2005 [34]	1	180	0	180	0%	3.00 [0.12, 73.16]			-		
Stranges et al., 2006 - NPC* [35]	40	504	31	500	18%	1.28 [0.81, 2.01]			+		
Lippman et al., 2009 - SELECT [26]	246	17,760	261	17,773	79%	0.94 [0.79, 1.12]					
Rayman et al., 2018 - DENMARK PRECISE 43]	7	365	2	126	2%	1.21 [0.25, 5.74]		-	- T		
Total (95% CI)		18,849		18,620	100%	1.00 [0.81, 1.22]			•		
Total events	294		298						1		
Heterogeneity: Tau ² = 0.01; Chi ² = 4.21, df = 4	(P = 0.38); I	2 = 5%					$\overline{}$			-	-
Test for overall effect: Z = 0.05 (P = 0.96)							0.01	0.1	1	10	100
							Favours	selenium		Favours co	ontrol


Supplementary Figure 8. Forest plot of selenium supplementation only and CVD mortality risk. M-H, Manthel-Haenszel, CVD, cardiovascular disease. *Stranges et al., 2006 was used as it contained data up until the end of treatment but only in those free of CVD at baseline (35). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the P1 statistic. An P2 value P3 statistic is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

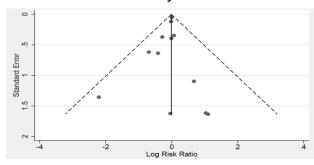
Supplementary Figure 9. Forest plot of selenium supplementation only and CHD mortality risk. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

Supplementary Figure 10. Forest plot of selenium supplementation only and MI mortality risk. M-H, Manthel-Haenszel, MI, myocardial infarction. *Stranges et al., 2006 was used as it contained data up until the end of treatment but only in those free of CVD at baseline (35). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 11. Forest plot of selenium supplementation only and stroke mortality risk. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Interstudy heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

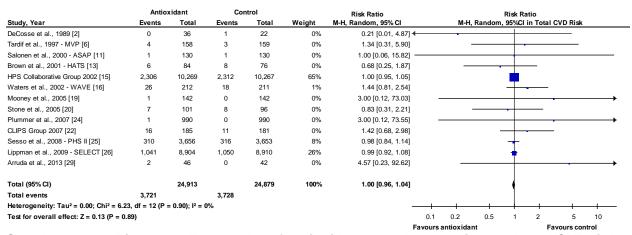
	Sele	nium	Cor	ntrol		Risk Ratio			Risk Ratio		
Subgroup and Study, Year	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rando	n, 95%Cl in Tota	I Cancer Risk	
Duffield-Lillico et al., 2002 - NPC* [33]	107	653	139	659	27.10%	0.78 [0.62, 0.98]			-		
Limburg et al., 2005 [34]	0	180	1	180	0%	0.33 [0.01, 8.13]			.		
Lippman et al., 2009 - SELECT [26]	1,683	17,760	1,680	17,773	60%	1.00 [0.94, 1.07]					
Stratton et al., 2010 [36]	5	94	4	46	1%	0.61 [0.17, 2.17]		_	T-		
Algotar et al., 2013 [39]	52	467	29	232	11%	0.89 [0.58, 1.36]			+		
Total (95% CI)		19,154		18,890	100%	0.91 [0.78, 1.07]			•		
Total events	1,847		1,853						1		
Heterogeneity: Tau ² = 0.01; Chi ² = 5.64, d	f = 4 (P = 0.23)	; I ² = 29%					-				
Test for overall effect: Z = 1.14 (P = 0.25)							0.02	0.1	1	10	50
							Favo	uro colonium		Favoure co	ntrol

Supplementary Figure 12. Forest plot of selenium supplementation only and total cancer risk. M-H, Manthel-Haenszel. *Duffield-Lillico et al., 2002 excluded 62 participants from their analysis, including 4 cancer cases; these were re-added to the events and totals(33). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.



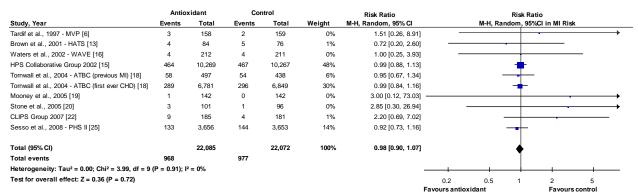
Supplementary Figure 13. Forest plot of selenium supplementation only and cancer mortality risk. M-H, Manthel-Haenszel. * Duffield-Lillico et al., 2002 excluded 62 participants from their analysis; these were re-added to the totals(33). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

Supplementary Figure 14. Forest plot of selenium supplementation only and all-cause mortality risk. M-H, Manthel-Haenszel. *Stranges et al., 2006 was used as it contained data up until the end of treatment but only in those free of CVD at baseline (35). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


A. Selenium supplementation and all-cause mortality risk

Begg's test = 0.63

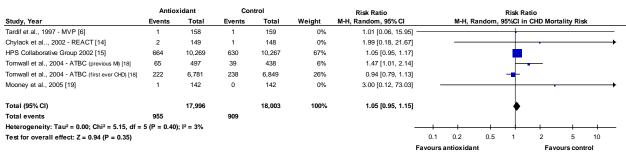
Egger's test = 0.44


Supplementary Figure 15. Funnel plot of selenium supplementation and all-cause mortality risk. Dashed lines represent pseudo – 95% confidence intervals (CI). The circles represent risk estimates for each study, and the horizontal lines represent standard errors of the RR. We were unable to test for funnel plot asymmetry for other CVD and cancer outcomes (<10 RCTs).

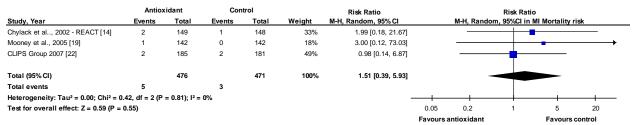
Supplementary Figure 16. Forest plot of antioxidant supplementation and total CVD risk. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

	Antio	xidant	Cor	ntrol		Risk Ratio	Risk Ratio
Study, Year	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95%Cl in Total CHD Risk
Tardif et al., 1997 - MVP [6]	4	158	3	159	0%	1.34 [0.31, 5.90]	
HPS Collaborative Group 2002 [15]	1,063	10,269	1,047	10,267	58%	1.02 [0.94, 1.10]	<u> </u>
Waters et al., 2002 - WAVE [16]	14	212	8	211	1%	1.74 [0.75, 4.06]	
Tornwall et al., 2004 - ATBC (first ever CHD) [18]	511	6,781	534	6,849	28%	0.97 [0.86, 1.09]	→
Tornwall et al., 2004 - ATBC (previous MI) [18]	123	497	93	438	7%	1.17 [0.92, 1.48]	
Mooney et al., 2005 [19]	1	142	0	142	0%	3.00 [0.12, 73.03]	-
Hercberg et al., 2010 - SU.VI.MAX [27]	137	6,377	143	6,364	7%	0.96 [0.76, 1.21]	+
Total (95% CI)		24,436		24,430	100%	1.01 [0.95, 1.07]	
Total events	1,853		1,828				
Heterogeneity: Tau ² = 0.00; Chi ² = 4.36, df = 6 (P = 0.63); I ²	= 0%					
Test for overall effect: Z = 0.32 (P = 0.75)							0.2 0.5 1 2 5
							Favours antioxidant Favours control

Supplementary Figure 17. Forest plot of antioxidant supplementation and total CHD risk. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 18. Forest plot of antioxidant supplementation and MI risk. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

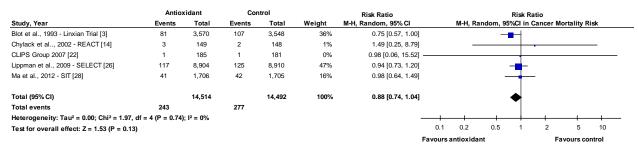
	Antio	xidant	Cor	ntrol		Risk Ratio	Risk Ratio
Study, Year	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95%Cl in Stroke Risk
DeCosse et al., 1989 [2]	0	36	1	22	0%	0.21 [0.01, 4.87]	
Leppala et al., 2000 - ATBC (no previous stroke) [10]	258	7,118	252	7,153	25%	1.03 [0.87, 1.22]	-
Brown et al., 2001 - HATS [13]	2	84	2	76	0%	0.90 [0.13, 6.27]	
HPS Collaborative Group 2002 [15]	511	10,269	518	10,267	52%	0.99 [0.88, 1.11]	+
Waters et al., 2002 - WAVE [16]	6	212	7	211	1%	0.85 [0.29, 2.50]	
Stone et al., 2005 [20]	0	101	1	96	0%	0.32 [0.01, 7.69]	· ·
CLIPS Group 2007 [22]	6	185	5	181	1%	1.17 [0.36, 3.78]	· · · · · · · · · · · · · · · · · · ·
Sesso et al., 2008 - PHS II [25]	104	3,656	113	3,653	11%	0.92 [0.71, 1.20]	-
Lippman et al., 2009 - SELECT [26]	111	8,904	100	8,910	10%	1.11 [0.85, 1.45]	 -
Arruda et al., 2013 [29]	2	46	0	42	0%	4.57 [0.23, 92.62]	-
Total (95% CI)		30,611		30,611	100%	1.00 [0.92, 1.09]	\
Total events	1,000		999				
Heterogeneity: Tau ² = 0.00; Chi ² = 3.74, df = 9 (P =	0.93); I ² = 0	1%					
Test for overall effect: Z = 0.02 (P = 0.99)							0.2 0.5 1 2 5
							Favours antioxidant Favours control


Supplementary Figure 19. Forest plot of antioxidant supplementation and stroke risk. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

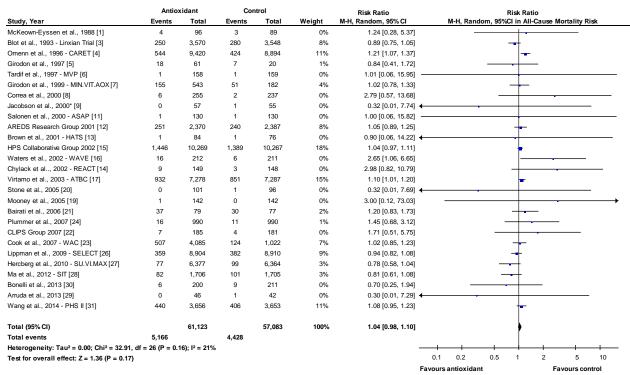
	Antio	xidant	Cor	ntrol		Risk Ratio	Risk Ratio
Study, Year	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95%Cl in CVD Mortality Risk
Tardif et al., 1997 - MVP [6]	1	158	1	159	0	1.01 [0.06, 15.95] —	
Salonen et al., 2000 - ASAP [11]	1	130	1	130	0	1.00 [0.06, 15.82] -	
Brown et al., 2001 - HATS [13]	1	84	1	76	0	0.90 [0.06, 14.22]	
Chylack et al, 2002 - REACT [14]	2	149	1	148	0	1.99 [0.18, 21.67]	
IPS Collaborative Group 2002 [15]	878	10,269	840	10,267	1	1.05 [0.95, 1.14]	
Vaters et al., 2002 - WAVE [16]	10	212	4	211	0	2.49 [0.79, 7.81]	
Mooney et al., 2005 [19]	1	142	0	142	0	3.00 [0.12, 73.03]	· · · · · · · · · · · · · · · · · · ·
tone et al., 2005 [20]	0	101	1	96	0	0.32 [0.01, 7.69]	<u> </u>
LIPS Group 2007 [22]	6	185	3	181	0	1.96 [0.50, 7.71]	
esso et al., 2008 - PHS II [25]	127	3,656	122	3,653	0	1.04 [0.81, 1.33]	-
ippman et al., 2009 - SELECT [26]	117	8,904	142	8,910	0	0.82 [0.65, 1.05]	
Na et al., 2012 - SIT [28]	18	1,706	33	1,705	0	0.55 [0.31, 0.96]	
otal (95% CI)		25,696		25,678	1	0.98 [0.87, 1.11]	•
otal events	1,162		1,149				
leterogeneity: Tau ² = 0.01; Chi ² = 12.32, df	f = 11 (P = 0.	34); I ² = 11%				_	
est for overall effect: Z = 0.25 (P = 0.81)							0.1 0.2 0.5 1 2 5 10
						Fa	vours antioxidant Favours control

Supplementary Figure 20. Forest plot of antioxidant supplementation and CVD mortality risk. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

Supplementary Figure 21. Forest plot of antioxidant supplementation and CHD mortality risk. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

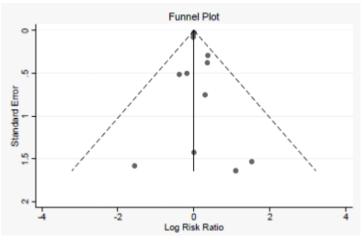

Supplementary Figure 22. Forest plot of antioxidant supplementation and MI mortality risk. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

	Antio	xidant	Cor	ntrol		Risk Ratio	Risk Ratio			
Study, Year	Events	Total	Events	Total Weight	Weight	M-H, Random, 95% CI	M-H, Random, 95%Cl in Stroke Mortality Risk			
Blot et al., 1993 - Linxian Trial [3]	55	3,570	77	3,548	27%	0.71 [0.50, 1.00]	-			
Leppala et al., 2000 - ATBC (no previous stroke) [10]	46	7,118	34	7,153	22%	1.36 [0.87, 2.12]	+			
HPS Collaborative Group 2002 [15]	108	10,269	107	10,267	32%	1.01 [0.77, 1.32]				
CLIPS Group 2007 [22]	3	185	0	181	1%	6.85 [0.36, 131.67]	 			
Lippman et al., 2009 - SELECT [26]	12	8,904	8	8,910	8%	1.50 [0.61, 3.67]				
Ma et al., 2012 - SIT [28]	10	1,706	14	1,705	10%	0.71 [0.32, 1.60]				
Total (95% CI)		31,752		31,764	100%	0.99 [0.75, 1.32]	•			
Total events	234		240							
Heterogeneity: Tau ² = 0.05; Chi ² = 8.66, df = 5 (P =	0.12); I ² = 4	42%								
Test for overall effect: Z = 0.04 (P = 0.97)							0.05 0.2 1 5 20			
							Favours antioxidant Favours control			


Supplementary Figure 23. Forest plot of antioxidant supplementation and stroke mortality risk. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Interstudy heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

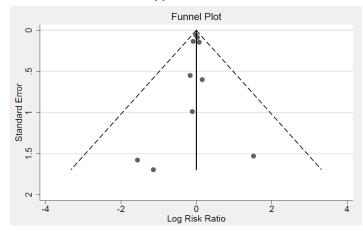
	Antio	cidant	Cor	ntrol		Risk Ratio	Risk Ratio
Study, Year	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95%Cl in Total Cancer Risk
Waters et al., 2002 - WAVE [16]	6	212	5	211	0%	1.19 [0.37, 3.85]	
Virtamo et al., 2003 - ATBC [17]	579	7,278	551	7,287	25%	1.05 [0.94, 1.18]	+
Mooney et al., 2005 [19]	1	142	1	142	0%	1.00 [0.06, 15.83]	
Plummer et al., 2007 [24]	3	990	2	990	0%	1.50 [0.25, 8.96]	
Lippman et al., 2009 - SELECT [26]	846	8,904	824	8,910	38%	1.03 [0.94, 1.13]	+
Hercberg et al., 2010 - SU.VI.MAX [27]	278	6,377	300	6,364	13%	0.92 [0.79, 1.08]	-
Bonelli et al., 2013 [30]	1	200	2	211	0%	0.53 [0.05, 5.77]	<u> </u>
Wang et al., 2014 - PHS II [31]	504	3,656	486	3,653	24%	1.04 [0.92, 1.16]	+
Total (95% CI)		27,759		27,768	100%	1.02 [0.97, 1.08]	•
Total events	2,218		2,171				
Heterogeneity: Tau ² = 0.00; Chi ² = 2.37, d	If = 7 (P = 0.94)	; I ² = 0%					+ + + + + + + + + + + + + + + + + + + +
Test for overall effect: Z = 0.77 (P = 0.44)							0.1 0.2 0.5 1 2 5 10
						Favo	urs antioxidant Favours control

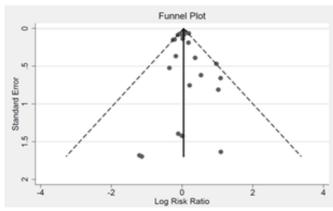
Supplementary Figure 24. Forest plot of antioxidant supplementation and total cancer risk. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.



Supplementary Figure 25. Forest plot of antioxidant supplementation and cancer mortality risk. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Interstudy heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

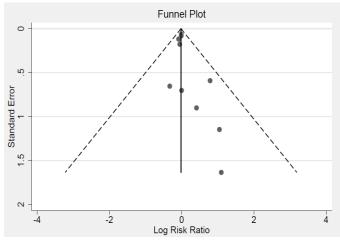
Supplementary Figure 26. Forest plot of antioxidant supplementation and all-cause mortality risk. M-H, Manthel-Haenszel. *Jacobson et al., 2000 – data retrieved from meta-analysis Bjelakovic 2012 (44). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


A. Antioxidant supplementation and total CVD risk


Begg's test = 1.00

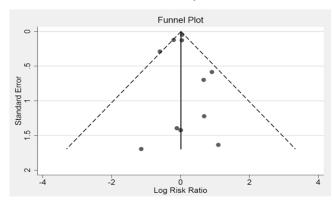
Egger's test = 0.29

C. Antioxidant supplementation and stroke risk


Begg's test = 0.53 Egger's test = 0.66
E. Antioxidant supplementation and all-cause mortality

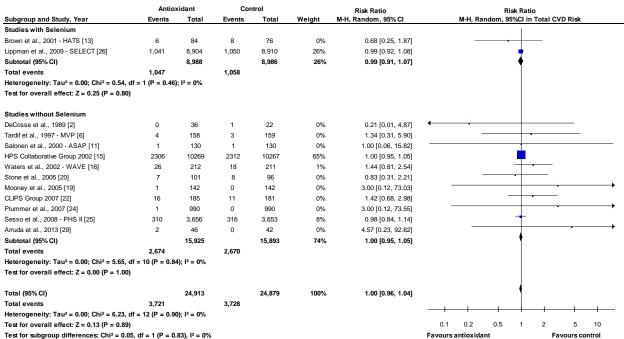
Begg's test = 0.82

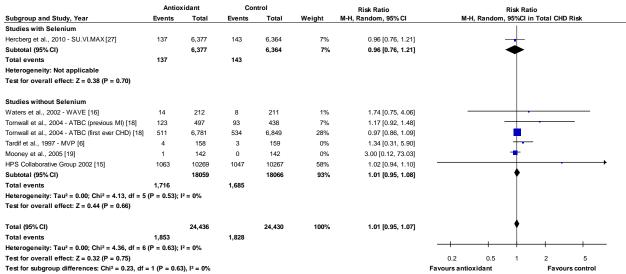
Egger's test = 0.95


B. Antioxidant supplementation and MI risk

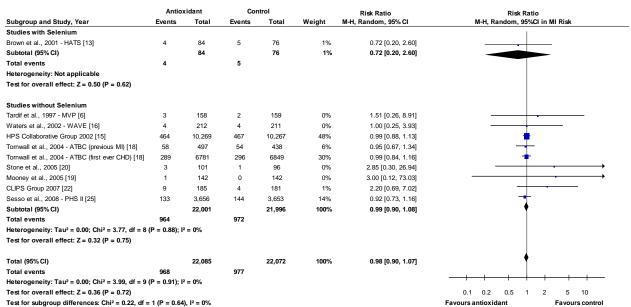
Begg's test = 0.24

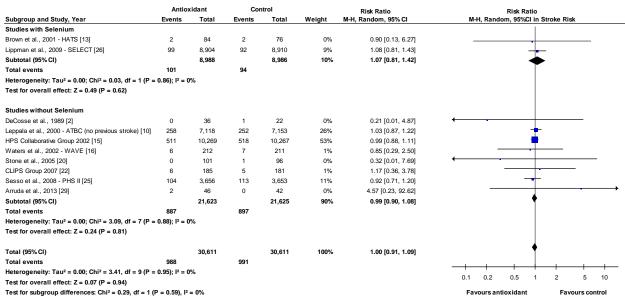
Egger's test = 0.12

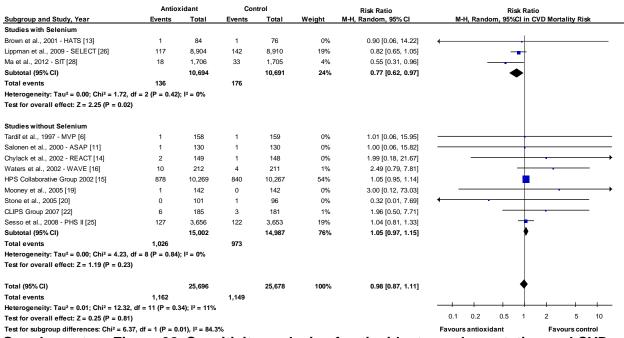

D. Antioxidant supplementation and CVD mortality

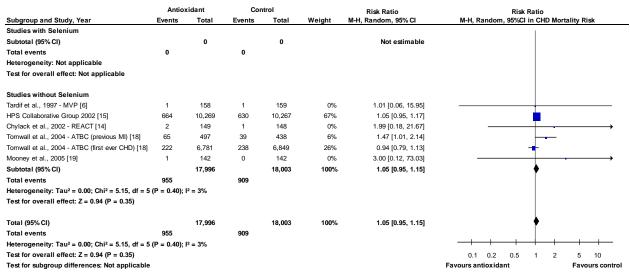

Begg's test = 0.58

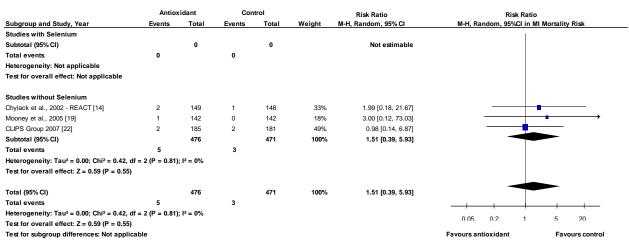
Egger's test = 0.99

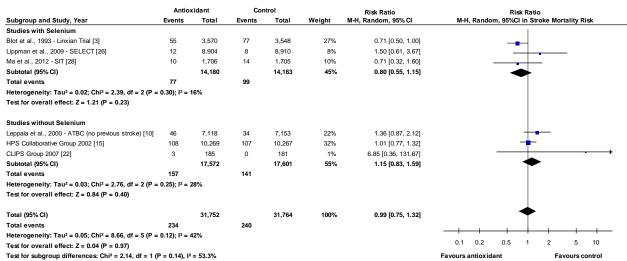

Supplementary Figure 27. Funnel plots of antioxidant supplementation and total CVD, MI, stroke, CVD mortality, and all-cause mortality risk. Dashed lines represent pseudo – 95% confidence intervals (CI). The circles represent risk estimates for each study, and the horizontal lines represent standard errors of the RR. We were unable to test for funnel plot asymmetry for other CVD and cancer outcomes (<10 RCTs).


Supplementary Figure 28. Sensitivity analysis of antioxidant supplementation and total CVD risk for studies with and without selenium. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 29. Sensitivity analysis of antioxidant supplementation and total CHD risk for studies with and without selenium. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

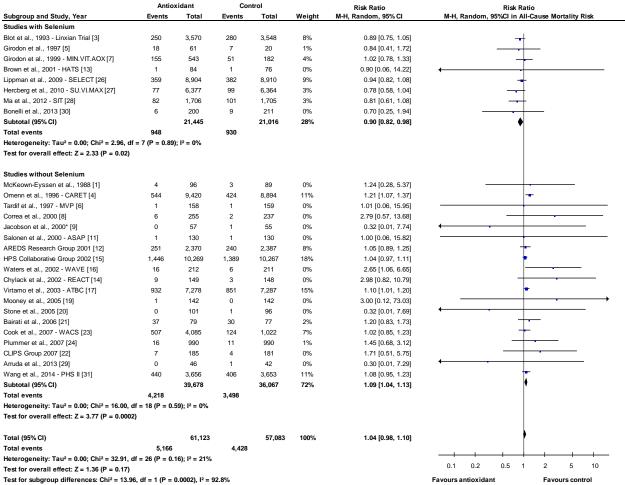

Supplementary Figure 30. Sensitivity analysis of antioxidant supplementation and MI risk for studies with and without selenium. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 31. Sensitivity analysis of antioxidant supplementation and stroke risk for studies with and without selenium. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

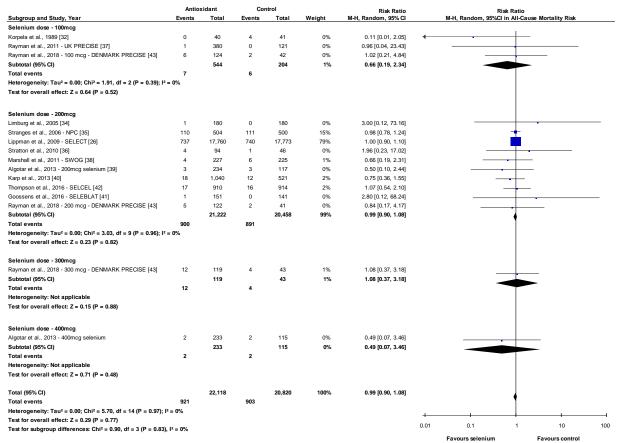

Supplementary Figure 32. Sensitivity analysis of antioxidant supplementation and CVD mortality risk for studies with and without selenium. NNT for antioxidant supplementation and CVD mortality risk for studies with selenium is 264. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

Supplementary Figure 33. Sensitivity analysis of antioxidant supplementation and CHD mortality risk for studies with and without selenium. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

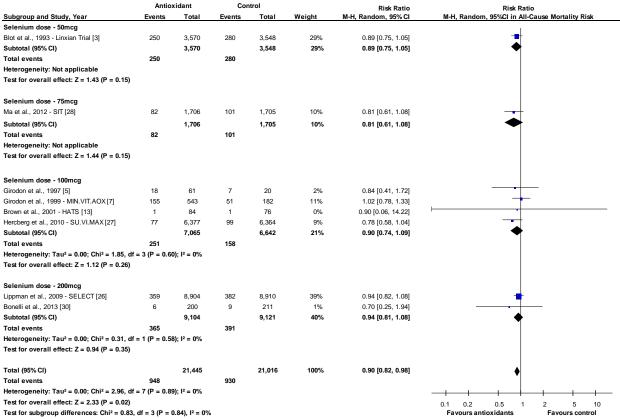
Supplementary Figure 34. Sensitivity analysis of antioxidant supplementation and MI mortality risk for studies with and without selenium. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

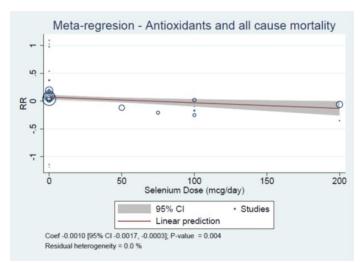

Supplementary Figure 35. Sensitivity analysis of antioxidant supplementation and stroke mortality risk for studies with and without selenium. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

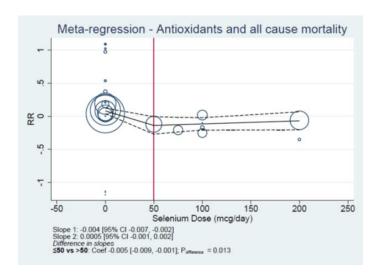
	Antio	cidant	Cor	ntrol	Risk Ratio		Risk Ratio
Subgroup and Study, Year	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95%Cl in Total Cancer Risk
Studies with Selenium							I
ippman et al., 2009 - SELECT [26]	846	8,904	824	8,910	38%	1.03 [0.94, 1.13]	<u> </u>
lercberg et al., 2010 - SU.VI.MAX [27]	278	6,377	300	6,364	13%	0.92 [0.79, 1.08]	
Sonelli et al., 2013 [30]	1	200	2	211	0%	0.53 [0.05, 5.77]	-
Subtotal (95% CI)		15,481		15,485	51%	1.00 [0.92, 1.08]	•
otal events	1,125		1,126				
eterogeneity: Tau ² = 0.00; Chi ² = 1.54, d	f = 2 (P = 0.46)	; I ² = 0%					
est for overall effect: Z = 0.01 (P = 0.99)							
tudies without Selenium							
/aters et al., 2002 - WAVE [16]	6	212	5	211	0%	1.19 [0.37, 3.85]	
irtamo et al., 2003 - ATBC [17]	579	7,278	551	7,287	25%	1.05 [0.94, 1.18]	+
looney et al., 2005 [19]	1	142	1	142	0%	1.00 [0.06, 15.83]	
lummer et al., 2007 [24]	3	990	2	990	0%	1.50 [0.25, 8.96]	·
/ang et al., 2014 - PHS II [31]	504	3,656	486	3,653	24%	1.04 [0.92, 1.16]	+
ubtotal (95% CI)		12,278		12,283	49%	1.05 [0.97, 1.13]	•
otal events	1,093		1,045				
eterogeneity: Tau ² = 0.00; Chi ² = 0.24, d	f = 4 (P = 0.99)	; I ² = 0%					
est for overall effect: Z = 1.09 (P = 0.27)							
otal (95% CI)		27,759		27,768	100%	1.02 [0.97, 1.08]	
otal events	2,218		2,171				
eterogeneity: Tau ² = 0.00; Chi ² = 2.37, d	f = 7 (P = 0.94)	; I ² = 0%					
est for overall effect: Z = 0.77 (P = 0.44)							0.1 0.2 0.5 1 2 5 10
est for subgroup differences: Chi ² = 0.60), df = 1 (P = 0.	44), I ² = 0%					Favours antioxidant Favours contro

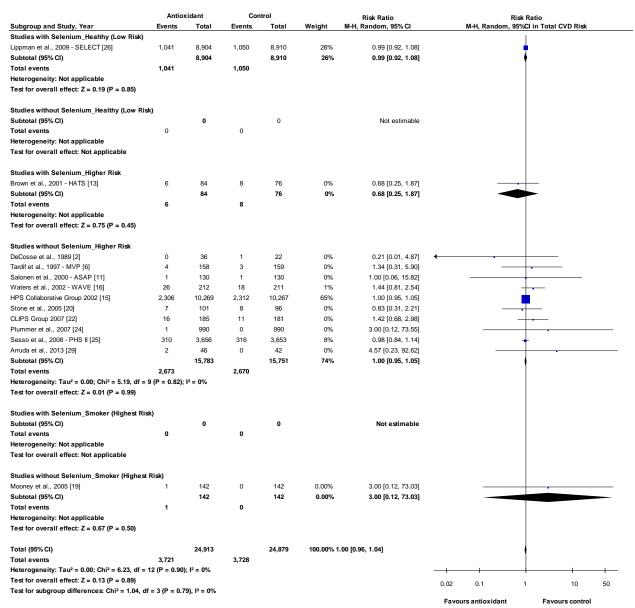

Supplementary Figure 36. Sensitivity analysis of antioxidant supplementation and total cancer risk for studies with and without selenium. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

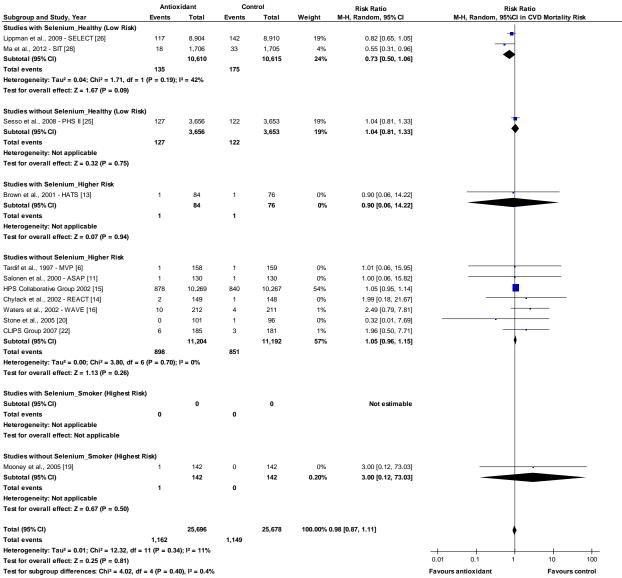
	Antio	kidant	Cor	trol		Risk Ratio	Risk Ratio	
Subgroup and Study, Year	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95%Cl in Cancer Mor	rtality Risk
Studies with Selenium								
Blot et al., 1993 - Linxian Trial [3]	81	3,570	107	3,548	36%	0.75 [0.57, 1.00]	-	
Lippman et al., 2009 - SELECT [26]	117	8,904	125	8,910	47%	0.94 [0.73, 1.20]	#	
Ma et al., 2012 - SIT [28]	41	1,706	42	1,705	16%	0.98 [0.64, 1.49]		
Subtotal (95% CI)		14,180		14,163	99%	0.87 [0.73, 1.03]	•	
otal events	239		274					
leterogeneity: Tau ² = 0.00; Chi ² = 1.61, df =	= 2 (P = 0.45)	; I ² = 0%						
Test for overall effect: Z = 1.58 (P = 0.11)								
Studies without Selenium								
Chylack et al., 2002 - REACT [14]	3	149	2	148	1%	1.49 [0.25, 8.79]		
CLIPS Group 2007 [22]	1	185	1	181	0%	0.98 [0.06, 15.52]		
Subtotal (95% CI)		334		329	1%	1.32 [0.30, 5.87]		-
otal events	4		3					
leterogeneity: Tau ² = 0.00; Chi ² = 0.06, df =	= 1 (P = 0.80)	; I ² = 0%						
est for overall effect: Z = 0.36 (P = 0.72)								
otal (95% CI)		14,514		14,492	100%	0.88 [0.74, 1.04]	•	
Total events	243		277					
leterogeneity: Tau ² = 0.00; Chi ² = 1.97, df =	= 4 (P = 0.74)	; I ² = 0%						-
est for overall effect: Z = 1.53 (P = 0.13)							0.02 0.1 1	10 5
est for subgroup differences: Chi ² = 0.29,	df = 1 (P = 0.	.59), I ² = 0%					Favours antioxidant	Favours contr

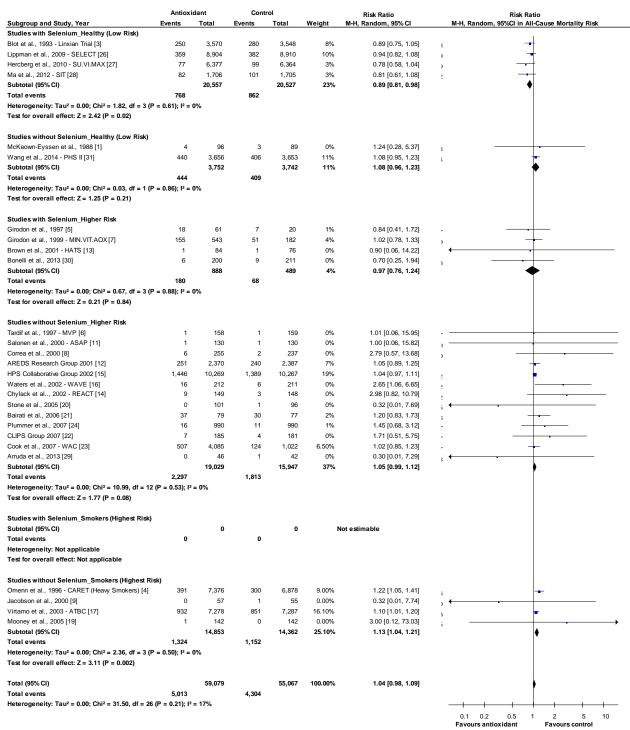

Supplementary Figure 37. Sensitivity analysis of antioxidant supplementation and cancer mortality risk for studies with and without selenium. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 38. Sensitivity analysis of antioxidant supplementation and all-cause mortality risk for studies with and without selenium. NNT for antioxidant supplementation and all-cause mortality risk for studies with selenium is 226. NNH for antioxidant supplementation and all-cause mortality risk for studies without selenium is 115. M-H, Manthel-Haenszel. *Jacobson et al., 2000 − Data retrieved from meta-analysis Bjelakovic 2012 (44). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

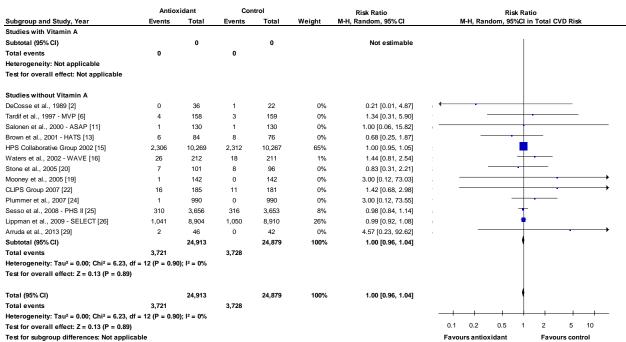

Supplementary Figure 39. Forest plot showing the dose response analysis of selenium supplementation only and all-cause mortality. M-H, Manthel-Haenszel. *Stranges et al., 2006 was used as it contained data up until the end of treatment but only in those free of CVD at baseline(35). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 40. Forest plot showing the dose response analysis of antioxidant supplementation for studies with selenium and all-cause mortality. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

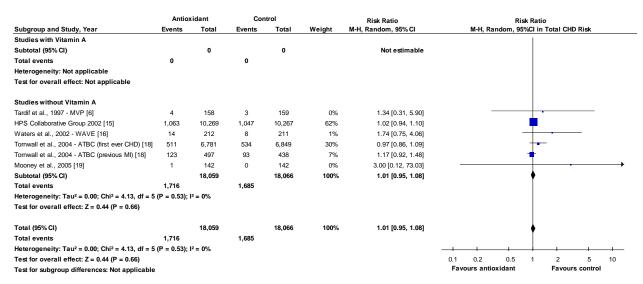

Supplementary Figure 41. Linear dose-response relationship between selenium intake and all-cause mortality risk in studies with antioxidant intake. Individual studies are represented by the circles, with their weight in the overall analysis represented by the size of the circles. The straight red line represents the estimate linear dose response and the grey area represent the upper and lower 95% Confidence Intervals.


Supplementary Figure 42. Non-linear dose-response relationship between selenium intake and all-cause mortality risk in studies with antioxidant intake. Individual studies are represented by the circles, with their weight in the overall analysis represented by the size of the circles. The straight lines represent the estimate dose response and the dashed lines represent the upper and lower 95% Confidence Intervals. The red line represents the knot at 50 mcg/day of selenium.

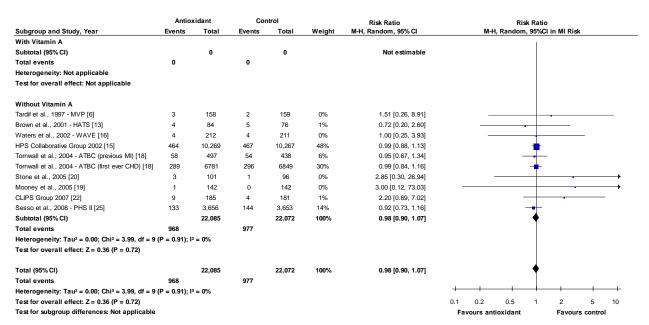
Supplementary Figure 43. Forest plot showing antioxidants (with and without selenium) and total CVD by risk group. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

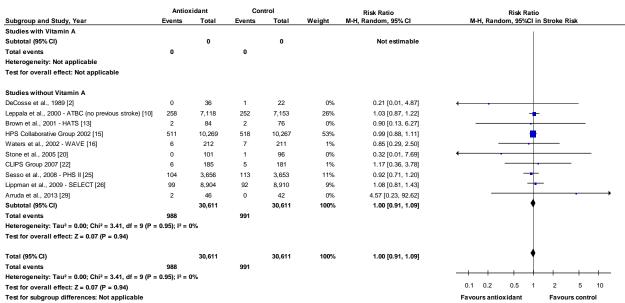


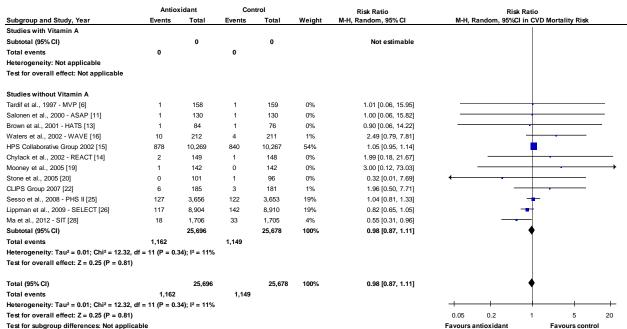
Supplementary Figure 44. Forest plot showing antioxidants (with and without selenium) and total CVD mortality by risk group. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

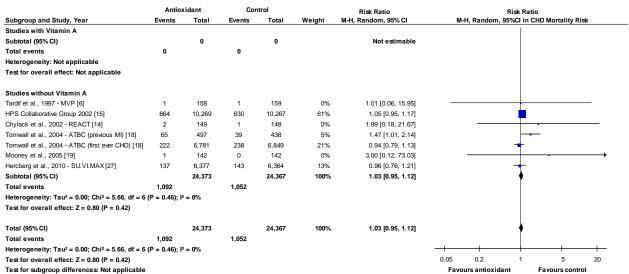


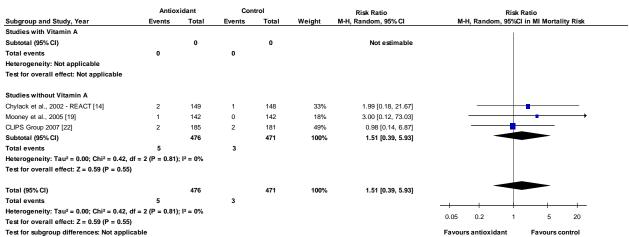
Supplementary Figure 45. Forest plot showing antioxidants (with and without selenium) and all-cause mortality by risk group. M-H, Manthel-Haenszel. *Jacobson et al., 2000 – data retrieved from meta-analysis Bjelakovic 2012(44). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model. The sub

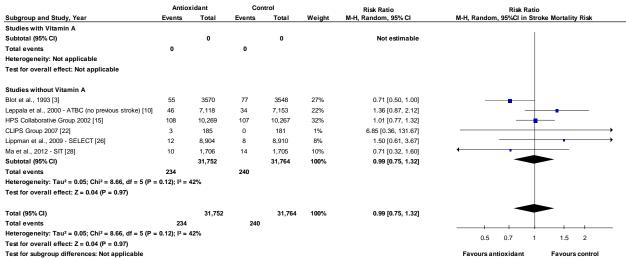

group difference between studies with and without selenium among the healthy (low risk) group was significant (p = 0.01, I^2 = 83.4%) while the subgroup difference within the higher risk group was not significant (p = 0.54, I^2 = 0%).


Supplementary Figure 46. Sensitivity analysis of antioxidant supplementation and total CVD risk for studies with and without vitamin A. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

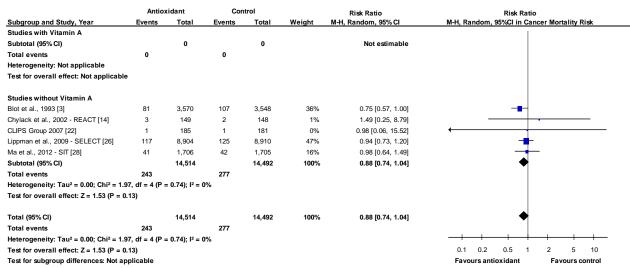

Supplementary Figure 47. Sensitivity analysis of antioxidant supplementation and total CHD risk for studies with and without vitamin A. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

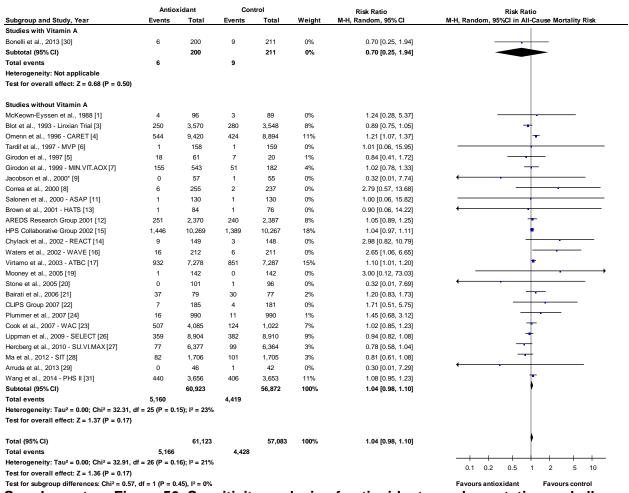

Supplementary Figure 48. Sensitivity analysis of antioxidant supplementation and MI risk for studies with and without vitamin A. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 49. Sensitivity analysis of antioxidant supplementation and stroke risk for studies with and without vitamin A. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

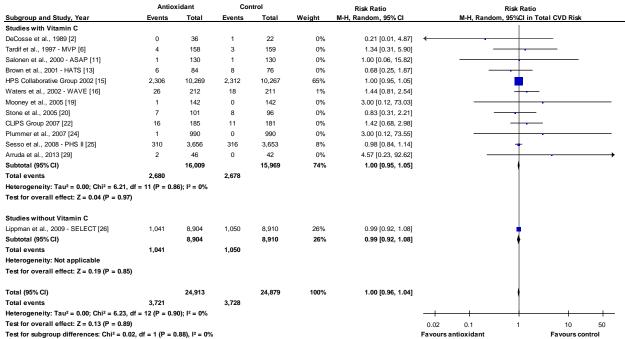

Supplementary Figure 50. Sensitivity analysis of antioxidant supplementation total CVD mortality risk for studies with and without vitamin A. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

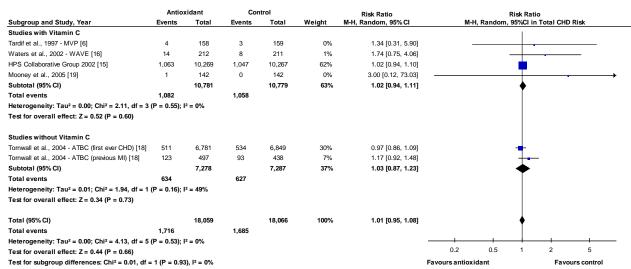
Supplementary Figure 51. Sensitivity analysis of antioxidant supplementation and CHD mortality risk for studies with and without vitamin A. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

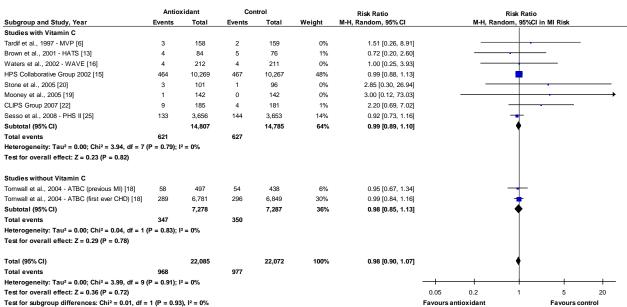

Supplementary Figure 52. Sensitivity analysis of antioxidant supplementation and MI mortality risk for studies with and without vitamin A. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

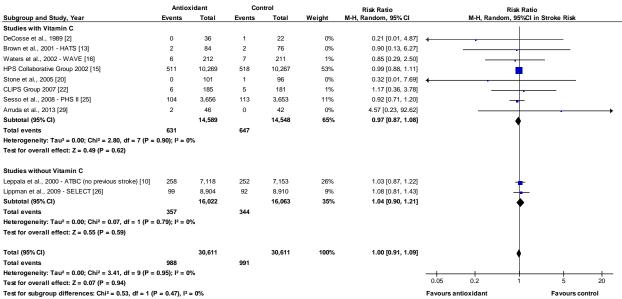

Supplementary Figure 53. Sensitivity analysis of antioxidant supplementation and stroke mortality risk for studies with and without vitamin A. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

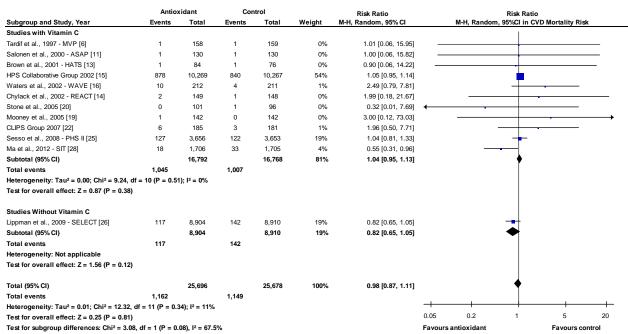
	Antioxidant		Control		Risk Ratio		Risk Ratio
Subgroup and Study, Year	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95%Cl in Total Cancer Risk
Studies with Vitamin A							ĺ
Bonelli et al., 2013 [30]	1	200	2	211	0%	0.53 [0.05, 5.77]	· · ·
Subtotal (95% CI)		200		211	0%	0.53 [0.05, 5.77]	
Total events	1		2				
Heterogeneity: Not applicable							
Test for overall effect: Z = 0.52 (P = 0.60)							
Studies without Vitamin A							
Waters et al., 2002 - WAVE [16]	6	212	5	211	0%	1.19 [0.37, 3.85]	
Virtamo et al., 2003 - ATBC [17]	579	7,278	551	7,287	25%	1.05 [0.94, 1.18]	<u></u>
Mooney et al., 2005 [19]	1	142	1	142	0%	1.00 [0.06, 15.83]	
Plummer et al., 2007 [24]	3	990	2	990	0%	1.50 [0.25, 8.96]	
Lippman et al., 2009 - SELECT [26]	846	8,904	824	8,910	38%	1.03 [0.94, 1.13]	•
Hercberg et al., 2010 - SU.VI.MAX [27]	278	6,377	300	6,364	13%	0.92 [0.79, 1.08]	*
Wang et al., 2014 - PHS2 [31]	504	3,656	486	3,653	24%	1.04 [0.92, 1.16]	•
Subtotal (95% CI)		27,559		27,557	100%	1.02 [0.97, 1.08]	
Total events	2,217		2,169				
Heterogeneity: Tau ² = 0.00; Chi ² = 2.08, df	= 6 (P = 0.91)	; I ² = 0%					
Test for overall effect: Z = 0.79 (P = 0.43)							
Total (95% CI)		27,759		27,768	100%	1.02 [0.97, 1.08]	•
Total events	2,218		2,171				
Heterogeneity: Tau ² = 0.00; Chi ² = 2.37, df	+ + + + + + + + + + + + + + + + + + + +						
Test for overall effect: Z = 0.77 (P = 0.44)							0.02 0.1 1 10 50
Test for subgroup differences: Chi ² = 0.29,	Favours antioxidant Favours control						

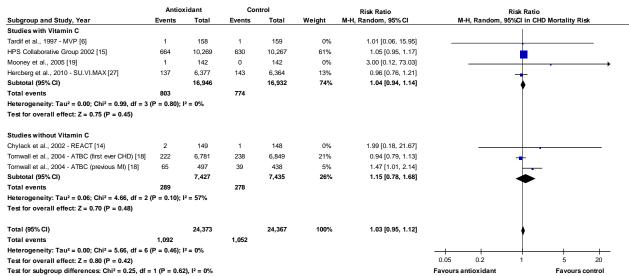

Supplementary Figure 54. Sensitivity analysis of antioxidant supplementation and total cancer risk for studies with and without vitamin A. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

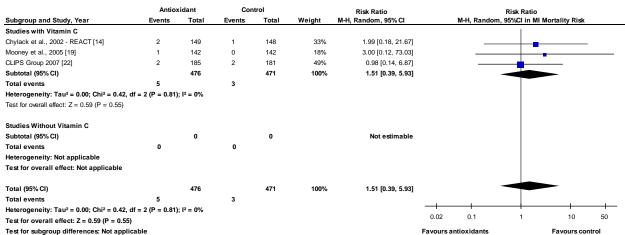

Supplementary Figure 55. Sensitivity analysis of antioxidant supplementation and cancer mortality risk for studies with and without vitamin A. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the P1 statistic. An P2 value P3 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

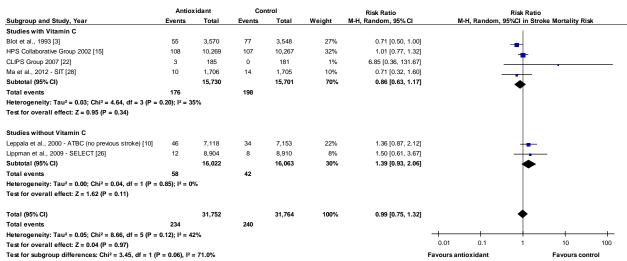

Supplementary Figure 56. Sensitivity analysis of antioxidant supplementation and all-cause mortality risk for studies with and without vitamin A. M-H, Manthel-Haenszel. *Jacobson et al., 2000 – data retrieved from meta-analysis Bjelakovic 2012 (44). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random.

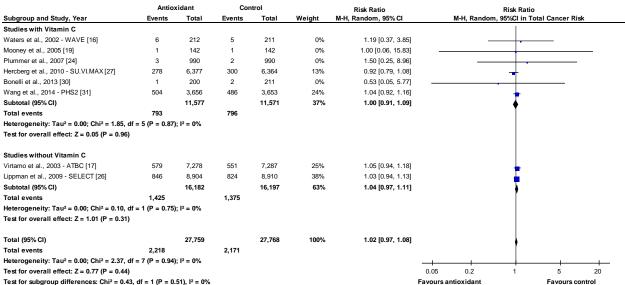

Supplementary Figure 57. Sensitivity analysis of antioxidant supplementation and total CVD risk for studies with and without vitamin C. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

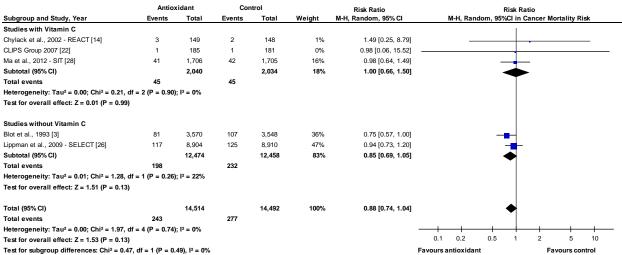

Supplementary Figure 58. Sensitivity analysis of antioxidant supplementation and total CHD risk for studies with and without vitamin C. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

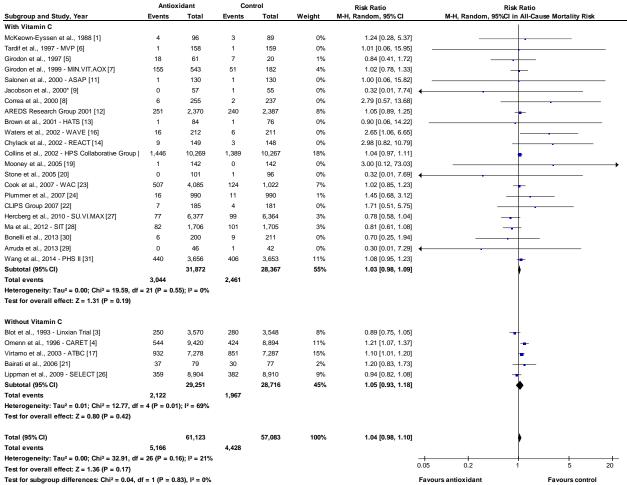

Supplementary Figure 59. Sensitivity analysis of antioxidant supplementation and MI risk for studies with and without vitamin C. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

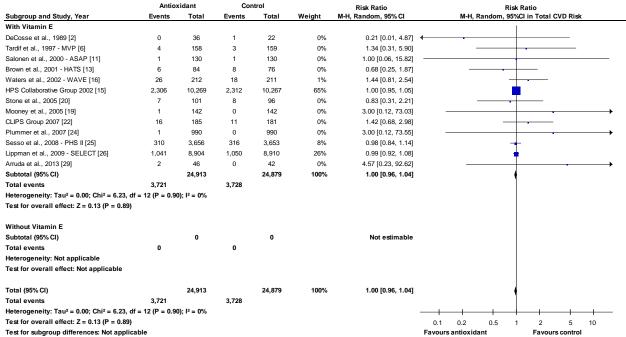

Supplementary Figure 60. Sensitivity analysis of antioxidant supplementation and stroke risk for studies with and without vitamin C. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

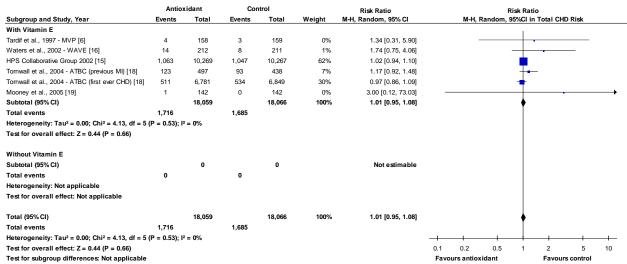

Supplementary Figure 61. Sensitivity analysis of antioxidant supplementation and CVD mortality risk for studies with and without vitamin C. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

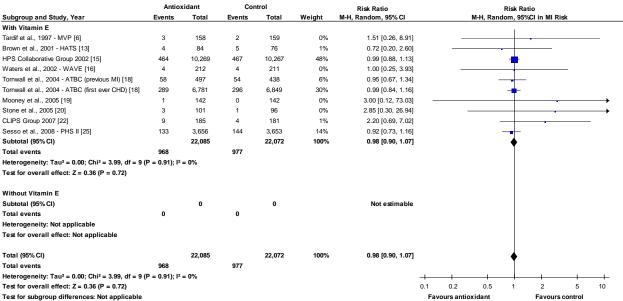

Supplementary Figure 62. Sensitivity analysis of antioxidant supplementation and CHD mortality risk for studies with and without vitamin C. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

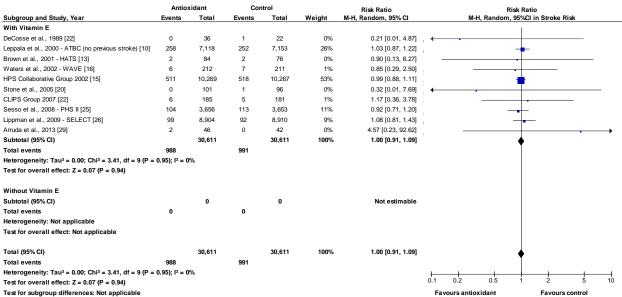

Supplementary Figure 63. Sensitivity analysis of antioxidant supplementation and MI mortality risk for studies with and without vitamin C. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

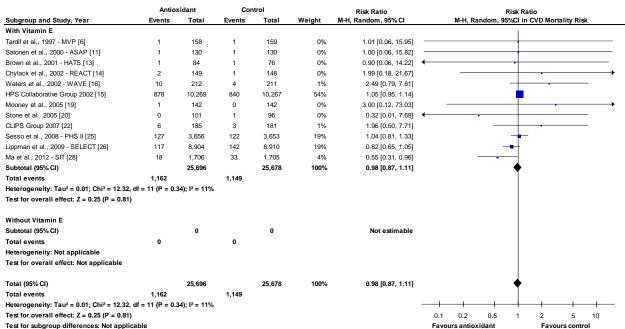

Supplementary Figure 64. Sensitivity analysis of antioxidant supplementation and stroke mortality risk for studies with and without vitamin C. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

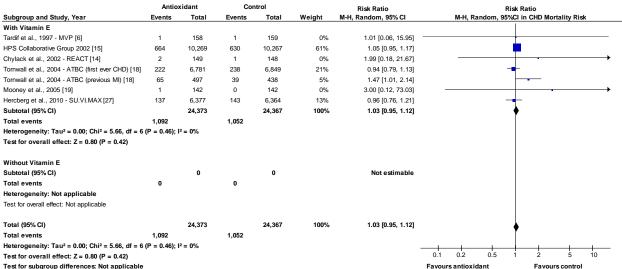

Supplementary Figure 65. Sensitivity analysis of antioxidant supplementation and total cancer risk for studies with and without vitamin C. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 66. Sensitivity analysis of antioxidant supplementation and cancer mortality risk for studies with and without vitamin C. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

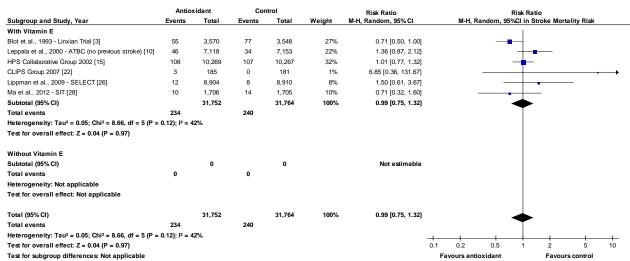

Supplementary Figure 67. Sensitivity analysis of antioxidant supplementation and all-cause mortality risk for studies with and without vitamin C. M-H, Manthel-Haenszel. *Jacobson et al., 2000 – data retrieved from meta-analysis Bjelakovic 2012 (44). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random.

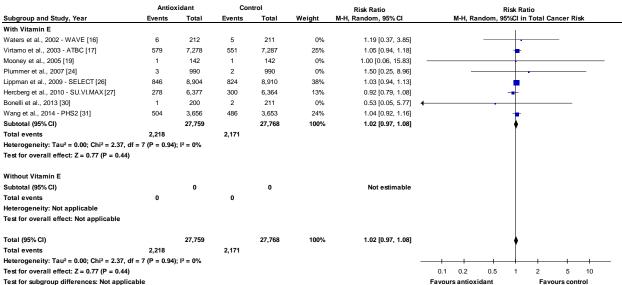

Supplementary Figure 68. Sensitivity analysis of antioxidant supplementation and total CVD risk for studies with and without vitamin E. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 69. Sensitivity analysis of antioxidant supplementation and total CHD risk for studies with and without vitamin E. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

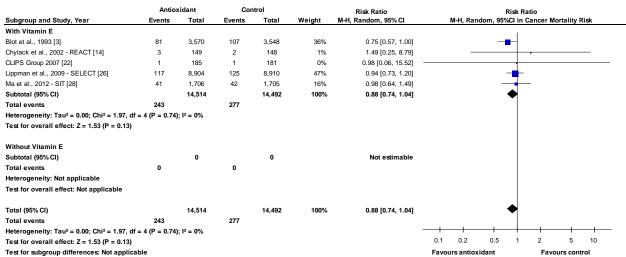

Supplementary Figure 70. Sensitivity analysis of antioxidant supplementation and MI risk for studies with and without vitamin E. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

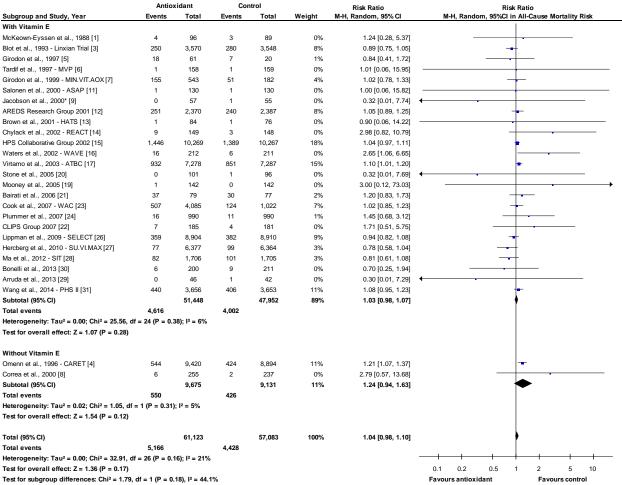
Supplementary Figure 71. Sensitivity analysis of antioxidant supplementation and stroke risk for studies with and without vitamin E. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

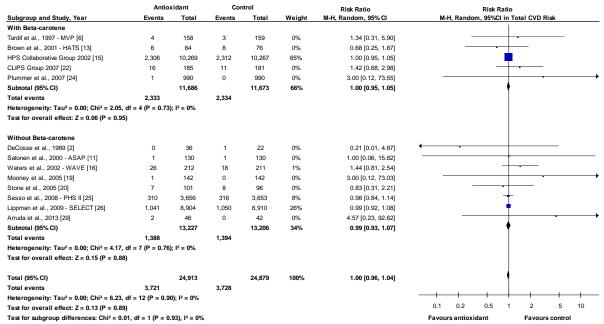

Supplementary Figure 72. Sensitivity analysis of antioxidant supplementation and CVD mortality risk for studies with and without vitamin E. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

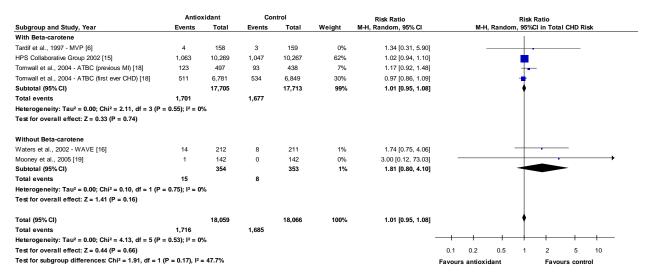

Supplementary Figure 73. Sensitivity analysis of antioxidant supplementation and CHD mortality risk for studies with and without vitamin E. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

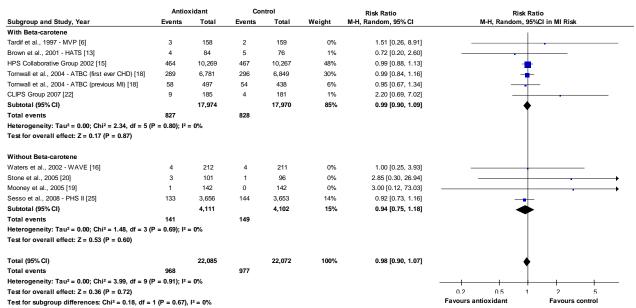
	Antiox	idant	Con	itrol		Risk Ratio	Risk Ratio	
Subgroup and Study, Year	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95%Cl in MI Mortality Risk	
With Vitamin E								
Chylack et al., 2002 - REACT [14]	2	149	1	148	33%	1.99 [0.18, 21.67]		
Mooney et al., 2005 [19]	1	142	0	142	18%	3.00 [0.12, 73.03]	-	\rightarrow
CLIPS Group 2007 [22]	2	185	2	181	49%	0.98 [0.14, 6.87]		
Subtotal (95% CI)		476		471	100%	1.51 [0.39, 5.93]		
Total events	5		3					
Heterogeneity: Tau ² = 0.00; Chi ² = 0.42, df =	2 (P = 0.81)	l ² = 0%						
Test for overall effect: Z = 0.59 (P = 0.55)								
Without Vitamin E								
Subtotal (95% CI)		0		0		Not estimable		
Total events	0		0					
Heterogeneity: Not applicable								
Test for overall effect: Not applicable								
Total (95% CI)		476		471	100%	1.51 [0.39, 5.93]		
Total events	5		3					
Heterogeneity: Tau ² = 0.00; Chi ² = 0.42, df =	2 (P = 0.81)	; I ² = 0%					_+ + + + + +	
Test for overall effect: Z = 0.59 (P = 0.55)							0.05 0.2 1 5 20	
Test for subgroup differences: Not applicable							Favours antioxidant Favours control	

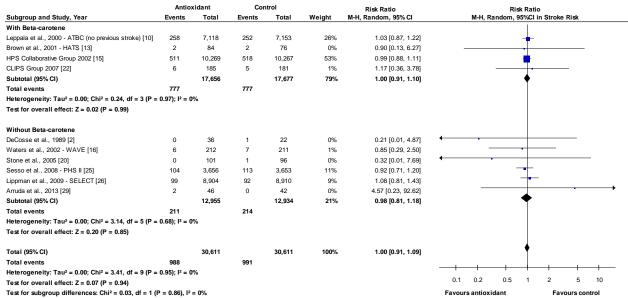

Supplementary Figure 74. Sensitivity analysis of antioxidant supplementation and MI mortality risk for studies with and without vitamin E. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

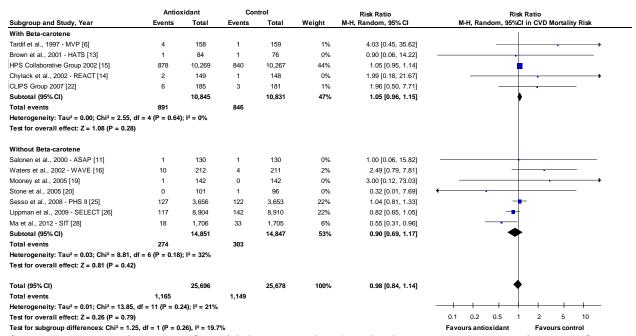

Supplementary Figure 75. Sensitivity analysis of antioxidant supplementation and stroke mortality risk for studies with and without vitamin E. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

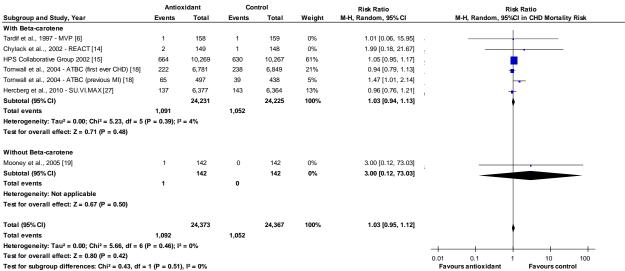

Supplementary Figure 76. Sensitivity analysis of antioxidant supplementation and total cancer risk for studies with and without vitamin E. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 77. Sensitivity analysis of antioxidant supplementation and cancer mortality risk for studies with and without vitamin E. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

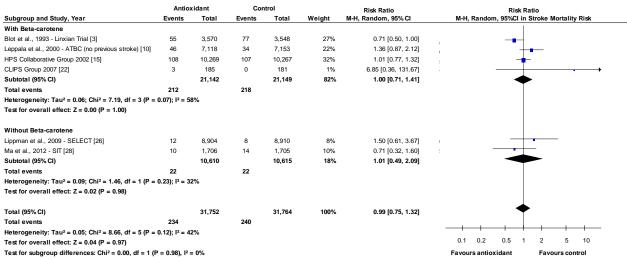

Supplementary Figure 78. Sensitivity analysis of antioxidant supplementation and all-cause mortality risk for studies with and without vitamin E. M-H, Manthel-Haenszel. *Jacobson et al., 2000 – Data retrieved from meta-analysis Bjelakovic 2012 (44). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects.

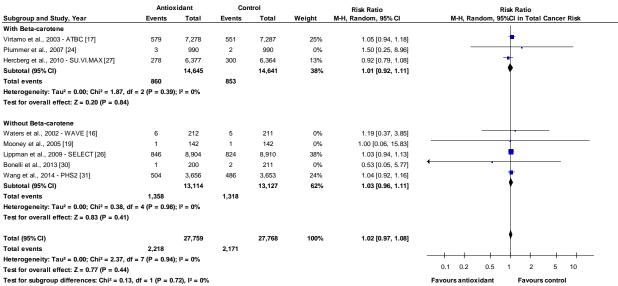

Supplementary Figure 79. Sensitivity analysis of antioxidant supplementation and total CVD risk for studies with and without beta-carotene. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 80. Sensitivity analysis of antioxidant supplementation and total CHD risk for studies with and without beta-carotene. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

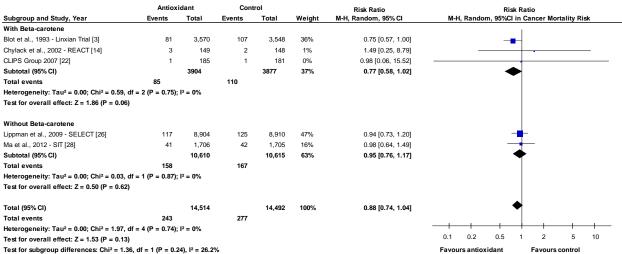

Supplementary Figure 81. Sensitivity analysis of antioxidant supplementation and MI risk for studies with and without beta-carotene. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

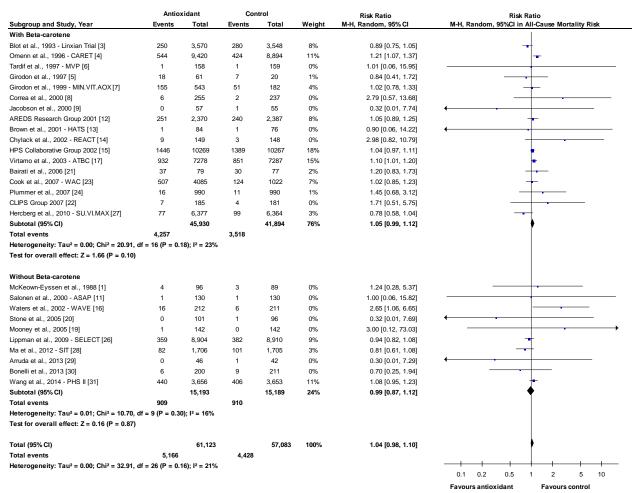
Supplementary Figure 82. Sensitivity analysis of antioxidant supplementation and stroke risk for studies with and without beta-carotene. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

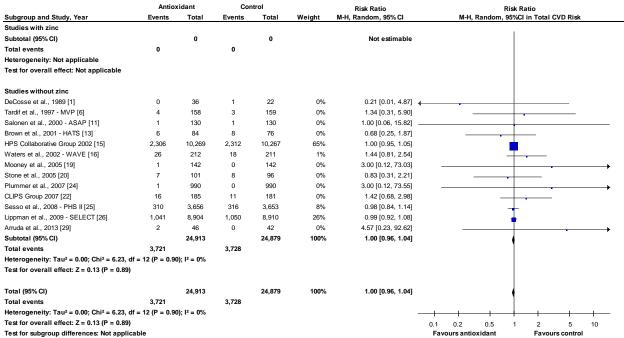

Supplementary Figure 83. Sensitivity analysis of antioxidant supplementation and CVD mortality risk for studies with and without beta-carotene. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

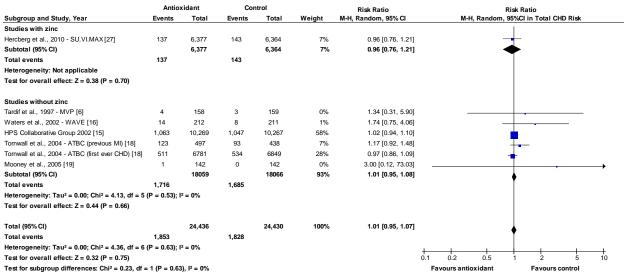

Supplementary Figure 84. Sensitivity analysis of antioxidant supplementation and CHD mortality risk for studies with and without beta-carotene. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

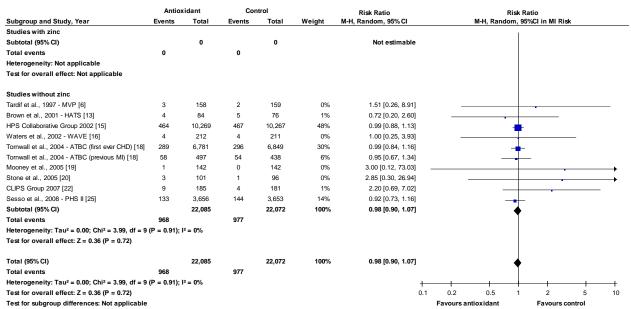
	Antioxidant		Control		Risk Ratio		Risk Ratio
Subgroup and Study, Year	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95%CI in MI Mortality Risk
With Beta-carotene							
Chylack et al., 2002 - REACT [14]	2	149	1	148	33%	1.99 [0.18, 21.67]	
CLIPS Group 2007 [22]	2	185	2	181	49%	0.98 [0.14, 6.87]	
Subtotal (95% CI)		334		329	82%	1.30 [0.29, 5.88]	*
Total events	4		3				
Heterogeneity: Tau ² = 0.00; Chi ² = 0.20, df =	= 1 (P = 0.65)	; I ² = 0%					
Test for overall effect: Z = 0.34 (P = 0.73)							
Without Beta-carotene							
Mooney et al., 2005 [19]	1	142	0	142	18%	3.00 [0.12, 73.03]	
Subtotal (95% CI)		142		142	18%	3.00 [0.12, 73.03]	
Total events	1		0				
Heterogeneity: Not applicable							
Test for overall effect: Z = 0.67 (P = 0.50)							
Total (95% CI)		476		471	100%	1.51 [0.39, 5.93]	
Total events	5		3				
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.42$, $df = 2$ (P = 0.81); $I^2 = 0\%$							
Test for overall effect: Z = 0.59 (P = 0.55)							0.005 0.1 1 10 200
Test for subgroup differences: Chi ² = 0.22, df = 1 (P = 0.64), I^2 = 0%							Favours antioxidant Favours control

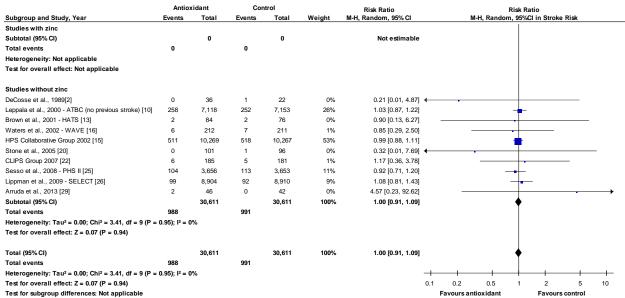

Supplementary Figure 85. Sensitivity analysis of antioxidant supplementation and MI mortality risk for studies with and without beta-carotene. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

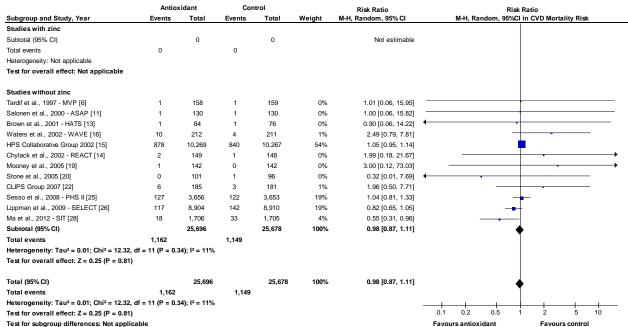

Supplementary Figure 86. Sensitivity analysis of antioxidant supplementation and stroke mortality risk for studies with and without beta-carotene. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

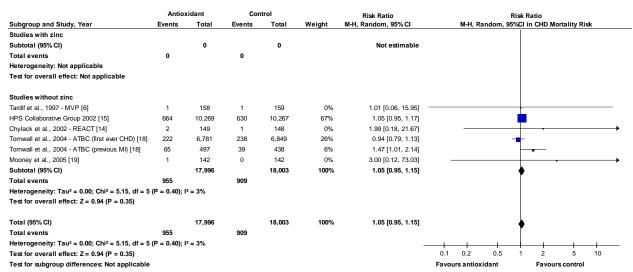

Supplementary Figure 87. Sensitivity analysis of antioxidant supplementation and total cancer risk for studies with and without beta-carotene. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

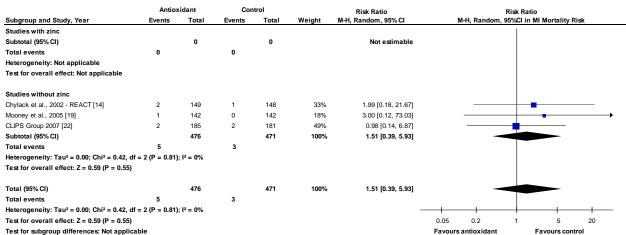

Supplementary Figure 88. Sensitivity analysis of antioxidant supplementation and cancer mortality risk for studies with and without beta-carotene. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

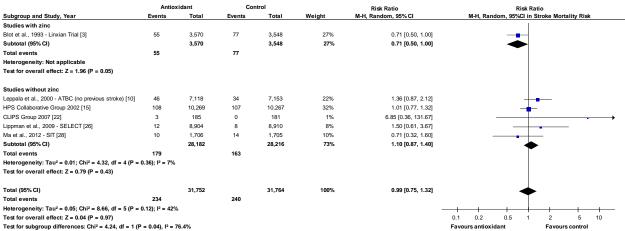

Supplementary Figure 89. Sensitivity analysis of antioxidant supplementation and all-cause mortality risk for studies with and without beta-carotene. M-H, Manthel-Haenszel. *Jacobson et al., 2000 – Data retrieved from meta-analysis Bjelakovic 2012 (44). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random.

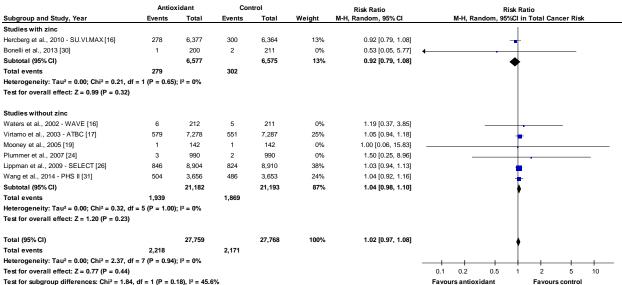

Supplementary Figure 90. Sensitivity analysis of antioxidant supplementation and total CVD risk for studies with and without zinc. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

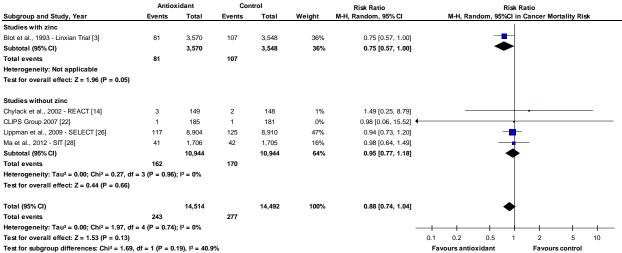

Supplementary Figure 91. Sensitivity analysis of antioxidant supplementation and total CHD risk for studies with and without zinc. Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

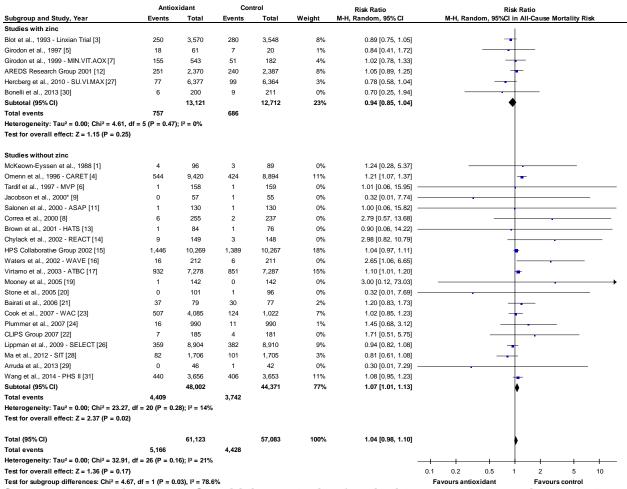

Supplementary Figure 92. Sensitivity analysis of antioxidant supplementation and MI risk for studies with and without zinc. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

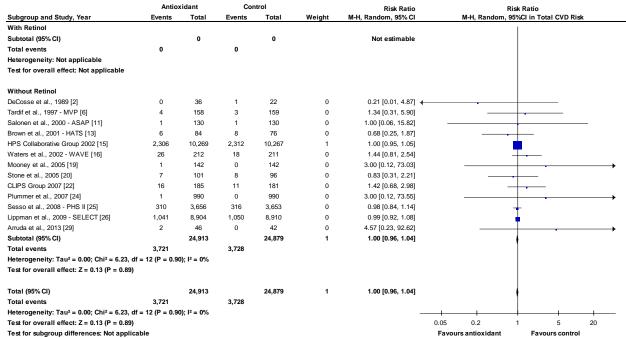

Supplementary Figure 93. Sensitivity analysis of antioxidant supplementation and stroke risk for studies with and without zinc. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

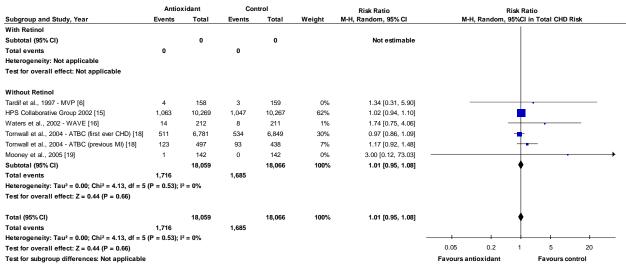

Supplementary Figure 94. Sensitivity analysis of antioxidant supplementation and CVD mortality risk for studies with and without zinc. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

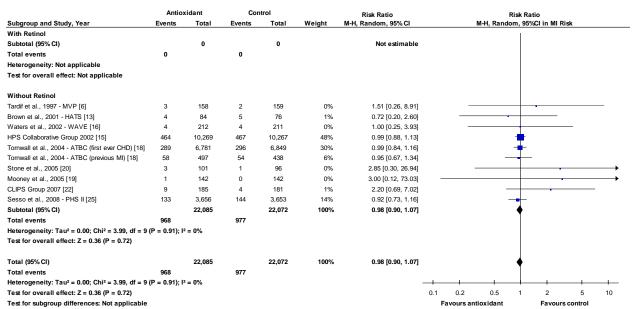

Supplementary Figure 95. Sensitivity analysis of antioxidant supplementation and CHD mortality risk for studies with and without zinc. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

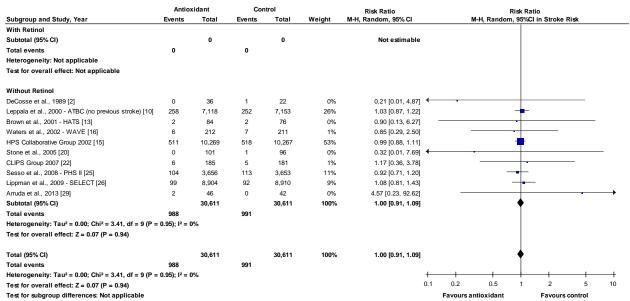

Supplementary Figure 96. Sensitivity analysis of antioxidant supplementation and MI mortality risk for studies with and without zinc. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

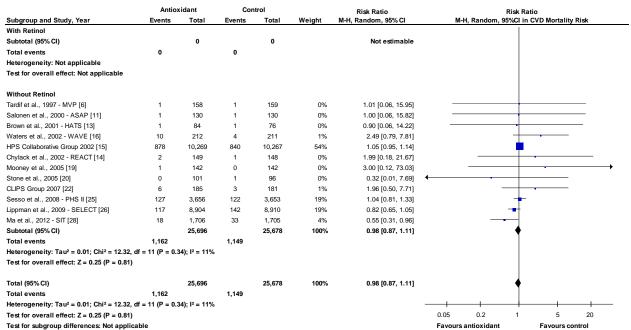

Supplementary Figure 97. Sensitivity analysis of antioxidant supplementation and stroke mortality risk for studies with and without zinc. NNT for antioxidant supplementation and stroke mortality risk for studies with zinc is 159. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 98. Sensitivity analysis of antioxidant supplementation and total cancer risk for studies with and without zinc. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

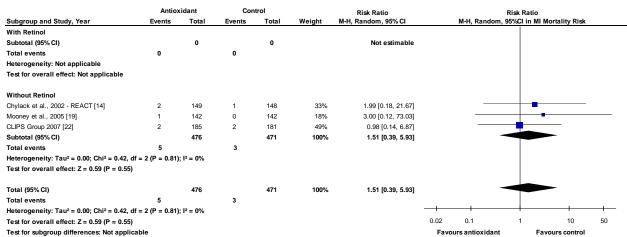

Supplementary Figure 99. Sensitivity analysis of antioxidant supplementation and cancer mortality risk for studies with and without zinc. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

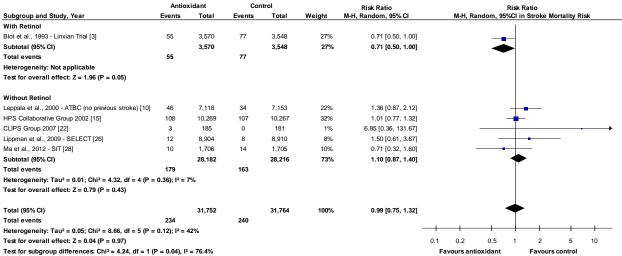

Supplementary Figure 100. Sensitivity analysis of antioxidant supplementation and all-cause mortality risk for studies with and without zinc. NNH for antioxidant supplementation and all-cause mortality risk for studies without zinc is 169. M-H, Manthel-Haenszel. *Jacobson et al., 2000 − Data retrieved from meta-analysis Bjelakovic 2012 (44). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

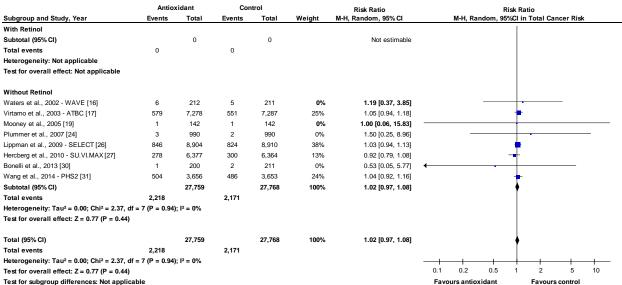

Supplementary Figure 101. Sensitivity analysis of antioxidant supplementation and total CVD risk for studies with and without retinol. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

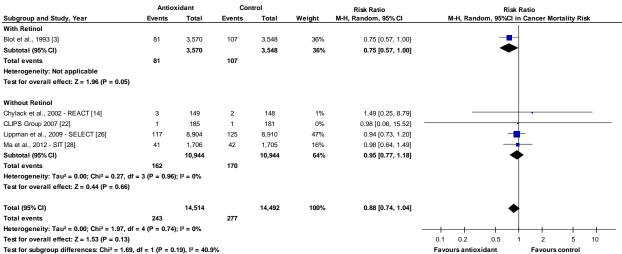

Supplementary Figure 102. Sensitivity analysis of antioxidant supplementation and total CHD risk for studies with and without retinol. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

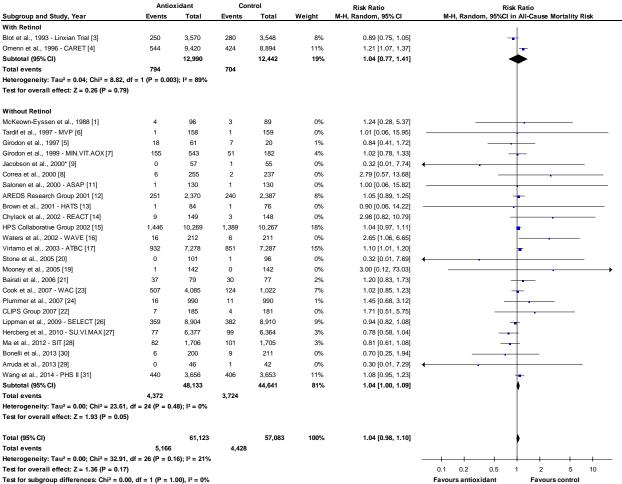

Supplementary Figure 103. Sensitivity analysis of antioxidant supplementation and MI risk for studies with and without retinol. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

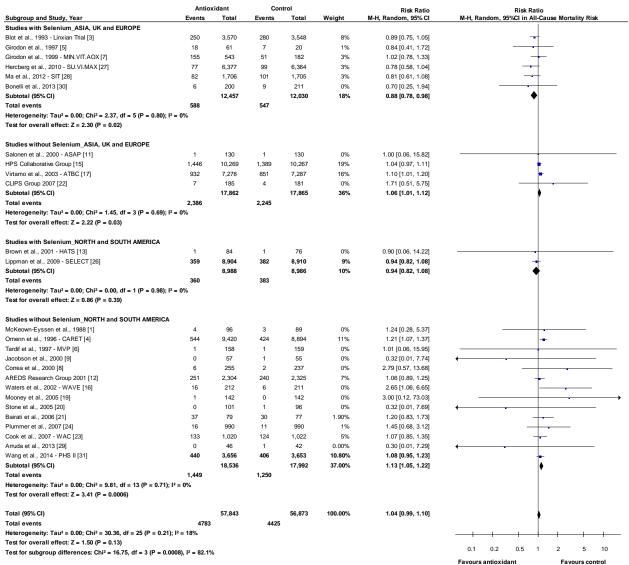

Supplementary Figure 104. Sensitivity analysis of antioxidant supplementation and stroke risk for studies with and without retinol. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

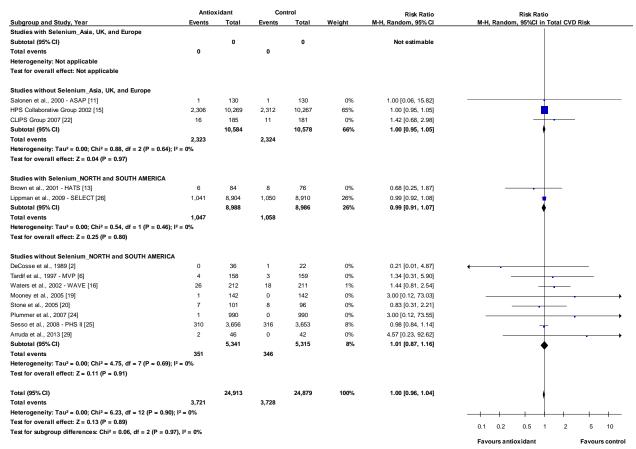

Supplementary Figure 105. Sensitivity analysis of antioxidant supplementation and CVD mortality risk for studies with and without retinol. M-H, Manthel-Haenszel, CVD, cardiovascular disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

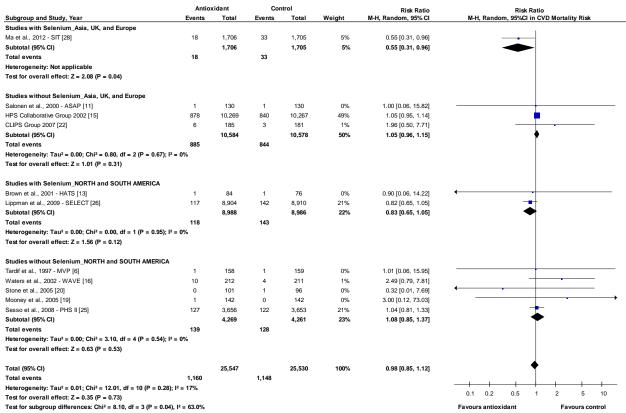

Supplementary Figure 106. Sensitivity analysis of antioxidant supplementation and CHD mortality risk for studies with and without retinol. M-H, Manthel-Haenszel, CHD, coronary heart disease. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 107. Sensitivity analysis of antioxidant supplementation and MI mortality risk for studies with and without retinol. M-H, Manthel-Haenszel, MI, myocardial infarction. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 108. Sensitivity analysis of antioxidant supplementation and stroke mortality risk for studies with and without retinol. NNT for antioxidant supplementation and stroke mortality risk for studies with retinol is 159. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 109. Sensitivity analysis of antioxidant supplementation and total cancer risk for studies with and without retinol. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 110. Sensitivity analysis of antioxidant supplementation and cancer mortality risk for studies with and without retinol. NNT for antioxidant supplementation and cancer mortality risk for studies with retinol is 133. M-H, Manthel-Haenszel. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the P12 statistic. An P2 value P3 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.


Supplementary Figure 111. Sensitivity analysis of antioxidant supplementation and all-cause mortality risk for studies with and without Retinol. NNH for antioxidant supplementation and all-cause mortality risk for studies without retinol is 300. M-H, Manthel-Haenszel. *Jacobson et al., 2000 − Data retrieved from meta-analysis Bjelakovic 2012 (44). The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

Supplementary Figure 112. Forest plot showing antioxidants (with and without selenium) by region and all-cause mortality. M-H, Manthel-Haenszel. Chylack et al., 2002 - REACT was excluded from the plot as the study was conducted in both the USA and UK. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value $\geq 50\%$ is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

Supplementary Figure 113. Forest plot showing antioxidants (with and without selenium) by region and total CVD. M-H, Manthel-Haenszel. Chylack et al., 2002 – REACT was excluded from the plot as the study was conducted in both the USA and UK. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I^2 statistic. An I^2 value \geq 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

Supplementary Figure 114. Forest plot showing antioxidants (with and without selenium) by region and CVD mortality. M-H, Manthel-Haenszel. Chylack et al., 2002 – REACT was excluded from the plot as the study was conducted in both the USA and UK. The diamond represents the pooled risk estimate. Inter-study heterogeneity was tested using the Cochran Q statistic (Chi²) at a significance level of P < 0.10, and quantified by the I² statistic. An I² value ≥ 50% is considered to indicate substantial heterogeneity. All results are presented as risk ratios with 95% Confidence Intervals, using the Manthel-Haenszel method with random effects model.

References

- 1. McKeown-Eyssen G, Holloway C, Jazmaji V, Bright-See E, Dion P, Bruce WR. A randomized trial of vitamins C and E in the prevention of recurrence of colorectal polyps. Cancer research 1988;48(16):4701-5.
- 2. DeCosse JJ, Miller HH, Lesser ML. Effect of wheat fiber and vitamins C and E on rectal polyps in patients with familial adenomatous polyposis. Journal of the National Cancer Institute 1989;81(17):1290-7. doi: 10.1093/jnci/81.17.1290.
- 3. Blot WJ, Li JY, Taylor PR, Guo W, Dawsey S, Wang GQ, Yang CS, Zheng SF, Gail M, Li GY, et al. Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. Journal of the National Cancer Institute 1993;85(18):1483-92. doi: 10.1093/jnci/85.18.1483.
- 4. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. The New England journal of medicine 1996;334(18):1150-5. doi: 10.1056/nejm199605023341802.
- 5. Girodon F, Lombard M, Galan P, Brunet-Lecomte P, Monget AL, Arnaud J, Preziosi P, Hercberg S. Effect of micronutrient supplementation on infection in institutionalized elderly subjects: a controlled trial. Annals of nutrition & metabolism 1997;41(2):98-107.
- 6. Tardif JC, Cote G, Lesperance J, Bourassa M, Lambert J, Doucet S, Bilodeau L, Nattel S, de Guise P. Probucol and multivitamins in the prevention of restenosis after coronary angioplasty.

 Multivitamins and Probucol Study Group. The New England journal of medicine 1997;337(6):365-72. doi: 10.1056/nejm199708073370601.
- 7. Girodon F, Galan P, Monget AL, Boutron-Ruault MC, Brunet-Lecomte P, Preziosi P, Arnaud J, Manuguerra JC, Herchberg S. Impact of trace elements and vitamin supplementation on immunity and infections in institutionalized elderly patients: a randomized controlled trial. MIN. VIT. AOX. geriatric network. Archives of internal medicine 1999;159(7):748-54.
- 8. Correa P, Fontham ET, Bravo JC, Bravo LE, Ruiz B, Zarama G, Realpe JL, Malcom GT, Li D, Johnson WD, et al. Chemoprevention of gastric dysplasia: randomized trial of antioxidant supplements and anti-helicobacter pylori therapy. Journal of the National Cancer Institute 2000;92(23):1881-8.
- Jacobson JS, Begg MD, Wang LW, Wang Q, Agarwal M, Norkus E, Singh VN, Young TL, Yang D, Santella RM. Effects of a 6-month vitamin intervention on DNA damage in heavy smokers. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2000;9(12):1303-11.
- 10. Leppala JM, Virtamo J, Fogelholm R, Albanes D, Taylor PR, Heinonen OP. Vitamin E and beta carotene supplementation in high risk for stroke: a subgroup analysis of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Archives of neurology 2000;57(10):1503-9. doi: 10.1001/archneur.57.10.1503.
- 11. Salonen JT, Nyyssonen K, Salonen R, Lakka HM, Kaikkonen J, Porkkala-Sarataho E, Voutilainen S, Lakka TA, Rissanen T, Leskinen L, et al. Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study: a randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis. Journal of internal medicine 2000;248(5):377-86.
- 12. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Archives of ophthalmology (Chicago, III: 1960) 2001;119(10):1439-52.

- 13. Brown BG, Zhao XQ, Chait A, Fisher LD, Cheung MC, Morse JS, Dowdy AA, Marino EK, Bolson EL, Alaupovic P, et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. The New England journal of medicine 2001;345(22):1583-92. doi: 10.1056/NEJMoa011090.
- 14. Chylack LT, Jr., Brown NP, Bron A, Hurst M, Kopcke W, Thien U, Schalch W. The Roche European American Cataract Trial (REACT): a randomized clinical trial to investigate the efficacy of an oral antioxidant micronutrient mixture to slow progression of age-related cataract. Ophthalmic epidemiology 2002;9(1):49-80.
- 15. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet (London, England) 2002;360(9326):23-33. doi: 10.1016/s0140-6736(02)09328-5.
- 16. Waters DD, Alderman EL, Hsia J, Howard BV, Cobb FR, Rogers WJ, Ouyang P, Thompson P, Tardif JC, Higginson L, et al. Effects of hormone replacement therapy and antioxidant vitamin supplements on coronary atherosclerosis in postmenopausal women: a randomized controlled trial. Jama 2002;288(19):2432-40.
- 17. Virtamo J, Pietinen P, Huttunen JK, Korhonen P, Malila N, Virtanen MJ, Albanes D, Taylor PR, Albert P. Incidence of cancer and mortality following alpha-tocopherol and beta-carotene supplementation: a postintervention follow-up. Jama 2003;290(4):476-85. doi: 10.1001/jama.290.4.476.
- 18. Tornwall ME, Virtamo J, Korhonen PA, Virtanen MJ, Taylor PR, Albanes D, Huttunen JK. Effect of alpha-tocopherol and beta-carotene supplementation on coronary heart disease during the 6-year post-trial follow-up in the ATBC study. European heart journal 2004;25(13):1171-8. doi: 10.1016/j.ehj.2004.05.007.
- 19. Mooney LA, Madsen AM, Tang D, Orjuela MA, Tsai WY, Garduno ER, Perera FP. Antioxidant vitamin supplementation reduces benzo(a)pyrene-DNA adducts and potential cancer risk in female smokers. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2005;14(1):237-42.
- 20. Stone PH, Lloyd-Jones DM, Kinlay S, Frei B, Carlson W, Rubenstein J, Andrews TC, Johnstone M, Sopko G, Cole H, et al. Effect of intensive lipid lowering, with or without antioxidant vitamins, compared with moderate lipid lowering on myocardial ischemia in patients with stable coronary artery disease: the Vascular Basis for the Treatment of Myocardial Ischemia Study. Circulation 2005;111(14):1747-55. doi: 10.1161/01.cir.0000160866.90148.76.
- 21. Bairati I, Meyer F, Jobin E, Gelinas M, Fortin A, Nabid A, Brochet F, Tetu B. Antioxidant vitamins supplementation and mortality: a randomized trial in head and neck cancer patients. International journal of cancer 2006;119(9):2221-4. doi: 10.1002/ijc.22042.
- 22. Catalano M, Born G, Peto R. Prevention of serious vascular events by aspirin amongst patients with peripheral arterial disease: randomized, double-blind trial. Journal of internal medicine 2007;261(3):276-84. doi: 10.1111/j.1365-2796.2006.01763.x.
- 23. Cook NR, Albert CM, Gaziano JM, Zaharris E, MacFadyen J, Danielson E, Buring JE, Manson JE. A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the Women's Antioxidant Cardiovascular Study. Archives of internal medicine 2007;167(15):1610-8. doi: 10.1001/archinte.167.15.1610.
- 24. Plummer M, Vivas J, Lopez G, Bravo JC, Peraza S, Carillo E, Cano E, Castro D, Andrade O, Sanchez V, et al. Chemoprevention of precancerous gastric lesions with antioxidant vitamin supplementation: a randomized trial in a high-risk population. Journal of the National Cancer Institute 2007;99(2):137-46. doi: 10.1093/jnci/djk017.

- 25. Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, Bubes V, Manson JE, Glynn RJ, Gaziano JM. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians' Health Study II randomized controlled trial. Jama 2008;300(18):2123-33. doi: 10.1001/jama.2008.600.
- 26. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM, Hartline JA, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Jama 2009;301(1):39-51. doi: 10.1001/jama.2008.864.
- 27. Hercberg S, Kesse-Guyot E, Druesne-Pecollo N, Touvier M, Favier A, Latino-Martel P, Briancon S, Galan P. Incidence of cancers, ischemic cardiovascular diseases and mortality during 5-year follow-up after stopping antioxidant vitamins and minerals supplements: a postintervention follow-up in the SU.VI.MAX Study. International journal of cancer 2010;127(8):1875-81. doi: 10.1002/ijc.25201.
- 28. Ma JL, Zhang L, Brown LM, Li JY, Shen L, Pan KF, Liu WD, Hu Y, Han ZX, Crystal-Mansour S, et al. Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality. Journal of the National Cancer Institute 2012;104(6):488-92. doi: 10.1093/jnci/djs003.
- 29. Arruda MM, Mecabo G, Rodrigues CA, Matsuda SS, Rabelo IB, Figueiredo MS. Antioxidant vitamins C and E supplementation increases markers of haemolysis in sickle cell anaemia patients: a randomized, double-blind, placebo-controlled trial. Br J Haematol 2013;160(5):688-700. doi: 10.1111/bjh.12185.
- 30. Bonelli L, Puntoni M, Gatteschi B, Massa P, Missale G, Munizzi F, Turbino L, Villanacci V, De Censi A, Bruzzi P. Antioxidant supplement and long-term reduction of recurrent adenomas of the large bowel. A double-blind randomized trial. J Gastroenterol 2013;48(6):698-705. doi: 10.1007/s00535-012-0691-z.
- 31. Wang L, Sesso HD, Glynn RJ, Christen WG, Bubes V, Manson JE, Buring JE, Gaziano JM. Vitamin E and C supplementation and risk of cancer in men: posttrial follow-up in the Physicians' Health Study II randomized trial. The American journal of clinical nutrition 2014;100(3):915-23. doi: 10.3945/ajcn.114.085480.
- 32. Korpela HK, J. Jussila, E. Kemila, S. Kaariainen, M. Kaariainen, T. Sotaniemi, E. A. Effect of selenium supplementation after acute myocardial infarction. Research communications in chemical pathology and pharmacology 1989;65(2):249-52.
- 33. Duffield-Lillico AJR, M. E. Turnbull, B. W. Combs, G. F. Slate, E. H. Fischbach, L. A. Marshall, J. R. Clark, L. C. Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: a summary report of the Nutritional Prevention of Cancer Trial. Cancer epidemiology, biomarkers & prevention 2002;11(7):630-9.
- 34. Limburg PJ, Wei W, Ahnen DJ, Qiao Y, Hawk ET, Wang G, Giffen CA, Wang G, Roth MJ, Lu N, et al. Randomized, placebo-controlled, esophageal squamous cell cancer chemoprevention trial of selenomethionine and celecoxib. Gastroenterology 2005;129(3):863-73. doi: 10.1053/j.gastro.2005.06.024.
- 35. Stranges S, Marshall JR, Trevisan M, Natarajan R, Donahue RP, Combs GF, Farinaro E, Clark LC, Reid ME. Effects of selenium supplementation on cardiovascular disease incidence and mortality: secondary analyses in a randomized clinical trial. American journal of epidemiology 2006;163(8):694-9. doi: 10.1093/aje/kwj097.
- 36. Stratton MS, Algotar AM, Ranger-Moore J, Stratton SP, Slate EH, Hsu CH, Thompson PA, Clark LC, Ahmann FR. Oral selenium supplementation has no effect on prostate-specific antigen velocity

- in men undergoing active surveillance for localized prostate cancer. Cancer prevention research (Philadelphia, Pa) 2010;3(8):1035-43. doi: 10.1158/1940-6207.Capr-09-0143.
- 37. Rayman MP, Winther KH, Pastor-Barriuso R, Cold F, Thvilum M, Stranges S, Guallar E, Cold S. Effect of long-term selenium supplementation on mortality: Results from a multiple-dose, randomised controlled trial. Free radical biology & medicine 2018;127:46-54. doi: 10.1016/j.freeradbiomed.2018.02.015.
- 38. Marshall JR, Tangen CM, Sakr WA, Wood DP, Jr., Berry DL, Klein EA, Lippman SM, Parnes HL, Alberts DS, Jarrard DF, et al. Phase III trial of selenium to prevent prostate cancer in men with high-grade prostatic intraepithelial neoplasia: SWOG S9917. Cancer prevention research (Philadelphia, Pa) 2011;4(11):1761-9. doi: 10.1158/1940-6207.capr-10-0343.
- 39. Algotar AM, Stratton MS, Ahmann FR, Ranger-Moore J, Nagle RB, Thompson PA, Slate E, Hsu CH, Dalkin BL, Sindhwani P, et al. Phase 3 clinical trial investigating the effect of selenium supplementation in men at high-risk for prostate cancer. The Prostate 2013;73(3):328-35. doi: 10.1002/pros.22573.
- 40. Karp DD, Lee SJ, Keller SM, Wright GS, Aisner S, Belinsky SA, Johnson DH, Johnston MR, Goodman G, Clamon G, et al. Randomized, double-blind, placebo-controlled, phase III chemoprevention trial of selenium supplementation in patients with resected stage I non-small-cell lung cancer: ECOG 5597. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2013;31(33):4179-87. doi: 10.1200/jco.2013.49.2173.
- 41. Goossens MEZ, M. P. van Poppel, H. Joniau, S. Ackaert, K. Ameye, F. Billiet, I. Braeckman, J. Breugelmans, A. Darras, J. Dilen, K. Goeman, L. Tombal, B. Van Bruwaene, S. Van Cleyenbreugel, B. Van der Aa, F. Vekemans, K. Buntinx, F. Phase III randomised chemoprevention study with selenium on the recurrence of non-invasive urothelial carcinoma. The SELEnium and BLAdder cancer Trial. European journal of cancer 2016;69:9-18.
- 42. Thompson PA, Ashbeck EL, Roe DJ, Fales L, Buckmeier J, Wang F, Bhattacharyya A, Hsu CH, Chow HH, Ahnen DJ, et al. Selenium Supplementation for Prevention of Colorectal Adenomas and Risk of Associated Type 2 Diabetes. Journal of the National Cancer Institute 2016;108(12). doi: 10.1093/jnci/djw152.
- 43. Rayman MP, Stranges S, Griffin BA, Pastor-Barriuso R, Guallar E. Effect of supplementation with high-selenium yeast on plasma lipids: a randomized trial. Annals of internal medicine 2011;154(10):656-65. doi: 10.7326/0003-4819-154-10-201105170-00005.
- 44. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. The Cochrane database of systematic reviews 2012(3):Cd007176. doi: 10.1002/14651858.CD007176.pub2.