Supplementary information

Targeted glycan degradation potentiates the anticancer immune response in vivo

In the format provided by the authors and unedited

Supplementary Information

Targeted glycan degradation overcomes glyco-immune checkpoints and potentiates the anticancer immune response *in vivo*

Melissa A. Gray, Michal A. Stanczak, Natália R. Mantuano, Han Xiao, Johan F. A. Pijnenborg, Stacy A. Malaker, Caitlyn L. Miller, Payton A. Weidenbacher, Julia T. Tanzo, Green Ahn, Elliot C. Woods, Heinz Läubli, Carolyn R. Bertozzi

Correspondence to: bertozzi@stanford.edu

This PDF file includes:

Supplementary Table 1 Supplementary Figures 1-22 Supplementary Note 1 Supplementary Note 2

Supplementary Table 1. Antibody and lectin reagent information and concentrations

Antibody or Lectin	Source (#)	Usage, dilution
Alexa Fluor® 647 anti-human Her2 antibody	Biolegend (324412)	FC, 1:100
FITC Conjugated Sambucus nigra (Elderberry Bark) -SNA-I-, 1mg	EY Laboratories (F-6802-1)	FC, 1:100
Siglec-7-Fc Chimera protein	R&D Systems (1138-SL-050)	FC, 1:50
Siglec-9-Fc Chimera protein	R&D Systems (1139-SL-050)	FC, 1:50
Siglec-F-Fc Chimera protein	R&D Systems (1706-SF-050)	FC, 1:50
Alexa Fluor® 488 AffiniPure Goat Anti-Human	Jackson ImmunoResearch	FC, 1:375
IgG, Fcγ fragment specific	(109-545-008)	
PE/Dazzle™ 594 anti-mouse CD3 Antibody	Biolegend (100246)	FC, 1:100
Brilliant Violet 605™ anti-mouse CD4 antibody	Biolegend (100548)	FC, 1:100
Brilliant Violet 785™ anti-mouse CD8a Antibody	Biolegend (100750)	FC, 1:100
Alexa Fluor® 488 Rat Anti-CD11b	BD Pharmingen (557672)	FC, 1:100
PE-Cy™7 Hamster Anti-Mouse CD11c	BD Biosciences (561022)	FC, 1:100
BV421 Rat Anti-Mouse CD19	BD Pharmingen (562701)	FC, 1:100
FITC anti-mouse CD25 Antibody	Biolegend (102005)	FC, 1:100
CD45 Monoclonal Antibody (30-F11), PerCP- Cyanine5.5	eBioscience (45-0451-82)	FC, 1:100 (FC, 1:400: Supp. Fig. 31)
APC anti-mouse CD69 Antibody	Biolegend (104514)	FC, 1:100
APC anti-mouse CD206 (MMR) Antibody	Biolegend (141708)	FC, 1:50
PE Rat Anti-Mouse CD335 (NKp46) Clone 29A1.4	BD (560757)	FC, 1:50
Alexa Fluor® 647 anti-mouse/rat/human FOXP3 Antibody	Biolegend (320014)	FC, 1:100
APC/Cyanine7 anti-mouse I-A/I-E Antibody	Biolegend (107628)	FC, 1:200
Brilliant Violet 421™ anti-mouse F4/80 Antibody	Biolegend (123132)	FC, 1:100
FITC Mouse anti-Human Granzyme B Clone GB11	BD (560211)	FC, 1:100
PE/Cy7 Streptavidin	Biolegend (405206)	FC, 1:400
Biotinylated Concanavalin A (Con A)	Vector Labs (B-1005)	FC, 10 µg/mL
Biotinylated Peanut Agglutinin (PNA)	Vector Labs (B-1075)	FC, 10 µg/mL IHC: 20 µg/mL
Biotinylated Maackia Amurensis Lectin II (MALII)	Vector Labs (B-1265)	FC, 10 µg/mL IHC: 20 µg/mL
Biotinylated Sambucus Nigra Lectin (SNA,	Vector Labs (B-1305)	FC, 10 µg/mL
Streptavidin Streptavidin, Alexa Fluor™ 647	Thermo (S21374)	FC: 2 µg/mL
ADC anti human CD228 (Sinlag 7)	Bial agond (220206)	
APC anti-numan CD328 (Siglec-7)	BioLegend (339206)	FC, 1:10
APC Mouse IgG I, K Isolype Clil	BioLegend (251506)	FC, 1.10
FITC anti-human CD3	BioLegend (300206)	FC, 1.10
PE anti-human TCP v/8	Biol egend (221210)	FC, 1.10
Live/Dead Eixable Violet Dead Coll Stain kit	Thermo Fisher Scientific	FC, 1.10 FC: 1:1000
	(L34963)	
PE/Cy7 anti-human CD16	BioLegend (302016)	FC, 1:10
UltraComp eBeads™ Compensation Beads	Thermo Fisher Scientific (01- 2222-42)	

CD314 (NKG2D) Monoclonal Antibody APC	eBioscience™ (14-5879-82)	FC, 1:10
APC/Cyanine7 anti-mouse CD19 Antibody	Biolegend (115529)	FC, 1:200
PE anti-mouse CD3ε Antibody	Biolegend (100308)	FC, 1:200
NK1.1 Monoclonal Antibody (PK136), PE-	eBioscience (25-5941-82)	FC, 1:200
Cyanine7		
PE anti-Siglec-E Antibody	Biolegend (677104)	FC, 1:50
FITC anti-mouse/human CD11b Antibody	Biolegend (101206)	FC, 1:300
BV786 Rat Anti-Mouse CD4	BD Horizon (563331)	FC, 1:100
Brilliant Violet 605™ anti-mouse CD8a	Biolegend (100744)	FC, 1:100
Antibody		
Zombie UV™ Fixable Viability Kit	Biolegend (423108)	FC, 1:200

Supplementary Fig. 1. Chemistry of T-Sia version 1 linker previously reported²². T-Sia 1 was constructed by chemical conjugation of VC sialidase to a site near the C-terminus of each trastuzumab heavy chain²². SMARTag technology³⁰ was employed to introduce site-specifically an aldehyde group onto trastuzumab's heavy chains, which was then conjugated via oxime formation to an azide-terminated PEG linker. In parallel, a cyclooctyne group was incorporated onto VC sialidase through non-specific acylation of the enzyme's lysine residues. The two proteins were finally joined by copper-free click chemistry³².

Supplementary Fig. 2. Free Vibrio cholerae sialidase destroys sialoglycans at lower concentrations than free Salmonella typhimurium sialidase, demonstrating larger off-target effects. HER2⁺ EMT6 cells were treated with VC or ST sialidase at various concentrations and sialoglycan depletion was detected by biotinylated Maackia Amurensis Lectin II (MALII), which preferentially binds sialic acid in an (α -2,3) linkage, and Peanut Agglutinin (PNA), which binds preferentially to the T-antigen, a galactosyl (β -1,3) *N*-acetylgalactosamine structure that is exposed upon sialic acid removal. Sialidase treatment concentrations from n=3 independent experiments (all data points shown) are plotted on a log scale and fitted to a four-parameter variable slope, where ST sialidase consistently has EC₅₀ values 10-50 fold higher than VC sialidase. Flow cytometry gating for the cell population is shown on the right: cells were first gated for size using the SSC-A/FSC-A gates, then single cells were selected (FSC-A/FSC-H), followed by gating on living cells negative for sytox green.

Supplementary Fig. 3. Maleimide-PEG4-DBCO was site-specifically incorporated at the ST sialidase C-terminus in the synthesis of the first trastuzumab-ST conjugate. a, ST sialidase expressed with the amino acid sequence SLCTPSRGS at the C-terminus was incubated with 20 mM TCEP at 4 °C in the dark for 10 min, then 20 equiv. maleimide-PEG4-DBCO was added and the reaction was rotated overnight at 4 °C and purified by size exclusion chromatography. Expected m/z shift was observed by ESI-TOF MS for addition of 1 DBCO molecule; no peaks were observed for m/z corresponding to multiple maleimide-PEG4-DBCO additions. **b**, A representative control reaction (from n=3 independently performed reactions) with ST sialidase that lacked the C-terminal peptide tag on sialidase resulted in no observable addition of DBCO to endogenous cysteine residues ESI-TOF-MS.

Supplementary Fig. 4. Characterization of the preliminary ST sialidasetrastuzumab conjugate including selective sialoglycan degradation of a HER2+ breast cancer cell line. a, Left: PAGE-SDS gel of ST sialidase (ST), ST Sialidase modified with maleimide-PEG4-DBCO (ST-DBCO), trastuzumab-oxime-azide (tras-Az), and trastuzumab ST sialidase conjugate (tras-ST). Right: ESI-TOF mass spectra of the light and heavy chains of tras-ST demonstrating ST sialidase addition selectively to the heavy chain. Below: chemical representation of tras ST. b. In vitro activity assay of trastuzumab ST sialidase conjugate (tras-ST) (50 pM) with an Antibody/Enzyme ratio =2, and ST sialidase (100 pM). Release of the fluorescent 4-methylumbellierone from the 4-MUNANA fluorogenic probe was detected by plate reader (n=3, all data points shown, fit to linear regression). c, Representative of n=3 flow cytometry plots of the averaged data shown in Fig. 2C. *Note: the SNA lectin is highly toxic to cells and kills cells it binds to selectively, this creates a depleted cell count ratio when one cell line is SNA-negative and one cell line is SNA-positive (see tras ST sialidase-treated samples at 8 and 40 nM, as an example), in future we would recommend experimenters fix their cells after desialylation and prior to SNA binding to avoid this effect.

Supplementary Fig. 5. Trastuzumab-ST enhances NK cell-mediated ADCC against many HER2⁺ cell lines using human NK cells from multiple donors; this effect increases with increasing effector to target cell (E/T) ratios. a, Percent cytotoxicity from IL-2 activated NK cell-mediated ADCC against six target breast cancer cell lines at E/T = 2 and E/T = 4 (in addition to the E/T=8 displayed in Fig. 2D). Cells were treated with PBS, ST sialidase (20 nM), trastuzumab (10 nM), or trastuzumab-ST sialidase (trastuzumab-ST, 10 nM). The mean is shown as a line connecting the different E/T ratios for n=3^{*} experimental replicates of the percent cytotoxicity detected with the LDH release method after 4 h (*n=2 for MDA-MB-361 PBS E/T=8). b, IL-2 activated NK cell-mediated ADCC from two additional biological NK donors on various breast cancer cell lines, E/T=4, mean \pm SD depicted from n=3 experimental replicates, detecting LDH release after 4 h, statistical analysis by multiple two-sided t tests; p-values shown have been corrected for multiple comparisons using the Holm-Sidak method with an alpha of 0.05.

Supplementary Fig. 6. Synthesis of HIPS-azide linker. Synthetic route to HIPS-azide (1) and associated reaction yields. Synthesis of 3-9 was performed as described previously^{27,28}, with a modified purification of compound 9. Synthesis and purification of compounds 9, 10, and 1 are described further in Supplementary Note 2.

Supplementary Fig. 7. Synthesis and characterization of the site-specific modification of HIPS-azide to the trastuzumab formylglycine residue. a, Tras-HIPS-azide was synthesized by reacting HIPS-azide (1) in DMSO with SMARTag-labeled trastuzumab under acidic conditions in citrate buffer for 24 h at 37 °C shaking. b, Representative ESI-TOF mass spectra of reduced antibody chains before and after HIPS conjugation, the addition of HIPS-azide was confirmed for n=3 independently performed reactions at different scales. c, Peptide mass spectrum of the trastuzumab heavy-chain C-terminal trypsin digested peptide covalently modified with the HIPS linker; HIPS addition was not detected on other trastuzumab cysteine residue. This data is from n=1 experiment run on the final molecule and is consistent with n=3 other independently run mass spectral characterizations performed during the optimization of the reaction conditions in a.

Supplementary Fig. 8. The HIPS linker used to make T-Sia 2 is more stable in serum and bound to living cells than the oxime linker. a, Alexa Fluor 647 Alkyne reacted with trastuzumab-azide antibodies using copper-click chemistry. was Trastuzumab-oxime-AF647 contains the oxime bond used in T-Sia 1: Trastuzumab-HIPS-AF647 contains the new HIPS linker. **b**, Trastuzumab-HIPS-647 and trastuzumab-oxime-647 were incubated in human plasma at 37 °C. After two days, there was significantly less trastuzumab-oxime-647 than trastuzumab-HIPS-647. Ordinary two-way ANOVA (p = 0.036) with Sidak's multiple comparisons reported below each time point (α =0.05); n=3 experimental replicates. c-d, To determine the conjugates' stabilities on cell surfaces and in endocytic compartments, 50 nM Tras-HIPS-647 and tras-oxime-647 were incubated on the surface of adherent HCC-1954 cells for 1 hour, and then solution was removed and replaced with either (c) normal media or (d) media containing protease inhibitor. Fluorescence was monitored by IncuCyte and total integrated fluorescence was guantified every 2 h. The HIPS linker fluorescent signal outlasted the oxime linker, and when protease inhibitor was added there was minimal degradation of trastuzumab-HIPS-AF647, while trastuzumab-oxime-647 lost fluorescence from protease-independent cleavage. e, Conditions from (c) were used on the surface of fixed cells to prevent cellular endocytosis and proteolysis. On dead cells in 10% serum, both chemistries gave similar fluorescence signals over time. Values shown are from n=2 (c) or n=3 (d,e) independently performed experimental replicates (averaged from n=2 technical replicates each time). P values are reported from an ordinary two-way ANOVA.

Supplementary Fig. 9. Synthesis of α -chloroacetamide-DBCO (2). DBCO-PEG4amine was treated with chloroacetic acid in the presence of EDC in DCM to yield α -Chloroacetamide-DBCO (2).

Supplementary Fig. 10. Site-specific conjugation of the α -chloroacetamide-DBCO molecule onto ST sialidase to make ST-DBCO. **a**, α -chloroacetamide-DBCO was conjugated to ST sialidase under mildly reducing and basic conditions (20 mM TCEP in 50 mM ammonium bicarbonate buffer pH 8.3, rotating overnight). **b**, Representative ESI-TOF mass spectrum of sialidase-DBCO, reaction was repeated for n=3 independent reactions at different reaction scales with consistent results. **c**, Summary of results from tryptic ST digestion followed by HCD on the Orbitrap Fusion: all cysteine-containing peptides were detected. Only the cysteine in the C-terminal (SLCTPSR) peptide had a mass shift correlating to α -chloroacetamide-DBCO addition. **d**, MS2

spectrum of the modified SLCTPSR peptide from (c). This data is from n=1 experiment run on the final molecule, but is consistent with n=2 other independent mass spectral characterizations performed during the optimization of the reaction conditions in a.

Supplementary Fig. 11. An enzyme/antibody ratio of ~1 demonstrates improved NK cell-mediated ADCC over an enzyme/antibody ratio of ~2. a, Representative nonreducing SDS-PAGE gel of purified fractions after size exclusion chromatography of T-Sia 2 separating large aggregates from di-sialidase T-Sia 2, mono-sialidase T-Sia 2, and trastuzumab alone, n=7 size exclusion runs and gels were performed, all very consistent with the above. (Right of gel): two isolated collected fractions with an EAR (Enzyme/Antibody Ratio) ~1 and ~2. b, Mean \pm SD of NK cell-mediated ADCC with three different NK cell donors against BT-20 cells treated with PBS, 20 nM of ST sialidase, or 10 nM of trastuzumab, T-Sia EAR ~2, and T-Sia EAR ~1, n=3 experimental replicates for each biological NK cell donor. NK cells were IL-2 treated, followed by and incubation with target BT-20 cells at E/T = 1. Percent cytotoxicity was determined from the LDH release after 8 h, statistical analysis by one way ANOVA with Tukey's multiple comparisons adjusted p-values reported. c, Mean \pm SD from ADCC with the three biological NK cell donors shown in (b) reveals a 1.13-fold increase in NK cell-mediated ADCC by EAR~1 over EAR~2, analyzed by a paired two-sided t-test.

T-Sia 2 maintained sialidase activity and did not Supplementary Fig. 12. significantly alter the binding thermodynamics of trastuzumab alone to HER2+ a, ESI-TOF mass spectrum of conjugated sialidase heavy chain. cells. **b**, Flow cytometry assay showing trastuzumab and T-Sia 2 binding curve to SK-BR-3 breast cancer cells, n=4 experimental replicates, least-squares one-site total binding curve calculated using GraphPad Prism software. K_D values from the binding curves were not significantly different by two-tailed t test. c, Representative binding of trastuzumab (left) and T-Sia 2 (right) to mouse Fc receptors as measured by BLI from n=2 independent experiments. Association was monitored for 20 s followed by dissociation for 40 s. Consistent with previously reported human antibody-mFc binding studies, both trastuzumab and T-Sia 2 bind to all mouse Fc receptors except for mouse FcyRIII. The proposed "functional homolog" of hFcyRIII in mice is mFcyRIV - Bruhns, P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood 119, 5640-5650 (2015) - although the sialidase conjugated antibody appears to have a reduced off rate, it is unclear if this would be true on a cell surface.

Supplementary Fig. 13. ST sialidase can efficiently cleave Siglec ligands from the mouse EMT6 cancer line. Representative of n=3 independently performed flow cytometry experiments of Siglec-Fc binding to EMT6 cancer cells reveals that treatment with high ST sialidase concentration (2 μ M) can reduce human Siglec-7 and -9 and mouse Siglec-E and -F binding to cells. Greater than 12,000 cells are reported on each histogram, normalized to mode. PBS control-treated cells are outlined in dark blue, ST sialidase-treated cells are filled in with teal, and secondary only fluorophore control are in dashed gray. Gating is shown below: cells were first selected by size with the SSC-A and FSC-A gates, then single cells were isolated using the FSC-A and FSC-H.

Supplementary Fig. 14. ST-LOF, a single alanine point mutation resulting in decreased ST sialidase activity, was expressed, purified, and conjugated to trastuzumab-HIPS-azide to make T-Sia-LOF. a, *In vitro* enzyme activity assay with the fluorogenic substrate 4-MU-NANA comparing the enzymatic activity of ST sialidase vs. ST-LOF sialidase at 75 pM concentrations with 1 mM substrate, n=3 experimental replicates, line connects the mean value at each recorded time point. b, Representative (n=3) RP-HPLC trace showing EAR = 1.1 for T-Sia-LOF. c, ESI-TOF mass spectrometry revealed unchanged light chain and an increased heavy chain mass indicative of LOF sialidase addition, this reaction was repeated n=3 times at different reaction scales with similar results.

Supplementary Fig. 15. Development and characterization of Isotype-Sia, a nontargeting sialidase control. a, ESI-TOF mass spectrum of motavizumab expressed from Expi293 cells. b, ESI-TOF mass spectra of motavizumab light and heavy chains after partial heavy chain fGly conversion with tbFGE. c, ESI-TOF mass spectra of Isotype-HIPS-azide light chain (unchanged), and heavy chains (partially HIPS modified). d, ESI-TOF mass spectra of Isotype-Sia conjugate. f, Representative (n=3 independently run experiments) RP-HPLC trace of Isotype-Sia conjugate, absorbance detected at 280 nm, EAR = 1.2. g, Representative binding of Isotype-Sia to mouse Fc receptors as measured by BLI from n=2 independent experiments. Association was monitored for 20 s followed by dissociation for 40 s. Isotype-Sia binds all mouse Fcs except for FcyRIII, similar to trastuzumab.

Supplementary Fig. 16. Development and characterization of T-FcX-Sia, a control with reduced effector recruitment. a, ESI-TOF mass spectrum of T-FcX expressed from Expi293 cells. **b**, ESI-TOF mass spectra of T-FcX light and heavy chain after aldehyde conversion with tbFGE. **c**, ESI-TOF mass spectra of T-FcX-azide light and heavy chains. **d**, ESI-TOF mass spectra of T-FcX-Sia molecule. **e**, SDS-page gel of T-FcX-Sia conjugate. **f**, Representative (n=3 experimental replicates) RP-HPLC spectrum of T-FcX-Sia, absorbance detected at 280 nm, EAR = 1.1. **g**, Representative binding of FcX-Sia to mouse Fc receptors as measured by BLI from n=2 independent experiments. Association was monitored for 20 s followed by dissociation for 40 s. The mutations made in the Fc domain of trastuzumab to make FcX eliminate binding to effector Fc receptors, but retain binding to the FcRn receptor critical for antibody half-life.

Supplementary Fig. 17. NK cell-mediated ADCC with control constructs. NK cellmediated ADCC performed as in Fig. 5b on two additional control cell lines. (Left): MDA-MB-468 HER2⁻ control cell lines do not show any trends towards increased killing with increased antibody-sialidase construct concentration. (Right): SK-BR-3, the HER2-high expressing cell line demonstrates marked increase in ADCC with T-Sia 2, T-Sia LOF, and trastuzumab-treated cells, T-FcX is significantly reduced, and Isotype-Sia does not bind and desialylate target cells at these concentrations (all data points from n=3 experimental replicates are shown; a one-site - specific binding least squares fit was modeled onto the data with GraphPad Prism 6).

Supplementary Fig. 18. Blood cell counts and mouse weights following T-Sia 2 treatment. a, Red and **b**, white blood cell counts from mice depicted in Fig. 5c taken 2 days after first injection of conjugate therapy; ordinary one-way ANOVA (Mean counts ± SD, n=3: PBS, Isotype-Sia, T-FcX-Sia, n=4: T-Sia-LOF, T-Sia 2). **c**, Platelet counts for the mice (depicted in Fig. 5c) 2 days after first injection of conjugate therapy; ordinary one-way ANOVA with Dunnet's multiple comparison test compared to trastuzumab-treated mice, (mean ± SD, n=3: PBS, Isotype-Sia, T-FcX-Sia, n=4: T-Sia-LOF, T-Sia 2). **d**, Mouse weight measured 5x during treatment and tumor growth; ordinary two-way ANOVA revealed no significance in mouse weights over time compared to PBS control mouse (Mean ± SD, PBS (n=6), trastuzumab (tras) (n=6), T-Sia-LOF (n=6), Isotype-Sia (n=6), T-FcX-Sia (n=7).

Supplementary Fig. 19. Analysis of TILs in the PBS-, trastuzumab-, and T-Sia 2treated tumor microenvironment after sacrifice revealed enhanced activated immune infiltration. Analysis of tumor infiltrating leukocytes quantified from two independent mouse experiments (Figs. 4 and 5) of HER2⁺ EMT6 tumor-bearing mice treated with PBS (n=10), trastuzumab (n=8), and T-Sia 2 (n=15) revealed an increase in **a**, CD45⁺ cells per mg of tumor weight, as well as **b**, a larger CD8⁺ T cell to regulatory T cell ratio. Additionally, there was an apparent increase in **c**, MHC II⁺ TAMs and decrease in **d**, %CD206⁺ tumor-associated macrophages (TAMs). To investigate lymphocyte activation, %CD69⁺ was assessed in **e**, CD8⁺ T cells and **f**, NK cells, and %granzyme B⁺ was measured for **g**, CD8⁺ T cells and **h**, NK cells. The receptor expression levels were analyzed by an ordinary one-way ANOVA followed by a post hoc test (Dunnet's). Multiplicity-adjusted p-values are reported comparing PBS- and trastuzumab-treated tumors with T-Sia 2- treated mice (mean ± SD). CD8⁺ = CD8⁺ T cells.

Supplementary Fig. 20 Further analysis of tumor infiltrating leukocytes in PBS, Trastuzumab, and T-Sia 2. Above: analysis of tumor infiltrating leukocytes quantified from two independent mouse experiments (Figs. 4 and 5) of HER2⁺ EMT6 tumorbearing mice treated with PBS (n=10), trastuzumab (n=8), and T-Sia 2 (n=15^{*}). None of these results were statistically significant by one-way ANOVA (mean \pm SD displayed above). DC = dendritic cells, TAM = tumor associated macrophage, B = B cell, CD4 = CD4⁺ T cells, CD8 = CD8⁺ T cells. *n=14 for T-Sia 2-treated mice analyzed for the percent of CD45⁺ cells that are CD8⁺. Below: pie charts of percentages of TILs from PBS-, trastuzumab-, and T-Sia 2-treated mice.

Supplementary Fig. 21. Gating strategy for flow cytometry analysis of TILs. Gating strategy for the results depicted in Supplementary Fig. 19 and 20.

Supplementary Fig. 22. Representative flow cytometry gating on tumor infiltrating leukocytes. Cells are gated first on FSC-A/SSC-A to remove debris, then live leukocytes are gated as CD45⁺ and Live/Dead (LD) stain negative. Single cells are gated using FSC-A/FSC-H, then those single cell gated CD45⁺ leukocytes are separated into CD19⁺ B cells, CD3⁺ T cells, NK1.1⁺ NK cells, and CD11b⁺ myeloid cells. Gating is representative of n=10 wt mouse tumors and n=12 Siglec-E^{-/-} from two independent experiments, thawed and analyzed on the same day.

Supplementary Note 1: Protein and DNA sequences

Protein	Amino Acid sequence
Trastuzumab light chain (and T-FcX	DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFS GSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS GTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH KVYACEVTHQGLSSPVTKSFNRGEC
	EVOLVESGGGI VOPGGSI RI SCAASGENIKDTYIHWWROAPGKGI EWWARIYPTNGYTRYAD
heavy chain	SVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSSAST KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS SVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPK PKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGF YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN HYTQKSLSLSPGSLCTPSRGS
T-Fc-X heavy chain	EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNGYTRYAD SVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSSAST KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS SVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPPVAGPSVFLFPPKP KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGSLCTPSRGS
Motavizumab light chain	DIQMTQSPSTLSASVGDRVTITCSASSRVGYMHWYQQKPGKAPKLLIYDTSKLASGVPSRFSG SGSGTEFTLTISSLQPDDFATYYCFQGSGYPFTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSG TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHK VYACEVTHQGLSSPVTKSFNRGEC
Motavizumab heavy chain	QVTLRESGPALVKPTQTLTLTCTFSGFSLSTAGMSVGWIRQPPGKALEWLADIWWDDKKHYN PSLKDRLTISKDTSKNQVVLKVTNMDPADTATYYCARDMIFNFYFDVWGQGTTVTVSSASTKG PSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPK DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRW QQGNVFSCSVMHEALHNHYTQKSLSLSPGSLCTPSRGS
ST Sialidase (N-HIS C-Ald)	MHHHHHHGKPIPNPLLGLDSTENLYFQGTVEKSVVFKAEGEHFTDQKGNTIVGSGSGGTTKYF RIPAMCTTSKGTIVVFADARHNTASDQSFIDTAAARSTDGGKTWNKKIAIYNDRVNSKLSRVMD PTCIVANIQGRETILVMVGKWNNNDKTWGAYRDKAPDTDWDLVLYKSTDDGVTFSKVETNIHD IVTKNGTISAMLGGVGSGLQLNDGKLVFPVQMVRTKNITTVLNTSFIYSTDGITWSLPSGYCEGF GSENNIIEFNASLVNNIRNSGLRRSFETKDFGKTWTEFPPMDKKVDNRNHGVQGSTITIPSGNK LVAAHSSAQNKNNDYTRSDISLYAHNLYSGEVKLIDAFYPKVGNASGAGYSCLSYRKNVDKET LYVVYEANGSIEFQDLSRHLPVIKSYNSLCTPSRGS
ST Sialidase Y369A (N- HIS C-Ald)	MHHHHHGKPIPNPLLGLDSTENLYFQGTVEKSVVFKAEGEHFTDQKGNTIVGSGSGGTTKYF RIPAMCTTSKGTIVVFADARHNTASDQSFIDTAAARSTDGGKTWNKKIAIYNDRVNSKLSRVMD PTCIVANIQGRETILVMVGKWNNNDKTWGAYRDKAPDTDWDLVLYKSTDDGVTFSKVETNIHD IVTKNGTISAMLGGVGSGLQLNDGKLVFPVQMVRTKNITTVLNTSFIYSTDGITWSLPSGYCEGF GSENNIIEFNASLVNNIRNSGLRRSFETKDFGKTWTEFPPMDKKVDNRNHGVQGSTITIPSGNK LVAAHSSAQNKNNDYTRSDISLYAHNLYSGEVKLIDAFYPKVGNASGAGASCLSYRKNVDKET LYVVYEANGSIEFQDLSRHLPVIKSYNSLCTPSRGS
ST Sialidase (original construct, no aldehyde Fig. 2a and Supplementary	MHHHHHHGKPIPNPLLGLDSTENLYFQGTVEKSVVFKAEGEHFTDQKGNTIVGSGSGGTTKYF RIPAMCTTSKGTIVVFADARHNTASDQSFIDTAAARSTDGGKTWNKKIAIYNDRVNSKLSRVMD PTCIVANIQGRETILVMVGKWNNNDKTWGAYRDKAPDTDWDLVLYKSTDDGVTFSKVETNIHD IVTKNGTISAMLGGVGSGLQLNDGKLVFPVQMVRTKNITTVLNTSFIYSTDGITWSLPSGYCEGF GSENNIIEFNASLVNNIRNSGLRRSFETKDFGKTWTEFPPMDKKVDNRNHGVQGSTITIPSGNK LVAAHSSAQNKNNDYTRSDISLYAHNLYSGEVKLIDAFYPKVGNASGAGYSCLSYRKNVDKET LYVVYEANGSIEFQDLSRHLPVIKSYN

Protein Sequences

Fig. 3,14a)	
VC sialidase	MRFKNVKKTALMLAMFGMATSSNAALFDYNATGDTEFDSPAKQGWMQDNTNNGSGVLTNAD GMPAWLVQGIGGRAQWTYSLSTNQHAQASSFGWRMTTEMKVLSGGMITNYYANGTQRVLPII SLDSSGNLVVEFEGQTGRTVLATGTAATEYHKFELVFLPGSNPSASFYFDGKLIRDNIQPTASK QNMIVWGNGSSNTDGVAAYRDIKFEIQGDVIFRGPDRIPSIVASSVTPGVVTAFAEKRVGGGDP GALSNTNDIITRTSRDGGITWDTELNLTEQINVSDEFDFSDPRPIYDPSSNTVLVSYARWPTDAA QNGDRIKPWMPNGIFYSVYDVASGNWQAPIDVTDQVKERSFQIAGWGGSELYRRNTSLNSQQ DWQSNAKIRIVDGAANQIQVADGSRKYVVTLSIDESGGLVANLNGVSAPIILQSEHAKVHSFHD YELQYSALNHTTTLFVDGQQITTWAGEVSQENNIQFGNADAQIDGRLHVQKIVLTQQGHNLVE FDAFYLAQQTPEVEKDLEKLGWTKIKTGNTMSLYGNASVNPGPGHGITLTRQQNISGSQNGRL IYPAIVLDRFFLNVMSIYSDDGGSNWQTGSTLPIPFRWKSSSILETLEPSEADMVELQNGDLLLT ARLDFNQIVNGVNYSPRQQFLSKDGGITWSLLEANNANVFSNISTGTVDASITRFEQSDGSHFL LFTNPQGNPAGTNGRQNLGLWFSFDEGVTWKGPIQLVNGASAYSDIYQLDSENAIVIVETDNS NMRILRMPITLLKQKLTLSQN
AU sialidase	MGHHHHHHHHHHSSGHIEGRHMLEAPTPPNSPTLPPGSFSETNLAADRTAANFFYRIPALTYL GNDVVLAAWDGRPGSAADAPNPNSIVQRRSTDGGKTWGPVQVIAAGHVADASGPRYGYSDP SYIYDAEANKVFAFFVYSKDQGFGGSQFGNDDADRNVISSAVIESSDAGVTWSQPRLITSVTKP GTSKTNPAAGDVRSNFASSGEGIQLKYGPHKGRLIQQYAGDVRQADGSNKIQAYSVYSDDHG VTWHKGANVGDRMDENKTVELSDGRVLLNSRDNANRGYRKVAVSTDGGATYGPVSQDTELP DPANNGAIARMFPNAAQGSADAKKLIFTNANSKTGRENVSARVSCDDGETWPGVRTIRSGFS AYSTVTRLADGKFGVLYEGNYTDNMPFATFDDAWLNYVCAPLAVPAVNIAPSATQEVPVTVTN QEATTLSGATATVYTPSGWSATTVPVPDVAPGASVTVTVALTAPADASGPRSLNAAFTTADGR VSQFTFTATTPVAPQVGLTI
CP sialidase	MRGSHHHHHHTDPCNKNNTFEKNLDISHKPEPLILFNKDNNIWNSKYFRIPNIQLLNDGTILTFS DIRYNGPDDHAYIDIASARSTDFGKTWSYNIAMKNNRIDSTYSRVMDSTTVITNTGRIILIAGSWN TNGNWAMTTSTRRSDWSVQMIYSDDNGLTWSNKIDLTKDSSKVKNQPSNTIGWLGGVGSGIV MDDGTIVMPAQISLRENNENNYYSLIIYSKDNGETWTMGNKVPNSNTSENMVIELDGALIMSTR YDYSGYRAAYISHDLGTTWEIYEPLNGKILTGKGSGCQGSFIKATTSNGHRIGLISAPKNTKGEY IRDNIAVYMIDFDDLSKGVQEICIPYPEDGNKLGGGYSCLSFKNNHLGIVYEANGNIEYQDLTPY YI
MBP-tbFGE	MKSSHHHHHHGSSMKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQ VAATGDGPDIIFWAHDRFGGYAQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEAL SLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDI KDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDTSKVN YGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALK SYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTNS SSNNNNNNNNLGIEENLYFQSNAMVLTELVDLPGGSFRMGSTRFYPEEAPIHTVTVRAFAV ERHPVTNAQFAEFVSATGYVTVAEQPLDPGLYPGVDAADLCPGAMVFCPTAGPVDLRDWRQ WWDWVPGACWRHPFGRDSDIADRAGHPVVQVAYPDAVAYARWAGRRLPTEAEWEYAARG GTTATYAWGDQEKPGGMLMANTWQGRFPYRNDGALGWVGTSPVGRFPANGFGLLDMIGNV WEWTTTEFYPHHRIDPPSTACCAPVKLATAADPTISQTLKGGSHLCAPEYCHRYRPAARSPQS QDTATTHIGFRCVADPVSG
GST- thrombin- Neu2	MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGDVK LTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKVDFLSKLPEM LKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAIPQIDKYL KSSKYIAWPLQGWQATFGGGDHPPKSDLVPRGSMASLPVLQKESVFQSGAHAYRIPALLYLP GQQSLLAFAEQRASKKDEHAELIVLRRGDYDAPTHQVQWQAQEVVAQARLDGHRSMNPCPL YDAQTGTLFLFFIAIPGQVTEQQQLQTRANVTRLCQVTSTDHGRTWSSPRDLTDAAIGPAYRE WSTFAVGPGHCLQLNDRARSLVVPAYAYRKLHPIQRPIPSAFCFLSHDHGRTWARGHFVAQD TLECQVAEVETGEQRVVTLNARSHLRARVQAQSTNDGLDFQESQLVKKLVEPPPQGCQGSVI SFPSPRSGPGSPAQWLLYTHPTHSWQRADLGAYLNPRPPAPEAWSEPVLLAKGSCAYSDLQ SMGTGPDGSPLFGCLYEANDYEEIVFLMFTLKQAFPAEYLPQLERPHRD
GST- thrombin- Neu3	MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGDVK LTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKVDFLSKLPEM LKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAIPQIDKYL KSSKYIAWPLQGWQATFGGGDHPPKSDLVPRGSEEVTTCSFNSPLFRQEDDRGITYRIPALLYI PPTHTFLAFAEKRSTRRDEDALHLVLRRGLRIGQLVQWGPLKPLMEATLPGHRTMNPCPVWE QKSGCVFLFFICVRGHVTERQQIVSGRNAARLCFIYSQDAGCSWSEVRDLTEEVIGSELKHWA TFAVGPGHGIQLQSGRLVIPAYTYYIPSWFFCFQLPCKTRPHSLMIYSDDLGVTWHHGRLIRPM VTVECEVAEVTGRAGHPVLYCSARTPNRCRAEALSTDHGEGFQRLALSRQLCEPPHGCQGSV VSFRPLEIPHRCQDSSSKDAPTIQQSSPGSSLRLEEEAGTPSESWLLYSHPTSRKQRVDLGIYL

NQTPLEAACWSRPWILHCGPCGYSDLAALEEEGLFGCLFECGTKQECEQIAFRLFTHREILSHL
QGDCTSPGRNPSQFKSNLERPHRD

DNA sequences

Name	Sequence
Sequence 1	ATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCAC
Trastuzumab light	GATGTGACATCCAGATGACCCAGTCCCCCTCCTCCCTGTCTGCCTCCGTGGGCGAC
obain DNA	AGAGIGACCAICACCIGICGGGCCICCCAGGAIGIGACACCGCCGIGGCCIGGI
sequence	
including signal	
peptide	TGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAA
(also the T-EcX	CTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGT
	GGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCA
	GGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCA
sequence)	GACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTC
Sequence 2	
Trastuzumab	
heavy chain DNA	
	ACCTCCAAGAACACCGCCTACCTGCAGATGAATTCCCTGAGGGCCGAGGACACCG
including signal	CCGTGTACTACTGCTCCAGATGGGGAGGCGACGGCTTCTACGCCATGGACTACTG
peptide and C-	GGGCCAGGGCACCCTGGTCACAGTGTCCTCTGCTAGCACCAAGGGCCCATCGGTC
terminal aldehyde	TTCCCCCTGGCACCCTCCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCT
tag	GCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGC
lag	CCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACT
Nhel cut site in red	
BsrGI cut site in	GGACCGTCAGTCTTCCTCTTCCCCCCAAAAACCCCAAGGACACCCTCATGATCTCCCCG
blue	GACCCCTGAGGTCACATGCGTGGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTC
Used for	AAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGC
concreting T EcV	GGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCA
	CCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTC
antibody	CCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC
	AGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT
	AGAGCCTCTCCCTGTCTCCGGGTTCTCTCTGCACCCCCTCCCGAGGTTCATGA
Sequence 3	AGTGTCCTCTGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCA
aBlock upod to	AGAGCACCTCTGGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCC
	CGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACAC
replace the amino	CTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCG
acids "ELLG" with	TGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCC
"PVA-" in the	AGCAACACCAAGGIGGACAAGAAAGIIGAGCCCAAAICIIGIGACAAAACICACAC
trastuzumah heavyy	
chain to make	
chain to make	GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC
Trastuzumab-FcX	GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAG
antibody.	GAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCAT
	CTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCC
Sequence 4	ACCGGTGTACATTCCCAGGTACAACTGCAGCAGCCTGGGGCTGAGCTGGTGAAGC
aBlock for	CTGGGGCCTCAGTGAAGATGTCCTGCAAGGCTTCTGGCTACACATTTACCAGTTAC
9010011101	

Sequence 5 gBlock for ACCGGTGTACATTCAGACATACAGATGACCCAATCACCTTCCAGGCTCAGGGGGTC TGTGGGCGACCGGCTACGCATTACTTGTTCAGGGTCCTCTCGGGTACGGTACCTGC Motavizumab light chain variable sequence ACCGGTGCTCAGGCAGCCAGGTTTGCTCATTGCGATACTCCC AAACTCGCTCTGTGTGTCCCATCCCGGTAGATTGCGACATACTACTGTTTTTCA ACACTGGACTACTTGCGGTTGCCGATCATTGCGACATACTACTGTTTTTCA GGGAGGTCGATACCCCATTTACGGTTGCGGGGGGTACAAAGGTGAGAAAGCGT AAACTGGTTACTGGATAACCGCGATAATGGCTTTTCGACGACATACTACTGCTGG GGGAGACGAGCACTTCCAGGATGATTCGGCGGTGGGGGGGTCCGGAGATTAAGGGCTCCG GGGACACAGGCGCCTCATGGTTGCGGCAACTGGCGTTGGCTGAGATTAAGGGCTCGG AAACTGGTGATCTCGGGACAAGCGGTTATACGGCCTGTGGCGAAACTGCGGGATAAACGC GGACGACGACGCCCTTCGGTGGGCGCGCGCGTGGCGGCGGCGGATTACGGTGGCGAACTGGCGTAGACGTA CAACGGCGACGGCGCTTCCAGGACAGGCGCTGATTACGGCGGTGGCGAACTGGCCGTACGGTGGC GGCACACAGGCGCCTTCCAGGACAGCGCGCTGATTACCGGGGATGCCGTACGTTT GGGCACACGGCGCGCTGATTCCCGGGCGCGGCTGGCTGACGGATAACCG CCGGGACAAGGCGCCTTTCCAGGCGCGCGCGTGTTCCCGGACAACCGGGCT CACCGCGGACAAAGCGTGGCGCGCGCGCTGCTGCGGACAGCGGGCT CACCGCGGCACATTAAGGCGTAACGCGGGCCTGGCTAACGCGGACGGCG GGCCACGTGGCCAACTGGCGCAACGCGGCCTGGCTAACCGGGCCGGAT CCTCGCAGGACACTTACAGGCGGCGCGCGGCTGCTGCGGAACCGGGCCT GACCTTCCGGGTGCAACACTGCGACACGCGACACGCGGGCGG	Motavizumab (Isotype) antibody heavy chain variable sequence	AATATGCACTGGGTAAAACAGACACCTGGTCGGGGCCTGGAATGGATTGGAGCTAT TTATCCCGGAAATGGTGATACTTCCTACAATCAGAAGTTCAAAGGCAAGGCCACATT GACTGCAGACAAATCCTCCAGCACAGCCTACATGCAGCTCAGCAGCCTGACATCTG AGGACTCTGCGGTCTATTACTGTGCAAGATCGACTTACTACGGCGGTGACTGGTAC TTCAATGTCTGGGGCGCAGGGACCACGGTCACCGTCTCTGCAGCGTCGACCAAGG
gBlock for Motavizumab light chain variable sequence TGTGGCGACCGCGTAAGCACCGGTAAGCACCGAGATTGCTGATTACGCGTACCGACGA AACTGGTACCGGCAGCAGATTGCCCATCCCCGGTCAGGGGGTGCGACGAGTT CACCTGACTATTAGCGGTTTGCCCCCGATGATTTGCGACCATACTACCTGCT GGGGGGTGGCT AACTGGTACTGCGACACCCATTTACGGTGCGATGATTCGCGACATACTGCG AACTGGTACTGCGACACCCATTTACGGTGCGAGGGTAAAAGGGT AACGTGGCGCGC AACGGTGGCTGCA MBP-TEV-tbFGE ATGAAATCTTGCAGCACCACGTGGTCGCGGTGACGAGAGAGA	Sequence 5	GC ACCGGTGTACATTCAGACATACAGATGACCCAATCACCTTCCACGCTCAGCGCGTC
Motavizumab light AcACTGECTTCTGETGTCCCATOCCCCTTCAGCGETTCAGGGAGTGETACCCAGTT MBP-TEV-tbFGE ACACTGECTTCGAGTGTCCCATOCCCCCGATCAACGCTGAAAGGTGGAGATAAAGCCGGATAAAGCCG MBP-TEV-tbFGE ATGAAACTGCCATTCCCCATCACCCCGGGGCAAAAGGTGGAGATAAAGCCGGATAAAGCCGGATAAAGCCGTGAATTCTGCGACAAAGTGGAGAATTCCCGAAAGTGGGGATAACGCCGATTAACGGCCGTGACATTACCGTCGAGAAAGCGTTAAAGGCCGTGACATTACGGTCGAGAAAGCGTTAAAGGGCCGTGACATTACCGGCGAGAGGCGCGGTGAAATTCGGGAAAGCGTTCGGGGAAAGCGGTGACGTTGAAGTGCCGGACAAGCGGTGAAATCCGGAAAAGCGTTGACGGCAAAAGCGTGAGAATCCGGGGGCGACGGGCGACGGGCGGCGGACAAGCGGTGAAATCCGGGAAAGCGGTGAAAGCGTTGACGGCGAAAGCGGTGAATTACGTCGCGAAAAGCGTTGACGGCGAAAGCGGCGCTGAATTATACGCCGCGAAAAGCGGTGGATAACGCCGCGCAAAAGCGGTGGATAACGCGCGCG	aBlock for	TGTGGGCGACCGCGTCACGATTACTTGTTCAGCGTCCTCTCGGGTCGGGTACATGC
chain variable sequence TACACTGACTATAGCAGTTTGCAGCCCCGATGATTTCGCAACATACTACTGTTTTCA GGGGAGTGGATACCCATTTACCGTTGCGGGGGGTACAAAGGTGGAGAAAAGCGT ACGGTGGCTGCA MBP-TEV-tbFGE ATGAAATCTTCTCTCACCATCACCATCGCCATGGCTCTTAACGGTCAAGAGGTAAAAGCGA AAACTGGTATATCTGGATTAACGGCGGCAATAAAGCGATGACAATACCAGTGGAAGAAGGT AAACTGGTATATCTGGATTAACGGCGCGATGGCCATGGCCCTGAGCTCGGATAAACC GGAAGGAAAATTCCCACAGGTTGCGGGCAACGGCGATGGCCCTGAGCACTAATCTCT GGGCACACGGCCGCTTTGGTGGCTACGCGATGGCCCTGAGCACTGGCGTAAAATCCAC CCGGAACAAGCCTGCTTGGCGGAAAGCTGGCAACGCGGATGGCCTGAGATCCGCGCGTGAT CAACGGCTGGAAGCGGCCTGATGCCGTTTGCTGGAGAGAGA	Motavizumab light	
Sequence GGGAGTGGATACCCATTTACGTTGGCGGGGTACAAAGGTGGAGATAAAGCGT ACGTGGCGCGCA MBP-TEV-tbFGE ATGAAATCTTCTCACACATCACCATCACCATGGTTCTTCTATGAAAATCGAAGAGGT AAACTGGTAATCTIGGATTACGGCGATAAAGGCTATAAGGCTATCGGATAAACT GGACATCGAAAGGCTATTCGGCGATGCCGATCACCGTTAGACGATCCGGATAAACT GGACATCGGAAAGCGATTCGGCGATGCGCATCACCGTTGAGCATCCGGATAAACT GGCACACGCACCGTTTGGTGGCTACGCTCACCTGACTTATCTTCT GGCACACGCACCGCTTTGGTGGCTACGCGCACACCGGCTGAATACACC CCGGACAAGCGATTTCGGTGCTCACGCACACCGGCACACCGGCACACCGGCTGAATACCCCGCCGACAAACCCTGGCACGCGCACACCGGCCACAAGCGTGTGCGGCACGGCGGACAAGCGTGATCGCGTGCACGAACCGGC CCGGACAAGCGATTGAAGCCGACGCCGCCAAAACCCTGGGAAGACGCGTACGTA	chain variable	TACACTGACTATTAGCAGTTTGCAGCCCGATGATTTCGCAACATACTACTGTTTTCA
Alegoradeuration MBP-TEV-tbFGE ATGAAATCTGCATTACGCATCACCATGGTTCTTCTATGAAAATCGAAGAAGGT AAACTGTTTCTCACCATCACGGTCACCGGTCACGGCATCCAGCTCGGCATAAACT GGAAGAGAATTCCAGCAGTTGACGGCCACTGCGGCTCGCTGAAGTCAG GGCACACGACCGCTTTGGTGGCGACTGCCCACTGCGCTCGCT	sequence	GGGGAGTGGATACCCATTTACGTTTGGCGGGGGTACAAAGGTGGAGATAAAGCGT
MIBP-TEV-ID/GE AAACTGGTAATCTGGATTAACGGCGATAAAGGCTATAACGGTCTGGCGAAAGAGGG GAAGAGAAATTCCACACAGGTTGGCGGAATTAAACGCCTCGCGCGACATATCTTCT GGAGAGAGAATTCCCACAGGTGGGCGCACGCTGATGCGGCACATCTTCC CCGGACAAGGCGTGCCGACCACGGGGCGCGGCTGATGCGACGCGCTC CCGGACAAGGCGTGCCGACGCGGCGGCGGTGATGCGCGACGCGT AAAGGACTGCCGACGCGGGGCGCGGCGGTGTGGCGGACGCGTACGCC CCGGACAAGGCGGCGGCGGCGGCGGGGGTGTGGCGACGCGGA CAAGGGCGGCGGCGGGGGGGGGG		
TAAGAAATTCGAGAAGATACCGGAATTAAAGTCACCGTGACGATCGACATTAACTTC GGAAGAAATTCCCACAGGTGCGGCAACTGGCGATGGCCCTGACATTATCTTC GGACACGACGACCGGTTCCAGGCGACAGCTGTTCCGCTGACCTTACCTTACC CCCGGACAAGCCGTTCCGCGACAGCTGTTCCGGCTGCCTGGCGCGAAATCCCC CCCGGACAAGCCGTCCAGGCCGACAGCTGTTCCAGCTGGCGACGCCGTGGT AAGGACTCGCTGCCGAACCCGCCAAAACCTGGGAGGGCCGTGTGCCGCGAAAACCG AAGGACTCGCAGACCGCGCAAAGCTAGCGCGGCTGATTCCAGCGAGACCCGTATGCAGCAGCCGGT AAGGACTCGCACAGCTGGCTGATGCGTGATAACCGCGGCGCGAAACGGGGCG CTTCACCTGGCCGCCGCTGATTGCCGCGAAAACCACGGATTACGCCGCAAAACGGGGCGCGAACCGGATTACC CACCTTCCTGGTTGACCTGATTAAAAACAAACACCACAGAACACCGCAAACCGCGACATTACC CACCTTCCTGGTCGACCACCACCCAACAACCGCGCAACACCGCATGACCACTCAACGGCCCG GGCCTTGCAGCAACACAGCGCGCAAAAGCGGCGAAAACGCGGTGCGAAACCGCGACATCGCCG ACCCTCCAAGGGCCAACCGACCAATTCGCCGCAACACCGCCGCGGGCCGAAGCACCGCT GCCGTGCAACCATCGCCGCAACCACCCCCCCGGCGCCGCCGCCGCCGCCGCCG	MBP-TEV-COFGE	AAACTGGTAATCTGGATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGG
GAAGAGAAATTCCCACAGGTTGCGGCAACTGGCGATGGCCCTGACATTTTCT GGCCACACGACGCGCTTTGGTGGCTAGCTCAATCTGGCCTGTGGAAATCACC CCGGACACAGCGCTTCCAGGACAAGCTGTTACCCGTTGGCGAGACGTTACGCGTAGCTTA CAACGGCAGCGCGCACCGCCGCCAATACCCTGGGAAGAGCTTACGCGCTGACGTTA CAACGGCAGCGCGCGCGCCCCCCCGCCACAACCCTGGGAAGAGCCTACCGCGCGCG		TAAGAAATTCGAGAAAGATACCGGAATTAAAGTCACCGTTGAGCATCCGGATAAACT
GGGCACAAGCGCTITIGGTGGCTAAGCGTTATCCGTTGCGATCGCTACGTTA CCGGACAAGCGTATCCCAGGACAGCTGATCCGTTTACCTGGGATGCGTACGTTA CAACGGCAAGCGTACGCCGCCAAAGCTGATCCGTTTACCTGCGGACGGCACGTACGT		GGAAGAGAAATTCCCACAGGTTGCGGCAACTGGCGATGGCCCTGACATTATCTTCT
AACGACAGCTGACTGCCGATCGCCGATCGCCGATCGCCGGCTGATCGATC		
CAAGACTGCCGCGCAACCCGCCCAAAAACCTGGGAAGAGTCCCGCGCGTGAT AAAGAACTGGAAAGCGAAAGGTAAGACCGCGCGTGATGTCAACCTGCAAGAACCGTA CTTCACCTGCCCGCGCAAGACGCGGGGGTTATGCGCACGAGAACCGGG GCAAGTACGACATTAAAAGCCGGGGGGTTATGCGCCGCGAAAGCGGGGCT GACCTTCCTGGTTGACCTGCTTAAAAAGCACACGCGATGACCATCAACGGGCTTC CATCGCAGAAGCTGCCTTTATAAAAGCGCGGGCGTGACACAGCGATGACCATCCAACGGGCTC GCGCCAGTCCCAACATCGACACCAGCAAACGCGATGACCATCCAACGGGCTTGC CATCGCCAGAAGCTCCCAACACGGCAAACGGCATTATGGTGTAACGGTACTGCCG ACCTTCAAGGGTCCAACATCGACACCGGCCCGTGGTGCGGAGACACGGGCCGTGGCCGACGGTCCAACATGGAACAACGGCTGGCGAAAACGGCTGGCGAAAACGGCTGGCGAAAACCGCTGGCGAACAACCGCTGGACGACTATCGGAGCCGTTAA CGCCGGCCAGTCCGAACAAAGAGCTGGCCAAAAGCGCTGGCGCAACAACCACCAACTATCGTGCGGCACAA CTGATGAAGAGCGCGGGAACACTGCCGAACAACCGCTGGGTGCCGAACAACCACTATGGAGC CCTGAAGAAGCGCCGGGGAACACTGCCGCAACAACCACCACAACAACAACAACAACAACAACAA		
AAGAACTGAAAGCCGAAAGCTAAAGCGGCGCTGATGTTCAACCTGCAAGAACCGTA CTTCACCTGGCGCTGATTGCTGACGGGGGTTATGCGTTCAAGCATGAAGACCGG GCAAGTACGACATTCAAAGACGGGGCTTAAAGACGGGGTCT GACCTTCCTGGTTGACCGGGCGAAAACGGCATGACGCGCCGACACCGGTTACCC CACTGCAAGAAGCTGCCTTTAATAAAGGCGAAAACAGCAATGAATG		
CTTCACCTGGCCGCTGATTGCTGCCGCGGGTATGCGTTCAAGTATGAAAACG GCAAGTACGACATTAAAGACGTGGCGTGGATAACGCTGGCCGAAAGCGCGGTCT GACCTTCCTGGTTGACCTGATTAAAAACAAACAACACGCGATGACCACGAAAGCGGTTACTC CATCGCAGAAGCTGCCTTTAATAAAAGCAAACACACGCATGACCACGGACCCGCG ACCTTCAAGGGTCAACATCGACAACGACGAAAGTGACTTAGGTGTAACGGTACGCGC ACCTTCAAGGGTCAACATCGAACACGGCTGCAAAGCGCTGCCGAACGCGCCGAGGCCGACGCGCGCG		AAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTA
GCAAGTACGACATTAAAGACGTGGCCTGGGATAACGCGCGCG		CTTCACCTGGCCGCTGATTGCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAACG
AU Sialidase from AU Sialidase from AUS4pETd*		GCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCT
AU Sialidase from AU Sialidase from AUSALDEC CACCATCCAACCCCCCCCCCCCCCCCCCCCCCCCCCC		
ACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAA CGCCGCCAGTCCGAACAAAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGA CTGATGAAGGTCTGGAAGGCGGTTAATAAAGACCAACCGCTGGGGCGCGTGGCCGAGCGCT GAAGTCTTACGAGGAAGGGTGACAAAGAGCCCGCGCAGCGTGCCGCAACTATGGAAA ACGCCCAGAAAGGTGGACAATCATGCCGAAACAACCACCACTATGGAAA ACGCCCCAGAAAGGTGGACAATCATGCCGAACAACCACCACCACTATGGAAA ACGCCCCGGGACGCGCAGACTAATTCGACGCGCCAGCGGTCGTCAGCGGTGGACGAC CCCTGAAAGACGCCGAGACTAATTCGAGCCGGACCAACAACAACAACAACAACAACAACAACAA		GGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCG
CGCCGCCAGTCCGAACAAGAGCTGGCAAAAGAGTTCCTCGGAAAACTATCTGCTGA CTGATGAAGGTTTACGAGGAAGAGTTGGCGAAAAGATTCCCGCGGGTGCCGAGACGAT GAAGTCTTACGAGGAAGAGTTGGCGAAAAGATCCACGCTATTGCCGCCACTATGGAAA ACGCCCAGAAAAGGTGAAATCATGCCGAACAATCCCGCAGAGTGTCCGCATTAGGAAA ACGCCTGGGTACTGCGGGTGATCAACGCCGCCGCGCGCGC		ACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAA
CTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCT GAAGTCTTACGAGAAGCTGGAAATCATGCCGAACATCCCGCACTATGCCGCCACTATGGAAA ACGCCCAGAAAGGTGGAAATCATGCCGAACATCCCGCACGGTTGTCGGCTTTCTGGTAT GCCGTGCGTACTGCGGTGATCAACGCCGCCAGCGGTCGTCAGACTGTCGATGAAG ACACCTCGGGATCGCGCGACACTATTCGAGCTCGAACAACAACAACAACAATAACA ACACCTCGGGATCGGCGCGCGCGCGCGCGCGCGGTGGACCACCAC ACACCTCGGGATCGGACCGGCGGCCGCTCCACCACGGGCCTTTACCC CGGTGACCAACGCCGATTCATACCGTGACCGGCGCCCTTTGCGGTAGAGCGACAC CCGGTGACCAACGCCGATTCATACCGTGACCGGCCCGCGCGCCGACAGCGGGC CCGGTGACCAACGCCGATTCATACCGTGACCGGCCCGGC		CGCCGCCAGTCCGAACAAAGAGCTGGCAAAAGAGTTCCTCGAAAACTATCTGCTGA
AUSIAGTICTIACGAGGAAGGATGGAAGCATGCCGAAGATCCCGCAGATGTCCGGCTTACTGGATA ACGCCCCGGAAAGGTGCGGAAATCATGCCGAACGATCCCGCGGATGTCGGATGAAG CCCTGAAAGACGCGCAGACTAATTCGAGCTCGAACAACAACAACAATAACAA ACAACCTCGGGATCGAGGAAAACCTGTACTCCAATCCAA		
AUSialidase from AUSialidase from AUSialidase from AUSialidase from AUSialidase from AUSialidase from AUSialidase from AUSialidase from AUSialidase from		
AUSialidase from AU54pETd* CCCTGAAAGACGCGCGAGACTAATTCGAGCTCGAACAACAACAACAACAATAACAATAACA ACAACCTCGGGGACGGCGATCGATCGACCGTGCCGCACCGGCGCTTCACCC CGAAGAAGCGCCGATTCATACCGTGACCGTGCGCGCCTTGCGGCGCGCCGCCGCCGCCCCCCGGAGAGCCAC CCGGTGACCAACGCGCCAATTCGCCGAACTCGCTCCGCGGACAGGCTATGTGACGGT TGCACGAACAACCCCTTGACCCGGGCCGGCCGGCCGGCCG		GCCGTGCGTACTGCGGTGATCAACGCCGCCAGCGGTCGTCAGACTGTCGATGAAG
ACAACCTCGGGATCGAGGAAAACCTGTACTTCCAATCCAATgcaATGGTGCTGACCG AGTTGGTTGACCTGCCCGGCGGCGCTGTTCCGCCGCGCGCG		CCCTGAAAGACGCGCAGACTAATTCGAGCTCGAACAACAACAACAATAACAATAACA
AGTTGGTTGACCTGCCCGGCGGATCGTTCCGCATGGGCTCGACGCGCGCTCTACCC CGAAGAAGCGCCGATTCATACCGTGACCGTGCGCGCCTTTGCGGTAGAGCGACAC CCGGTGACCAACGCCGCGCATTTGCCGAATTCGTCTCCGCGACAGGCTATGTGACGGT TGCAGAACAACCCCTTGACCCCGGGCTCACCCAGGAGTGGACCAGCAGACCTG GGCGGCAATGGTGGGACTGGTGTTTTGTCCGACGGCCGGC		ACAACCTCGGGATCGAGGAAAACCTGTACTTCCAATCCAATgcaATGGTGCTGACCG
CGAGAGAGCGCCCGATTCATACCCGGGACCGGGCCCGCCC		AGTTGGTTGACCTGCCCGGCGGATCGTTCCGCATGGGCTCGACGCGCTTCTACCC
AU Sialidase from AU54pETd* AUGGCCATCATCATCATCATCATCATCATCATCATCACGCAGCGGCCATCCGTTCGCCCACGGTACCACGGCCACCCGGCCACCCGGCCACCCGGCCACCCGGCCACCCACCCGGCCACCCACCCGGCCACCCACCCGGCCACCCAGGCCACCCAGGCCACCCAGGCCGACCACC		
TGTCCCGGTGCGATGGTGTTTGTCCGACGGCCGGCCGGTCGACCTGCGGCGCACTGGGCGCAATGGTGGGGACTGGGTACCTGGCGCCGCGCCGCCGCCGCCGCCGCCGCCGCCGCCGC		TGCAGAACAACCCCTTGACCCCGGGCTCTACCCAGGAGTGGACGCAGGCGAGACCAG
GGCGGCAATGGTGGGACTGGGTACCTGGCGCCTGCTGGCGCCATCCGTTGGCCGGCGGCAATGGTGGGGACTGGGCACCGAGCCGGCCGCCGTGGCGACCCCGGTGGCCACCGGGGGCCTATCCGGACGCCGTGGCCTACGCCGACCGAGGCCGGCCGACCACCGGCGCGCGC		TGTCCCGGTGCGATGGTGTTTTGTCCGACGGCCGGGCCG
GGGACAGCGATATCGCCGACCGAGCCGGCCACCCGGTCGTACAGGTGGCCTATCC GGACGCCGTGGCCTACGCACGATGGGCTGGTCGACGCCTACCGACGGCGACACC GGGAGAGCCGGGGGCCCGTGGCGCACCACGGCACCCTACCGACCG		GGCGGCAATGGTGGGACTGGGTACCTGGCGCCTGCTGGCGCCATCCGTTTGGCC
AU Sialidase from AU54pETd* AUGCCCCGGGCCCGACCCCCCCCCCCCCCCCCCCCCCCC		GGGACAGCGATATCGCCGACCGAGCCGGCCACCCGGTCGTACAGGTGGCCTATCC
AU Sialidase from AU54pETd* ATGGGCCATCATCATCATCATCATCATCACCGGGGGGGCCCGGCCCGGCCGG		
CGCAACGACGGTGCATTGGGCTGGGTGGGAACCTCCCCGGTGGGCAGGTTTCCG GCCAACGGGTTTGGCTTGCTCGACATGATCGGAACGTTTGGGAGTGGACCACCA CCGAGTTCTATCCACACCATCGCATCGATCACCCTCGACGGCCTGCTGCGCACCG GTCAAGCTCGCTACAGCCGCCGACCACGATCAGCCAGACCCTCAAGGGCGGCT CGCACCTGTGCGCGCCGGAGTACTGCCACCGCTACCGCCGGCGCGCGC		GGAGAAGCCGGGGGGGCATGCTCATGGCGAACACCTGGCAGGGCCGGTTTCCTTAC
GCCAACGGGTTTGGCTTGCTCGACATGATCGGAAACGTTTGGGAGTGGACCACCA CCGAGTTCTATCCACACCATCGCATCGATCCACCCTCGACGGCCTGCTGCGCACCG GTCAAGCTCGCTACAGCCGCCGACCCGACGATCAGCCAGACCCTCAAGGGCGGCT CGCACCTGTGCGCGCCGGAGTACTGCCACCGCTACCGCCGGCGCGCGC		CGCAACGACGGTGCATTGGGCTGGGTGGGAACCTCCCCGGTGGGCAGGTTTCCG
CCGAGTTCTATCCACACCATCGCATCGATCCACCCTCGACGGCCTGCTGCGCACCG GTCAAGCTCGCTACAGCCGCCGACCCGACGACCACGCAGACCCTCAAGGGCGGCT CGCACCTGTGCGCGCCGGAGTACTGCCACCGCTACCGCCGGCGCGCGC		GCCAACGGGTTTGGCTTGCTCGACATGATCGGAAACGTTTGGGAGTGGACCACCA
AU Sialidase from AU54pETd* ATGGGCCATCATCATCATCATCATCATCATCATCAGCCAGACCCTCAAGGGCGGC GGTGTCCGGGTAGCCCCCCACTCCGCCACGCCA		CCGAGTTCTATCCACACCATCGCATCGATCCACCCTCGACGGCCTGCTGCGCACCG
AU Sialidase from AU54pETd* AU54pETd* AU54ctored a contract and a contract a		
GGTGTCCGGGTAG AU Sialidase from AU54pETd* ATGGCCATCATCATCATCATCATCATCATCATCACAGCAGCGGCCATATCGAAGGT CGTCATATGCTCGAGGCCCCCACTCCGCCCACGCGCGCGC		CGCAGTCGCAGGACACCGCGACCACCCATATCGGGTTCCGGTGCGTGGCCGACCC
AU Sialidase from AU54pETd* AU54pETd* AU54pETd* AU54pETd* ATGGGCCATCATCATCATCATCATCATCATCACAGCAGCGGCGCATATCGAAGGT GCTCCTGAAACCAATCTGGCGGCCGACCGCCACGGCGGCGAATTTCTTCTACCGG ATTCCCGCGCTTACCTACCTTGGCAACGACGTGGTCCTTGCAGCGTGGGACGGTC GCCCGGGTTCGGCGGCGGACGCCCCGAACTCGATCGTCCAGCGCCGAA GCACGGACGGTGGCAAGACCTGGCGGCCCGGTCCAAGTGATCGCCGCACGCCACG		GGTGTCCGGGTAG
AU54pETd* CGTCATATGCTCGAGGCCCCCACTCCGCCCAATTCGCCCACGCTTCCACCGGGCCA GCTTCTCTGAAACCAATCTGGCGGCCGACCGCACGGCGGCGAATTTCTTCTACCGG ATTCCCGCGCTTACCTACCTTGGCAACGACGTGGTCCTTGCAGCGTGGGACGGTC GCCCGGGTTCGGCGGCGGACGCCCGGACCCCGAACTCGATCGCCGCAGCGCCGAA GCACGGACGGTGGCAAGACCTGGGGGCCCGGTCCAAGTGATCGCCGCAGGCCACG	AU Sialidase from	ATGGGCCATCATCATCATCATCATCATCATCACAGCAGCGGCCATATCGAAGGT
ATTCCCGCGCTTACCTACCTGGCGCCCGACCGCCGGCCGACATTCTCTACCGG GCCCGGGTTCGGCGGCGGACGCCCGAACGCGACCGACGTCGTCCAGCGCCGAA GCACGGACGGTGGCAAGACCTGGGGGCCCGGTCCAAGTGATCGCCGCAGGCCACG	AU54pETd*	CGTCATATGCTCGAGGCCCCCACTCCGCCCAATTCGCCCACGCTTCCACCGGGCA
GCCCGGGTCGGCGGCGGGCGCGGGCCCGAACCCGAACTCGATCGCCCGAACCCGAACTCGATCGCCCGAACCCGAACTCGCCCCCGAACCCGCCCG		
GCACGGACGGTGGCAAGACCTGGGGGCCGGTCCAAGTGATCGCCGCAGGCCACG		GCCCGGGTTCGGCGGCGGACGCCCCGAACCCGAACTCGATCGTCCAGCGCCGAA
		GCACGGACGGTGGCAAGACCTGGGGGCCGGTCCAAGTGATCGCCGCAGGCCACG
TCGCCGATGCCAGCGGCCCTCGATACGGCTACAGCGATCCCTCGTACATCTACGA		TCGCCGATGCCAGCGGCCCTCGATACGGCTACAGCGATCCCTCGTACATCTACGA
		CATCGAGTCTTCCGACGCCGGCGTGACGTGGAGCCGGCAGCCCGCCTCATCACCTCC

	GTCACCAAGCCGGGTACCAGCAAGACCAACCCGGCAGCCGGCGACGTCCGCTCCA
	ACTTEGCECCECCEGETGAGEGECATCCAGETCAAATACGECCCGCACAAGEGECCG
	TCTCATCCAGCAGTACGCCGGCGACGTGCGGCAAGCTGACGGAAGCAACAAGATC
	CCTGCCAACAACGGTGCAATCGCCCGCATGTTCCCCAACGCGGCGCAGGGCTCCG
	CAGACGCGAAGAAACIGAICIICACCAACGCAAACICCAAGACCGGCCGCGAAAAC
	GTCTCGGCCCGGGTCTCCTGTGACGACGGCGAAACCTGGCCGGGCGTCCGCACC
	ATCCGTTCCGGCTTCTCGGCCTACTCAACAGTGACCCGCCTGGCGGACGGA
	CGGCGTCCTCTACGAGGGCAACTACACGGACAACATGCCCTTCGCCACCTTCGAC
	GACGCGTGGTTGAACTACGTCTGCGCTCCCTTGGCAGTACCGGCAGTCAACATCG
	CCCCGAGCGCAACGCAGGAGGTTCCGGTGACCGTCACTAACCAGGAAGCAACCAC
	GCTTTCCGGCGCGACCGCAACTGTCTATACGCCGTCGGGGTGGTCTGCCACCACG
	GIGCCCGIGCCCGACGICGCCCCCGCGCGCGICACCGIGACCGIGCACIGA
CP sialidase	ATGCGTGGGTCGCATCACCACCACCACCACGGATCCTTGTAATAAGAATAACAC
nET22h_T5_A99	ATTCGAGAAAAACCTGGATATTTCTCACAAACCGGAACCTCTGATTCTGTTTAATAAG
p=1220-13-A33	GATAACAACATTTGGAATTCCAAATACTTTCGTATTCCAAACATTCAACTCCTGAATG
	ACGGTACGATTCTTACCTTTTCCGACATCCGGTATAATGGGCCGGATGATCACGCAT
	ATATTGATATCGCGAGCGCTCGCTCTACCGACTTTGGTAAAACGTGGAGCTATAACA
	TTGCGATGAAAAACAACCGGATTGACAGTACATATTCACGTGTCATGGATTCAACGA
	CCGTAATTACTAACACCGGCCGTATTATTCTGATCGCAGGCTCGTGGAATACAAACG
	GTAATTGGGCAATGACGACTTCTACCCGTCGTTCTGACTGGAGCGTTCAGATGATC
	TACAGIGACGATAACGGACTGACGIGGICCAATAAAATCGATCIGACGAAAGACTC
	GAAAATAATGAGAACAATTATTATAGCCTGATTATTTATT
	CGTGGACTATGGGCAATAAAGTGCCGAACAGTAACACCTCAGAGAACATGGTGATC
	GAGCTGGATGGTGCTCTGATTATGTCCACCCGTTACGATTACAGCGGGTATCGCGC
	CGCCTACATCTCGCATGATCTGGGCACCACGTGGGAGATTTATGAACCTCTGAACG
	GAAAAATTTTGACTGGTAAAGGTTCAGGCTGCCAAGGCTCTTTCATTAAAGCGACCA
	CCAGCAACGGGCATCGTATCGGACTGATTTCTGCCCCTAAAAACACCAAAGGCGAG
	TACATTCGCGATAACATCGCCGTGTACATGATTGATTTGATGACCTCTCAAAAGGC
	GTGCAGGAGATTTGCATTCCGTATCCAGAAGATGGCAACAAACTGGGTGGG
	CTCGTGTCTGTCATTTAAAAATAACCATCTGGGAATTGTGTACGAAGCGAACGGGAA
	TATIGAATATCAGGACCIGACCCCGTACTATATC
<u>GST-thrombin-</u>	
Neu2	
	GATAAATGGCGAAACAAAAAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCTTATT
	ATATIGATGGIGATGITAAATTAACACAGICTATGGCCATCATACGITATATAGCIGA
	CAAGCACAACATGTTGGGTGGTTGTCCAAAAGAGCGTGCAGAGATTTCAATGCTTG
	AAGGAGCGGTTTTGGATATTAGATACGGTGTTTCGAGAATTGCATATAGTAAAGACT
	TTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTACCTGAAATGCTGAAAATGTTCGA
	AGATCGTTTATGTCATAAAACATATTTAAATGGTGATCATGTAACCCATCCTGACTTC
	ATGTTGTATGACGCTCTTGATGTTGTTTTATACATGGACCCAATGTGCCTGGATGCG
	TTCCCAAAATTAGTTTGTTTTAAAAAAACGTATTGAAGCTATCCCACAAATTGATAAGT
	AATUUUTGUUUTGUUTGUUTGUUTGUUTGUUGGUAGCAGTUUUTGUUTGUUTGUUTGUUTGUUTGUUTGUUTGUUTG
	CAGCGGGCAAGCAAGAAGGATGAGCACGCAGAGCTGATTGTCCTGCGCAGAGGAG
	ACTACGACGCACCCACCACGAGGTTCAGTGGCAAGCTCAGGAGGTGGTGGCCCA
	GGCCCGGCTGGATGGCCACCGGTCCATGAACCCATGCCCCTTGTATGACGCGCAG
	ACGGGGACCCTCTTCCTCTTCATTGCCATCCCTGGGCAAGTCACGGAGCAACA
	GCAGCTGCAGACCAGGGCCAATGTGACGCGGCTGTGCCAAGTCACCAGCACTGAC
	CACGGGAGGACCTGGAGCTCCCCCAGAGACCTCACTGATGCGGCCATCGGCCCAG

	ATCCAAAGGCCGATCCCCTCTGCCTTCTGCTTCCTCAGCCATGACCATGGCGCGCAC
	GIGGGCGAGGGCACTIIGIGGCCCAGGACACCCIGGAGIGCCAGGIGGCCGA
	CTCCAGCCCCTGAGGCCTGGTCAGAGCCGGTACTGCTGGCCAAGGGCAGCTGTG
	CCTACTCAGACCTCCAGAGCATGGGCACCGGCCCTGATGGGTCCCCCTTGTTTGG
	GTGTCTGTACGAAGCCAATGATTACGAGGAGATTGTCTTTCTCATGTTCACCCTGAA
	GCAAGCCTTCCCAGCTGAGTACCTGCCTCAGCTCGAGCGGCCGCATCGTGAC
GST-thrombin-	ATGTCCCCTATACTAGGTTATTGGAAAATTAAGGGCCTTGTGCAACCCACTCGACTT
Nou2	CTTTTGGAATATCTTGAAGAAAAATATGAAGAGCATTTGTATGAGCGCGATGAAGGT
ineus	GATAAATGGCGAAACAAAAAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCTTATT
	ATATTGATGGTGATGTTAAATTAACACAGTCTATGGCCATCATACGTTATATAGCTGA
	CAAGCACAACATGTTGGGTGGTTGTCCAAAAGAGCGTGCAGAGATTTCAATGCTTG
	AAGGAGCGGTTTTGGATATTAGATACGGTGTTTCGAGAATTGCATATAGTAAAGACT
	TTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTACCTGAAATGCTGAAAATGTTCGA
	AGATCGTTTATGTCATAAAACATATTTAAATGGTGATCATGTAACCCATCCTGACTTC
	ATGTTGTATGACGCICTTGATGTTGTTTTATACATGGACCCAATGTGCCTGGATGCG
	TICCCAAAATTAGTTIGTTITAAAAAAACGTATIGAAGCTATCCCACAAATTGATAAGT
	TACACCTCCACACTTAACTCCCCTTTATTCCCCACCAACATCAT
	TGAGAAGCGTTCCACCCCGTGATGAGGAGGATGCGTTAAAAAAAA
	GICTICGCATCGGACAATTAGTACAGTGGGGGTCCTTTAAAACCGCTTATGGAAGCG
	ACCTTACCAGGACATCGTACTATGAACCCCTGTCCTGTGTGGGAACAGAAATCTGG
	CIGCGIGIICIIAIICIIIAICIGCGIACGIGGICACGIAACAGAACGCCAGCAAAI
	TGTAAGTGGCCGTAACGCGGCCCGCTTATGTTTTATCTACTCGCAGGATGCGGGAT
	GTTCTTGGTCAGAGGTCCGTGACCTGACAGAGGAGGTTATCGGGTCTGAGTTGAAA
	CACTGGGCCACTTTCGCCGTAGGTCCAGGTCATGGGATCCAGTTGCAGTCTGGAC
	GCCTGGTTATTCCGGCTTATACTTACTATATCCCGTCGTGGTTCTTTTGTTTTCAACT
	GCCCTGTAAGACGCGTCCACACTCGCTGATGATCTATAGCGATGATTTGGGAGTTA
	CGTGGCATCATGGACGTTTGATCCGCCCGATGGTCACAGTCGAGTGTGAGGTTGC
	CGAAGTGACTGGCCGCGCAGGACATCCAGTGCTGTACTGTTCAGCGCGTACGCCA
	AATCGCTGTCGTGCCGAAGCACTTTCAACGGATCATGGTGAAGGCTTTCAACGCCT
	TGCGTTATCACGCCAACTGTGCGAACCGCCTCATGGGTGTCAGGGCAGCGTGGTTT
	CATTCCGCCCACTGGAAATTCCCCCATCGTTGTCAAGACTCCTCTAGCAAAGATGCC
	CCTACGATCCAACAGTCGAGTCCTGGTAGTAGCCTGCGCCTTGAGGAAGAAGCAG
	GAACGCCGLCTGAGTCTTGGTTATTATACAGCCATCCAACGTCTCGTAAGCAGCGT
	GTGGACTTAGGTATCTACTTAAACCAAACTCCCCTTGAGGCCGCCTGTTGGAGGCCG
	IGACIGA

Supplementary Note 2: Synthetic Procedures

General synthetic chemistry instrumentation

Molecular sieves (Sigma-Aldrich, 688363) were flame-dried under vacuum and used immediately Thin laver chromatography after coolina. was conducted on SiliCycle silica plates (TLG R10011B-624) or C18 silica gel TLC plates (Analtech, 55077), with detection of multiband UV-absorption (254 – 365 nm). Column chromatography was done with Biotage SNAP KP-Sil (FSK0-1107) or Ultra C18 (FSUL-0401) flash purification cartridges (10 - 120 g) and an Isolera Prime ACI automated fraction collector from Biotage. The preparative RP-HPLC instrument used in this manuscript consists of an Agilent Technologies ProStar 325 UV-vis detector, two PrepStar solvent delivery modules, and a 440-LC fraction collector. The column for prep RP-HPLC was a Varian Microsorb 100 Å C18, 8 µm, 21.4 × 250 mm Dynamax preparative column (R0080220G8).

Proton nuclear magnetic resonance (¹H NMR) and proton-decoupled carbon-13 nuclear magnetic resonance (¹³C {¹H} NMR) spectra were obtained on Mercury-400 and Varian-400 NMR spectrometers at 25 °C, are reported in parts per million downfield from tetramethylsilane, and are referenced to the residual protium or carbon resonances of the NMR solvent (CDCl₃: 7.26 (¹H), and 77.16 (¹³C), [CHCl₃]). MestReNova v12.0.3 was used for all chemical NMR analysis. Data are represented as follows: chemical shift, multiplicity, coupling constants in Hertz (Hz), and integration. Splitting patterns are designated as follows: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sept = septet, m = multiplet, dd = doublet of doublet, dt = doublet of triplet. NMR signals were assigned on the basis of ¹H, ¹³C, COSY, and HSQC experiments. Low resolution mass spectra of small molecules were recorded using an Agilent 1260 Infinity Quaternary LC and 6120 Quadrupole LCMS System. High resolution mass spectra of small molecules and proteins were performed by the Stanford University Mass Spectrometry (SUMS) core facility and recorded on an Agilent 1260 HPLC, a Bruker MicroTOF-Q II ESI-Qq-TOF, and a Thermo Exactive benchtop Orbitrap mass spectrometer. Mass spectrometry of digested proteins was performed on Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific).

Synthesis of Azido-PEG3-HIPS

Compounds 3 – 8 were synthesized as previously described.^{27,28}

3-(2-((2-(((9H-Fluoren-9-yl)methoxy)carbonyl)-1,2- dimethylhydrazinyl)methyl)-1Hindol-1-yl)propanoic acid (9): Prepared using a published procedure²⁸ with modified purification. To a solution of **8** (423 mg, 1.95 mmol, 1 equiv.) and (9H-fluoren-9yl)methyl 1,2-dimethylhydrazinecarboxylate, **3**, (1.08 g, 3.83 mmol, 2 equiv.) in 1,2dichloroethane (53 mL) with 4Å MS was added sodium triacetoxyborohydride (519 mg, 2.45 mmol, 1.3 equiv.). The resulting yellow suspension was stirred for 5 h and then quenched with NaHCO₃ (saturated aqueous solution, 10 mL), followed by addition of HCI (1 M aqueous solution) to pH 4. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (5 x 10 mL). The pooled organic extracts were dried over Mg₂SO₄, filtered, and concentrated to an orange oil. Purification by HPLC (20-90% ACN in water) gave **9** as an orange solid (821 mg, 1.70 mmol, 87%). The spectral data were in agreement with literature values²⁸.

2-((1-(1-azido-13-oxo-3,6,9-trioxa-12-azapentadecan-15-(9H-Fluoren-9-yl)methyl yl)-1H-indol-2-yl)methyl)-1,2-dimethylhydrazinecarboxylate (10): A solution of 9 (1.2 g, 2.48 mmol, 1 equiv.) and 11-azido-3,6,9-trioxaundecan-1-amine (Azido-PEG3-amine) (819 µL, 3.72 mmol, 1.5 equiv.) in anhydrous dimethylacetamide (DMA) (9.92 mL) was cooled to 0 °C. Then, 2,4,6-trimethylpyridine (TMP) (655 µL, 4.96 mmol, 2 equiv.) and COMU (1.09 g, 2.48 mmol, 1 equiv.) were added and the reaction was stirred at 0 °C for 30 min, then warmed to RT and stirred for 4 h. The reaction mixture was diluted with ethyl acetate (150 mL), washed with 1 M HCl (3x 25 mL), 1 M NaHCO₃ (3x 25 mL), and brine (3x 25 mL), dried over MqSO₄, filtered, and concentrated to a viscous orange oil. Purification via C18 reversed-phase silica gel flash column chromatography (0-90% ACN in water) gave 10 as a light brown oil (1.26 g; 1.84 mmol; 75%). TLC: (water:ACN, 10:90 v/v) Rf = 0.72; (MeOH:DCM, 10:90 v/v) Rf = 0.52. ¹H NMR: (400 MHz, CDCl₃) δ 7.69 (d, J = 7.6 Hz, 2H, 2x Ar-CH Fmoc), 7.54 – 7.39 (m, 3H, 2x Ar-CH Fmoc & Ar-CH indole), 7.38 – 7.28 (m, 3H, Ar-CH indole & 2x Ar-CH Fmoc), 7.27 – 7.15 (m, 2H, 2x Ar-CH Fmoc), 7.15 – 7.02 (m, 2H, Ar-CH indole & NHCO), 6.99 (t, J = 7.4 Hz, 1H, Ar-CH indole), 6.28 (s, 0.68H, Ar-CH indole), 5.95 (s, 0.44H), 5.82 (s, 0.38H), 4.65 – 4.21 (m, 4H, CH₂ Fmoc & CH₂-N indole), 4.15 (t, J = 6.1 Hz, 1H, CH Fmoc), 4.06 – 3.93 (m, 1H, CH₂-NMe), 3.55 – 3.41 (m, 6H, 3x CH₂ PEG), 3.39 (dd, J = 5.8, 3.5 Hz, 2H, CH₂ PEG), 3.34 – 3.14 (m, 8H, 2x CH₂ PEG & CH₂-NHCO & CH₂-N₃), 2.82 – 2.72 (m, 3H, N-Me), 2.68 – 2.35 (m, 5H, CH₂-CO & N-Me). ¹³C NMR: (101 MHz, CDCl₃) δ 171.68 (NHCO), 155.50 (NCOO), 143.72 (2x Ar-C Fmoc), 141.17 (2x Ar-C Fmoc), 137.03 (Ar-C indole), 134.63 (Ar-C indole), 127.62 (2x Ar-CH Fmoc), 127.21 (Ar-C indole), 127.00 (2x Ar-CH Fmoc), 124.83 (2x Ar-CH Fmoc), 121.70 (Ar-CH indole), 120.39 (Ar-CH indole), 119.87 (2x Ar-CH Fmoc), 119.43 (Ar-CH indole), 109.52 (Ar-CH indole), 103.32 (Ar-CH indole), 70.34 (CH₂ PEG), 70.26 (CH₂ PEG), 70.17 (CH₂ PEG), 69.83 (CH₂ PEG), 69.71 (CH₂ PEG), 69.28 (CH₂ PEG), 67.15 (CH₂-N indole), 50.63 (CH₂-NMe), 50.41 (CH₂-N₃), 47.07 (CH Fmoc), 40.34 (CH₂-OCO), 39.82 (CH₃-N), 39.21 (CH₂-NHCO), 36.86 (CH₂CONH), 30.75 (CH₃-N). **ESI-HRMS:** calc'd for C₃₇H₄₅N₇NaO₆ [M+Na]⁺:706.3324; found: 706.3339.

N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(2-((1,2dimethylhydrazinyl)methyl)-1H-indol-1-yl)propanamide (1): 10 (95 mg, 138 µmol, 1 equiv.) was added to a stirred solution of piperidine (274 µL, 2.76 mmol, 20 equiv.) in DMA (1.38 mL) at RT. The reaction mixture was stirred for 1 h and directly purified via C18 reversed-phase silica gel flash column chromatography (0-100% ACN in water) affording azido-PEG3-HIPS (1) as light yellow solid (54.6 mg, 118 µmol, 86%) containing some impurities. This compound appeared to degrade in light and air and was therefore used at this purity and stored at -80 °C under argon. TLC: (water:ACN, 10:90 v/v) Rf = 0.72; (MeOH:DCM, 10:90 v/v) Rf = 0.52. ¹H NMR: (400 MHz, CDCl₃) δ 7.47 (d, J = 7.5 Hz, 1H, Ar-CH), 7.30 (d, J = 8.4 Hz, 1H, Ar-CH), 7.11 (t, J = 7.6 Hz, 1H, Ar-CH), 7.00 (t, J = 7.4 Hz, 1H, Ar-CH), 6.31 (s, 1H, Ar-CH), 6.05 (s, 1H, NH), 4.54 (t, J = 7.5 Hz, 2H, CH₂-N indole), 3.80 (s, 2H, CH₂-NMe), 3.53 (m, 6H, 3x CH₂ PEG), 3.49 -3.44 (m. 2H. CH₂ PEG), 3.39 – 3.34 (m. 2H. CH₂ PEG), 3.27 (d. J = 9.7 Hz. 6H. CH₂ PEG & CH₂-N₃ & CH₂-NHCO), 2.63 (t, J = 7.2 Hz, 2H, CH₂-CO), 2.53 (s, 3H, N-Me), 2.35 (s, 3H, N-Me). ¹³C NMR: (101 MHz, CDCI₃) δ 170.82 (CONH), 137.19 (Ar-C), 135.92 (Ar-C), 127.68 (Ar-C), 121.70 (Ar-CH), 120.49 (Ar-CH), 119.66 (Ar-CH), 109.62 (Ar-CH), 103.17 (Ar-CH), 70.78 (CH₂ PEG), 70.66 (CH₂ PEG), 70.60 (CH₂ PEG), 70.25 (CH₂ PEG), 70.13 (CH₂ PEG), 69.74 (CH₂ PEG), 55.93 (CH₂-NMe), 50.75 (CH₂-N₃), 43.47 (CH₃-N), 40.21 (CH₂-N indole), 39.36 (CH₂-NHCO), 37.20 (CH₂-CO), 35.24 (CH₃-N). **ESI-HRMS**: calc'd for C₂₂H₃₆N₇O₄ [M+H]⁺: 462.2823; found: 462.2815.

Synthesis of chloroacetamide-PEG4-DBCO

To a solution of chloroacetic acid (18.9 mg, 200 μ mol, 1.2 equiv.) in DCM (189 μ L) was added DBCO-PEG4-amine (87 mg, 167 μ mol, 1 equiv.) in DCM (350 μ L). The mixture was cooled in an ice bath to 0 °C and EDC (51.2 mg, 267 μ M, 1.6 equiv.) in DCM (1 mL) was added. The mixture gradually came to RT and was stirred overnight. The mixture was concentrated in vacuo and then purified by flash chromatography on silica gel (0-10% MeOH in DCM) to give α -chloroacetamide-DBCO (2) as a yellow oil (77 mg, 77%), which was dissolved in DMSO and stored in aliquots at -80 °C. **TLC**:

(DCM:MeOH, 9:1 v/v) Rf = 0.4. ¹H NMR: (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.4, 1H), 7.44-7.23 (m, 7H), 7.10 (br s, 1H), 6.54 (t, *J* = 5.6 Hz, 1H), 5.12 (d, *J* = 13.9 Hz, 1H), 4.03 (s, 2H), 3.71 – 3.54 (m, 15H), 3.52 – 3.45 (m, 4H), 3.36-3.21 (m, 2H), 2.55-2.44 (m, 1H), 2.35 – 2.26 (m, 2H), 2.03 – 1.86 (m, 1H). ¹³C NMR: (101 MHz, CDCl₃) δ 172.1, 171.1, 166.2, 151.2, 148.2, 132.2, 129.2, 128.7, 128.5, 128.4, 127.9, 127.3, 125.7, 123.2, 122.6, 114.9, 107.9, 70.71, 70.68, 70.63, 70.48, 70.45, 70.3, 69.5, 67.2, 55.6, 42.8, 39.7, 37.0, 35.3, 34.9. **ESI-HRMS**: calc'd for C₃₁H₃₈CIN₃O₇ [M+H⁺]: 600.2476, found: 600.2466.

NMR Spectra

