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SUMMARY
Instinctive defensive behaviors, consisting of stereotyped sequences of movements and postures, are an
essential component of the mouse behavioral repertoire. Since defensive behaviors can be reliably triggered
by threatening sensory stimuli, the selection of the most appropriate action depends on the stimulus prop-
erty. However, since the mouse has a wide repertoire of motor actions, it is not clear which set of movements
and postures represent the relevant action. So far, this has been empirically identified as a change in loco-
motion state. However, the extent to which locomotion alone captures the diversity of defensive behaviors
and their sensory specificity is unknown. To tackle this problem, we developed a method to obtain a faithful
3D reconstruction of the mouse body that enabled to quantify a wide variety of motor actions. This higher
dimensional description revealed that defensive behaviors aremore stimulus specific than indicated by loco-
motion data. Thus, responses to distinct stimuli that were equivalent in terms of locomotion (e.g., freezing
induced by looming and sound) could be discriminated along other dimensions. The enhanced stimulus
specificity was explained by a surprising diversity. A clustering analysis revealed that distinct combinations
ofmovements and postures, giving rise to at least 7 different behaviors, were required to account for stimulus
specificity. Moreover, each stimulus evoked more than one behavior, revealing a robust one-to-many map-
ping between sensations and behaviors that was not apparent from locomotion data. Our results indicate that
diversity and sensory specificity of mouse defensive behaviors unfold in a higher dimensional space, span-
ning multiple motor actions.
INTRODUCTION

Mice are innately able to respond to changes in their sensory

landscape by producing sequences of actions aimed at maxi-

mizing their welfare and chances for survival. Such spontaneous

behaviors as exploration [1, 2], hunting [3, 4], and escape and

freeze [5–8], although heterogeneous, share the key property

that they can be reproducibly elicited in the lab by controlled sen-

sory stimulation. The ability of sensory stimuli to evoke a repro-

ducible behavioral response in these paradigms makes them

an important experimental tool to understand how inputs are en-

coded and interpreted in the brain and appropriate actions

selected [5, 8–10].

Realizing the full power of this approach, however, relies upon

a description of evoked behaviors that is sufficiently complete to

encompass the full complexity of the motor responses and to

capture the relevant variations across different stimuli or

repeated presentations of the same stimulus. Instinctive
Current Biology 30, 4619–4630, Dece
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defensive behaviors, such as escape or freeze, have been

defined on the basis of a clear phenotype—a sudden change

in locomotion state. Thus, in the last few years, it has been shown

that speed, size, luminance, and contrast of a looming object

have different and predictable effects on locomotion [5–8].

Nevertheless, mice do more than run, and a variety of other

body movements as well as changes in body orientation and

posture could, at least in principle, contribute to defensive be-

haviors. In line with this possibility, a wider set of defensive be-

haviors, including startle reactions and defensive postures in

rearing positions, have been qualitatively described in rats [11,

12]. However, until now, a lack of tools to objectively measure

types of movement other than locomotion has left that possibility

unexplored.

We set out here to askwhether a richer quantification ofmouse

defensive behaviors was possible and, if so, whether this could

provide additional information about the relationship between

sensation and actions. To this end, we developed a method
mber 7, 2020 ª 2020 The Authors. Published by Elsevier Inc. 4619
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Figure 1. Reconstruction ofMouse Poses andQuantification of Pos-

tures and Movements

(A) Body landmarks are separately tracked across each camera. See Figure S1

for additional details on the 4-camera system.

(B) A raw 3D reconstruction is obtained by triangulation of body landmark

positions (left panel). The raw reconstruction is corrected by applying our al-

gorithm based on the statistical shape model as described in STAR Methods,

Figure S2, and Videos S1 and S2. The refined 3D reconstruction (right panel) is

then used for all the further analyses.

(C) The model expressed by Equation 1 allows for quantifying a wide range of

postures and movements of which red and green boxes report some exam-

ples. The ‘‘body shape’’ components enable to measure changes in body

shape, such as body elongation and body bending. For additional details, see

STAR Methods section ‘‘Interpretation of the eigenposes’’ and Figure S3. The

‘‘body position’’ components enable to quantify translations and rotations in a

3D space.

(D) The full set of behavioral measures, divided into 3 postural measures and 6

movement measures, is expressed as function of the terms in Equation 1. For

additional details, see STAR Methods section ‘‘Validation of the postural and

movement measures’’ and Figure S4.
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that enables to obtain a 3D reconstruction of mouse poses. We

then used this method to generate a higher dimensional repre-

sentation of mouse defensive behaviors that enabled to quantify

a wide range of body movements and postures.

We found that defensive responses to simple visual and audi-

tory stimuli encompass numerous motor actions and accounting

for all those actions provides a richer description of behavior by

increasing the dimensionality of behavioral representation. This

increase provides an improved understanding of defensive
4620 Current Biology 30, 4619–4630, December 7, 2020
behaviors in several respects. First, behavioral responses are

more specific to distinct stimuli than is apparent simply by

measuring locomotion. Second, higher specificity can be ex-

plained by the appearance of a richer repertoire of behaviors,

with equivalent locomotor responses found to differ in other

behavioral dimensions. Third, each class of sensory stimuli can

evoke more than one type of behavior, revealing a robust

‘‘one-to-many’’ map between stimulus and response that is

not apparent from locomotion measurements.

RESULTS

A Method for Quantifying Multiple Motor Actions
The first aim of this study was to develop a method that enables

to obtain a 3D reconstruction of mouse poses. Five different

landmarks on the mouse body (nose tip, left and right ears,

neck base, and tail base; Figure 1A) were tracked using four

cameras mounted at the top of an open-field arena that we

used throughout the study (Figures S1A and S1B). The 3D

pose of the animal was first reconstructed by triangulation of

landmark coordinates across the four camera views (Figure 1B,

raw; see STARMethods section Reconstruction of 3D poses and

Figures S1C–S1F for details). This initial reconstruction was then

refined by using a method we established for this study (Fig-

ure 1B, refined; see STAR Methods section Reconstruction of

3D poses, Figure S2, and Video S1 for details). These pre-pro-

cessing stages allowed us to describe, on a frame-by-frame ba-

sis, the mouse pose Xas

XðtÞ =
 
X +

XNeigenposes

i =1

PibiðtÞ
!
RðtÞ+TðtÞ; (Equation 1)

where t represents the time of the current frame, X the coordi-

nates of the body landmarks, X the body coordinates of the

mean pose, Pi the mouse eigenposes, bi the shape parameters

allowing to keep track of the changes in the body shape (Fig-

ure 1C, body shape), andR and T the rigid transformations (rota-

tion and translation) encoding the animal’s position in the behav-

ioral arena (Figure 1C, body position). Both X and Pi were

obtained by training a statistical shape model (SSM) (Equation 3

inSTARMethods sectionReconstruction of 3Dposes) on a sepa-

rate dataset ofmouse poses. Those poseswere first aligned, and

a principal-component analysis (PCA) was performed to identify

the eigenposes Pi, i.e., the directions of largest variance with

respect to X: Applying the SSM enabled to correct for outliers

in the initial 3D reconstruction and to reduce high-dimensional

noise while preserving meaningful changes in body shape (see

STAR Methods section Validation of the 3D reconstruction and

Figure S2 for details). The first two eigenposes captured, respec-

tively, body elongation and bending (Figure 1C, body shape), two

important descriptors of the mouse posture that explained,

respectively, 43% and 31% of the variance associated with

changes in body shape (see STAR Methods section Interpreta-

tion of the eigenposes, Figure S3, and Video S2 for details).

Based on this analytical description of the mouse pose, we

developed two sets of measures to quantify distinct postures

andmovements. The first set of measures, rearing, body elonga-

tion, and body bending, allowed us to capture different aspects

of the mouse posture (Figure 1D, postural measures). The



Figure 2. Multiple Motor Actions Are

Involved in Sensory-Guided Behaviors

(A) Average response to the three classes of sen-

sory stimuli (flash, loom, and sound) according to

the postural and movement measures defined in

Figure 1D. Error bars represent SEM (n = 172 for

each stimulus class). Response divergence (RD)

between pairs of stimuli is reported in insets (*p <

0.001 with shuffle test for RD).

(B) Percentage of variance explained as function

of principal components for the full set of motor

actions (green) and for locomotion only (red). The

gray line indicates 80% explained variance.

(C) The minimum bi-cross validation error is used

to quantify the rank of the full set and of locomo-

tion only (respectively, rank = 19 and 39, marked

by black dots).
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second set, constituted by locomotion, freezing, rigid body rota-

tion, and changes in rearing, body elongation, and body bending

allowed us to capture different types of body movements (Fig-

ure 1D, movement measures). For all the analyses, themeasures

in Figure 1Dwere normalized and ranged in the interval [0, 1] (see

STAR Methods section Normalization of the behavioral mea-

sures for details). These automatic measures were consistent

with the human-based identification of walking, body turning,

freezing, and rearing obtained from manual annotation of the

behavioral videos (see STAR Methods section Validation of

postural and movement measures and Figure S4 for details).

Measuring Multiple Motor Actions Provides a Higher
Dimensional Representation of Behavior
We set out to investigate the extent to which our measures of

postures and movements were involved in defensive behaviors.
Current Biolog
The animals were tested in an open-field

arena, in which no shelter was provided.

In order to capture awide range of behav-

ioral responses, we used three different

classes of sensory stimuli: two visual

and one auditory. Among visual stimuli,

we selected a bright flash and a looming

object. We have previously shown that

these two stimuli evoke distinct and

opposite behavioral responses, with the

former inducing an increase in locomotor

activity while the latter abolishes locomo-

tion by inducing freezing behavior [7]. The

auditory stimulus was also previously

shown to induce defensive responses,

such as freeze or startle [6, 13] (see

STAR Methods sections Behavioral ex-

periments, Visual and auditory stimuli,

and Experimental set-up for details on

sensory stimuli and experiments).

We separately averaged all trials ac-

cording to stimulus class, and we found

that all our measures were involved in

defensive behaviors (Figure 2A). To esti-

mate responses divergence (RD) across
stimuli, we calculated the pairwise Euclidean distance between

average responses, and we normalized this distance with that

obtained by randomizing the association between stimuli and

responses (Figure 2A, insets; see STAR Methods section

Response Divergence for details). Across most measures

(except rearing for loom and body bend for sound; see Figure 2A,

insets), the average response to the flash clearly diverged from

those elicited by other stimuli (RD = 6.28 ± 2.40 SD; p < 0.001

for n = 16 pairwise comparisons; shuffle test). Average re-

sponses to looming and sound were all significant but less diver-

gent (Figure 2A, insets; RD = 2.52 ± 1.21 SD; p < 0.001 for n = 9

pairwise comparisons; shuffle test).

To determine whether the inclusion of all our measures of

movements and postures, hereafter the ‘‘full set,’’ increased

the dimensionality of our behavioral description, we performed

a PCA on the response matrix. For locomotion, each row of the
y 30, 4619–4630, December 7, 2020 4621



Figure 3. Higher Dimensionality Reveals Increased Stimulus

Response Specificity

(A) Loom and sound could evoke an indistinguishable pattern of locomotion

arrest shown in upper left panel (mean ± SEM; data from n = 37 and 31 trials for

loom and sound). However, the pattern of body elongation was different

across loom and sound (bottom left panel). A representative trial for loom (blue

box) and for sound (red box) is reported in the right panels. Time progression is

captured by the gray-to-black transition of the mouse body (poses sampled

every 0.2 s between 1- and 2-s latency from stimulus onset). Note that different

levels of body elongation can be observed from a side view in the z-x planes.

(B) On each trial, the specificity index (SI) was calculated as the number of

neighbor responses to the same stimulus divided by the total number of

neighbors. In this toy example, based on 2D responses (PC1 and PC2), we

show a target trial for which the number of neighboring responses for the same

stimulus changes across panels to obtain SI values of 1, 0.5, and 0.

(C) SI for pairs of stimuli (mean ± SD; n = 344 trials) measured with locomotion

(gray bars) and for the full set (black, red, and blue). For additional details, see

Figure S5.

(D) Same as (C) but for all stimuli (mean ± SD; n = 516 trials).

*p < 0.05; *****p < 0.0005; ******p < 0.0001.
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response matrix represented a trial (n = 516 trials) and each trial

contained 30 dimensions associated with the 0- to 2-s epoch of

the locomotion time series (sample rate = 15 frames/s). For the

full set, each trial contained 270 dimensions (30 time points 3

9 measures). This analysis revealed that, for the full set, 34 prin-

cipal components were required to explain >80% variance,

although 5 dimensions were sufficient for locomotion alone
4622 Current Biology 30, 4619–4630, December 7, 2020
(Figure 2B). In principle, the increase in dimensionality observed

in the full set could be trivially explained by a disproportionate in-

crease in measurement noise. To test for this possibility, we esti-

mated the rank of the response matrix by applying the bi-cross

validation technique [14] (see STAR Methods section Rank esti-

mation for details). Consistent with the PCA analysis, we found

that the rank of the full set was substantially larger, �2-fold (Fig-

ure 2C), indicating that the full set provided a genuine increase in

dimensionality.

Higher Dimensionality Reveals Increased Stimulus
Specificity in Defensive Behaviors
We then asked whether this increased dimensionality could cap-

ture additional aspects of stimulus-response specificity that

could not be observed in locomotion. To account for the fact

that evoked responses developed over time, we divided the re-

sponses into three consecutive epochs of 1-s duration accord-

ing to their latency from the stimulus onset (‘‘early’’: 0–1 s; ‘‘inter-

mediate’’: 1–2 s; ‘‘late’’: 2–3 s).

We first looked for a specific condition in which the same level

of locomotion was expressed in response to two distinct sensory

stimuli. A simple illustrative example, where locomotion largely

fails to capture stimulus-response specificity, is the case in

which both looming and sound induce a common freezing

pattern that could be observed in a subset of trials (Figure 3A,

top panels; see also Videos S3 and S4). In the intermediate

response epoch, when freezing is strongest, locomotion ‘‘satu-

rates’’ toward 0 in responses to both stimuli and thus provides

no discrimination (p = 0.48; shuffle test for RD; n = 37 and 31 tri-

als for loom and sound). However, stimulus specificity is

apparent in the animal’s posture, as revealed by quantifying

body elongation (Figure 3A, bottom panels p = 0.001; shuffle

test for RD; n = 37 and 31).

To systematically compare stimulus-response specificity

across all trials (n = 172 trials per stimulus) for the full set with

the level of specificity revealed by locomotion alone, we devel-

oped a simple specificity index (SI). On an individual trial basis,

SI identified, within a d-dimensional space, the k most similar

behavioral responses across our dataset and quantified the frac-

tion of those responses that were associatedwith the same stim-

ulus. A toy example in which SI is calculated for k = 6 in a 2D da-

taset is depicted in Figure 3B. Thus, on a given trial, SI ranged

from 0 to 1, in which 1 signifies all similar behavioral responses

being elicited by the same stimulus, 0.5 similar responses being

equally expressed for both stimuli, and 0 all similar responses

being elicited by another stimulus (Figure 3B). For the real

data, we used a weighted version of the SI index where the

contribution of each neighbor response was inversely propor-

tional to its distance from the target response (see STAR

Methods section Stimulus-response specificity for a formal defi-

nition of the SI). The SI was applied to a principal component

reduction of the response matrix (n = 15 and n = 15 3 9 = 135

time points for locomotion and the full set, respectively) and eval-

uated for pairwise comparisons between the 3 sensory stimuli.

Because SI was dependent upon k and d, we systematically var-

ied those parameters, andwe recalculated SI for each parameter

combination. Almost invariably, SI was maximized for k = 1 both

for the full set and for locomotion only (Figure S5A). At least 5

principal components were typically required to maximize SI,



Figure 4. Higher Dimensionality Improves

Stimulus Decoding

(A) Comparison between K-nearest neighbor

(KNN) decoding performances (mean ± SD)

based on the full set and on locomotion only.

Pairwise comparisons are shown for flash

versus loom (black-blue), sound versus flash

(red-black), and loom versus sound (blue-red)

across different response epochs (0 to 1 s, 1 to

2 s, and 2 to 3 s). For additional details, see

Figure S6.

(B) Decoding performances (mean ± SD) of KNN

decoding for 0- to 2-s response epochs.

(C) Same as (B), but decoding is performed across all stimuli for the full set (bright purple) and for a reduced set, in which we removed body elongation, body

bending, Dbody elongation, and Dbody bending (dark purple). Locomotion is always displayed as gray bars.

*****p < 0.0005; ******p < 0.0001.
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and the best value for d varied across different comparisons (Fig-

ure S5B). Therefore, low-dimensional responses (e.g., based on

the first two components as in Figure S5C) failed to capture the

full specificity of behavioral responses. Responses from the

same animals were no more similar than those obtained from

different animals because, for any given trial in the dataset, the

most similar response rarely belonged to the same animal (n =

21; 10 trials out of 516 for full set and locomotion across all stim-

uli; p = 0.205, 0.957; shuffle test). Moreover, the distance be-

tween each target trial and its nearest neighbor was on average

the same, irrespectively of whether they shared the same stim-

ulus or not (Figure S5D).

We then compared SI between locomotion and the full set

for k = 1 and the parameter d that returned the highest trial-aver-

aged SI. We found no significant differences when comparing

flash and loom (Figure 3C, blue bars; p = 0.0674, 0.2416, and

0.0701 for 0- to 1-s, 1- to 2-s, and 2- to 3-s epochs; sign test;

n = 344 trials). However, the full set provided an increase in spec-

ificity for early responses when comparing flash and sound (Fig-

ure 3C, red bars; p = 0.0002, 0.4570, and 0.1980 for 0- to 1-s, 1-

to 2-s, and 2- to 3-s epochs; sign test; n = 344 trials) and for the

early and intermediate responses when comparing loom and

sound (Figure 3C, red bars; p = 0.0254, 0, and 0.5935 for 0- to

1-s, 1- to 2-s, and 2- to 3-s epochs; sign test; n = 344 trials).

For both the full set and locomotion, the highest SI values were

observed either in the early or intermediate epoch of the

response.We then set out to quantify the overall change in spec-

ificity. Compared with locomotion, the full set provided an overall

�40% increase in SI over chance levels (Figure 3D; p = 0; sign

test; n = 516 trials).

To further test our conclusion that a higher dimensional

description of behavior revealed increased stimulus-response

specificity, we asked whether it improved our ability to predict

the stimulus class based upon a mouse’s behavior (i.e., whether

higher dimensionality enables more accurate decoding of the

stimulus). To this end, we applied a K-nearest neighbors (KNN)

classifier because this algorithm utilizes that local information

provided by the k neighbors and therefore represents a natural

extension of the specificity analysis (see STAR Methods section

Decoding analysis for details). Like the SI index, KNN decoding

performances depended on the choice of k and d. Differently

to what we observed for SI, where the index was maximized

for k = 1, the best performances were obtained for larger values

of k, indicating that multiple neighbors are required to reduce
noise (Figure S6A). Similarly to SI analyses, high-dimensional re-

sponses substantially improved accuracy (Figure S6B).

Decoding performances were not significantly different for the

full set and for locomotion when comparing flash versus loom

(Figure 4A, black dots; p = 0.1130, 0.1384, and 0.6013 for 0- to

1-s, 1- to 2-s, and 2- to 3-s epochs; binomial test; n = 344 trials).

However, the full set improved decoding of the early response for

flash versus sound (Figure 4A, red dots; p = 0, 0.5356, and 0.26

for 0- to 1-s, 1- to 2-s, and 2- to 3-s epochs; binomial test; n = 344

trials) and across all epochs for loom versus sound (Figure 4A,

blue dots; p = 0.0008, 0, and 0.0028 for 0- to 1-s, 1- to 2-s,

and 2- to 3-s epochs; binomial test; n = 344 trials). These results

were not specific for the KNN classifier because matching out-

comes were obtained by using random forest (Figure S6C; flash

versus loom: p = 0.4218, 0.2146, and 0.3671; flash versus sound:

0, 0.7528, and 0.5550; loom versus sound: 0, 0, and 0.0057;

binomial tests; n = 344 trials). Focusing on the most informative

0- to 2-s epoch enabled to decode flash versus loom and flash

versus sound with over 90% accuracy (respectively, 93% and

91.73%; Figure 4B, black and red bars), and the full set did not

provide significant improvements over locomotion (p = 0.4901

and 0.1186; binomial test; n = 516 trials). However, when

comparing loom versus sound, locomotion only allowed

66.78% accuracy although the full set provided 77.75% accu-

racy, a 65% improvement over chance level (p = 0.00001; bino-

mial test; n = 516 trials). The full set also provided a 20.57%

improvement over chance level when decoding was performed

across the three stimuli (Figure 4C, purple bar; p = 0.0001; bino-

mial test; n = 516 trials), which corresponded to an additional

�40 correctly decoded trials. Part of the increase in performance

was granted by the information provided by changes in body

shape (described in Figure 1D as body elongation, body bend,

Dbody elongation, andDbody bend) because removing those di-

mensions from the full set significantly degraded decoding per-

formances (Figure 4C, dark purple bar; p = 0.0125; binomial

test; n = 516 trials).

Higher Dimensionality Reveals a Larger Set of Defensive
Behaviors
Our results indicate that the mapping between stimulus and

behavioral response is more specific in a higher dimensional

space. We next sought to describe the structure of this mapping.

Specifically, we asked how many distinct behaviors are ex-

pressed in response to each stimulus. First, we clustered
Current Biology 30, 4619–4630, December 7, 2020 4623



Figure 5. Higher Dimensionality Reveals a Larger Set of Sensory-
Specific Behaviors

(A) Mutual information is estimated for the full set of motor actions as function

of the number of clusters (mean ± SD; 50 repeats per cluster; at each repeat,

the best of 100 runs was selected). Note an initial fast rise in MI (‘‘high-gain’’

region in the plot) followed by a more gradual linear increase (‘‘low-gain’’ re-

gion).

(B) Same as (A) but for locomotion only.

(C) Comparison between the exponential rise in MI for the full set of motor

actions and for locomotion only. The exponential rise in MI, captured by the t

values, is slower for the full set, indicating that the high-gain domain encom-

passes a larger number of distinct clusters.

(D) Left panel shows the response matrix of the full dataset (n = 516 trials)

partitioned into 7 clusters. The response matrix is obtained by concatenating

all the postures andmotor actions (DBb, Dbody bend; DBe, Dbody elongation;

DRe, Drear; Bb, body bend; Be, body elongation; Fr, freeze; Lc, locomotion;

Re, rear; Rt, body rotation). Right panels show one representative trial for each

cluster (10 poses sampled at 0.2-s intervals between 0- and 2-s latency from

stimulus onset; time progression is captured by the gray-to-black transition).

(E) Conditional probability of stimulus class, given each of the clusters shown

in (D). Flash, loom, and sound are reported, respectively, in left, middle, and

right panel.
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responses from all trials based upon similarity in motor actions.

An important consideration in such a process is how many clus-

ters to allow. We approached that problem by investigating the

relationship between the number of clusters and the degree to

which each cluster was restricted to a single stimulus (quantified
4624 Current Biology 30, 4619–4630, December 7, 2020
as mutual information between stimulus and behavioral

response). We focused on the interval 0–2 s because this epoch

provided the best decoding results. Then, for each number of

clusters, we estimated themutual information (MI) between stim-

ulus and behavioral response (see STAR Methods section Clus-

tering and Information Analysis for details). By observing the in-

crease in MI as function of the number of clusters, two distinct

regions could be clearly delineated (Figure 5A, black error

bars). For a small number of clusters, approximately between 2

and 7, we observed a ‘‘high gain’’ region where MI increases

substantially for each additional cluster. Beyond this domain,

the ‘‘high-gain’’ region was replaced by a ‘‘low-gain’’ region,

where further increments in the number of clusters provided

limited increments in MI. This analysis suggests 7 clusters as a

reasonable trade-off between the need for a generalization of

the behavioral responses and the granularity required to capture

a large fraction of stimulus-specific information.

Our previous analyses suggested that the range of behaviors

is larger when considering the full set versus locomotion alone

(see, e.g., Figure 3A). To confirm that this was true, we applied

the same clustering method to the locomotion data alone. A

similar repartition into high- and low-gain regions was observed

(Figure 5B, black error bars). However, the high-gain region

domain appeared to be reduced to approximately 2 to 3 clusters,

suggesting a reduction in the number of sensory-specific behav-

ioral clusters. To more rigorously test whether this was the case,

we fitted the relation betweenMI and the number of clusters k us-

ing the function

MIðkÞ = a
�
1� e

�k
t

�
+bk; (Equation 2)

which incorporates a steep exponential component and a more

gradual linear component (Figures 5A and 5B, fitting lines; see

STAR Methods section Clustering and Information Analysis for

details). These terms account, respectively, for the high- and

the low-domain regions. We then used the exponential rise con-

stant t as a measure of the size of the high-domain region. We

found that twas indeed smaller for locomotion alone (Figure 5C),

indicating that the full set of measures of postures and move-

ments captures a larger number of sensory-specific behaviors.

Among the 7 behaviors revealed by our clustering of the full

set, several motifs occurred (Figure 5D): fast sustained locomo-

tion (cluster no. 1) or rearing (cluster no. 2) both accompanied by

body elongation; body bending followed by delayed freeze (clus-

ter no. 3); sustained freeze (cluster no. 4); transient freeze in rear-

ing position (cluster no. 5); body bending and other rotations of

the body axis, including frequent changes in rearing position

(cluster no. 6); and sustained freeze in body bent positions (clus-

ter no. 7). The flash stimulus evoked behaviors that were very

specific for this stimulus (clusters no. 1 and no. 2; Figure 5E,

left panel). The loom and sound stimuli evoked approximately

the same set of behaviors, but, between the two stimulus clas-

ses, those behaviors were expressed in different proportions

(Figure 5E, middle and left panel).

Distinct Behaviors Differ Both in Rate and Latency of

Behavioral Primitives

Each of those 7 behaviors was composed of several basic motor

actions and postures that we define as primitives. In principle,

distinct behaviors could contain diverse sets of primitives and/



Figure 6. Distinct Behaviors Differ Both in

Rate and Latency of Behavioral Primitives

(A) The primitives extracted from the response

matrix are displayed for all trials (n = 8 primitives;

duration = 0.133 s). Trials are partitioned into the 7

clusters as in Figure 5D.

(B) The mean ± SD of all measures of postures and

movements are shown for four primitives (run,

rear, freeze straight, and freeze bent). Individual

representative samples of each primitive are

shown as 3D body reconstructions at the top of

each bar graph. For additional details, see Figures

S7A–S7C.

(C) Frequency (mean ± SD) of each primitive

across the 7 behavioral clusters shown in Fig-

ure 5D.

(D) Latency (mean ± SD) of each primitive across

the 7 behavioral clusters shown in Figure 5D.
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or the same set of primitives but expressed at different latencies

from the stimulus onset. To better understand the composition of

each behavior, we increased the temporal resolution of our

behavioral analysis by subdividing the 2-s window into consec-

utive sub-second epochs. We then performed a clustering anal-

ysis across those sub-second epochs to identify the primitives.

In order to select the number of primitives and their duration,

we used a decoding approach. Thus, for each parameter combi-

nation, we fitted three stimulus-specific, variable-order Markov

models (VMMs), one for each stimulus class (see STARMethods

section Analysis of Behavioral Primitives for details). Decoding

performances were then evaluated on hold-out data by assign-

ing each trial to the stimulus-specific VMMs associated with

the highest likelihood. The VMMs cross-validated performances

were optimal for primitive duration between 0.13 and 0.33 s (Fig-

ure S7A). Within this range, the best VMMs contained 6–8 prim-

itives and exhibited maximum Markov order of 0 to 1 time steps

(Figure S7B). We selected VMMs with 8 primitives of 0.13-s
Current Biolog
duration (Figures 6A and 6B), and we

used them to compare, across the 7 be-

haviors, the rate and the latency of the

primitives. For each stimulus, the distri-

bution of primitives was significantly

different from that observed during the

spontaneous behavior preceding the

stimulus (Figure S7C; p = 0, 0, and 0;

Pearson’s c2 test for flash, loom, and

sound). For flash, the two most frequently

occurring primitives defined the re-

sponses to clusters no. 1 and no. 2 in Fig-

ure 5D and represented, respectively, run

and rear actions (Figure 6B). For loom and

sound, the most frequent primitives were

both expression of freezing but along

different postures: with straight elon-

gated body for loom (Figure 6B, freeze

straight) and with hunched and left or

right bent body for sound (Figure 6B,

freeze bent). Both the latency and the

rate of those primitives changed signifi-
cantly across the 7 behaviors (Figure 6C; rate: p = 0, 0, 0, and

0; latency p = 0, 0, 0.0014, and 0; Kruskal-Wallis one-way

ANOVA for run, rear, freeze straight, and freeze bent). These re-

sults indicate that both the composition and the timing of basic

motor actions and postures varies in those behaviors.

The Mapping between Stimulus and Response Is Not

Uniquely Defined by Observable Initial Conditions

From the results in Figure 5, a clear ‘‘one-to-many’’ mapping

emerges, in which each stimulus can evoke multiple behavioral

responses. Such multiplicity could be driven by several factors

preceding the time of the stimulus onset and dynamically recon-

figuring the mapping between stimulus and response: internal

states of the animal that are independent from the stimuli and

ongoing observable behaviors; variable postures and motor

states that mechanically constrain the range of possible behav-

ioral responses; and variable position of eyes and ears within the

behavioral arena that modify the way the same stimulus is

perceived across trials.
y 30, 4619–4630, December 7, 2020 4625



Figure 7. The Mapping between Stimulus and Response Is Not

Uniquely Defined by Initial Conditions
(A) Matrix representing the concatenation of all the measures of posture and

movements for the 0.5 s preceding the stimulus onset. Trials (n = 516) have

been partitioned in 7 clusters to match the cardinality of response clustering

shown in Figure 5D.

(B) Joint probability of pre-stimulus (blue circles) and response clusters (red

circles) for flash, loom, and sound stimuli. The probability value is proportional

to the width of the lines connecting pre-stimulus and response as shown in

legend. For the analysis of robustness of such results as function of goodness

of clustering, see Figures S7D–S7G.

(C) Head elevation is calculated as the vertical angle between nose and neck

and head azimuth as the angle of the nose projection on the X-Y plane.

(D) Example of three initial positions. Position 2 is distant from position 1 along

the X-Y coordinates but can be exactly superimposed to it by a single rotation

along the Z axis. Position 3 is closer to position 1 along the X-Y coordinates,

but in order to superimpose these two positions, a translation and two rota-

tions are required.

(E) Example of three partitions of initial positions from the dataset; each pose

represents an individual trial.

(F) MI is estimated as function of the inverse of the overall number of partitions

(1/#IP) across 5 dimensions (head elevation and azimuth and head X,Y,Z

coordinates). The dotted black lines indicate the entropy of the response

clusters.
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We first set out to explore the effect of ongoing posture and

motor state (hereafter for simplicity referred to as ongoing activ-

ity). We tested the hypothesis that, given a particular stimulus,

the ongoing activity uniquely defined the subsequent behavioral

response. To this end, we first performed a clustering analysis on

the epochs immediately preceding stimulus onset (duration =
4626 Current Biology 30, 4619–4630, December 7, 2020
0.5 s). Each cluster identified different ongoing activities, and

the number of clusters was predefined and equal to 7 in order

to match the cardinality of the response clusters (Figure 7A). If

ongoing activities were to uniquely define the response, we

would expect a ‘‘one-to-one’’ mapping. We found this not to

be the case. Consistently with the one-to-many mapping previ-

ously described, each ongoing activity cluster led to multiple re-

sponses (Figure 7B). To quantify the dependence of response

from ongoing activity we usedMI. We found that ongoing activity

could only account for a small fraction of the MI required to opti-

mally predict the responses (14.92% flash, 7.2% loom, and

4.77% sound).

A caveat of this analysis lies in the fact that the multiplicity of

responsesmight trivially arise from the hard boundaries imposed

by the clustering procedure. Thus, high-dimensional points, rep-

resenting either ongoing activities or responses, located near the

boundaries between two ormore clusters would still be assigned

to one cluster only. To address the possibility that a one-to-many

mapping simply arises from trials whose cluster membership is

weakly defined, we developed a procedure to remove such trials

(see STAR Methods section Clustering Refinement). By

removing an increasing number of trials, the overall goodness

of clustering increased both for ongoing activities and responses

(Figures S7D and S7E). In this reduced dataset (293 trials out of

516), individual clusters of ongoing activities still led to multiple

responses (Figures S7F and S7G) and only accounted for a small

fraction of the MI required for correct prediction of the response

cluster (11.92% flash, 9.01% loom, and 4.85% sound), indi-

cating that the one-to-many mapping was robust to clustering

errors.

We then set out to investigate the effect of the position of eyes

and ears at the time of stimulus onset (hereafter simply referred

to as initial position). We quantified initial positions by measuring

5dimensions: headorientation (elevation andazimuth; Figure 7C)

and the head X-Y-Z position. All these dimensions were calcu-

lated in allocentric coordinates in respect to the center of the

arena (see STARMethods section Estimating the Effects of Initial

Positions). Because all our measures of movements and pos-

tures are instead expressed in egocentric coordinates, it is not

clear how to connect these two coordinate systems. For

example, it is possible that initial positions distant from each

other in X-Y coordinates but well matched after a rotation around

the Z axis would provide more (or less) similar responses than

initial positions closer to each other in X-Y coordinates but with

poor rotational symmetry (Figure 7D). In order to avoid any

assumption about the mapping between egocentric responses

and allocentric coordinates, we developed a systematic method

to extrapolate the effect of initial positions on behavioral re-

sponses. Our method relies on the fact that, in the limit of an in-

finite number of partitions in the space of initial positions, a one-

to-one mapping between initial positions and behavioral re-

sponses, if present, will always enable a correct prediction of

the response cluster from the initial position. To test for this pos-

sibility, we systematically increased the number of partitions (see

example partitions in Figure 7E), and each time, we calculated

the MI between the initial positions and the response clusters

(see black, blue, and red dots in Figure 7F). We then used linear

extrapolation to estimate the MI in the limit of an infinite number

of partitions clusters (see black, blue, and red lines in Figure 7F;
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see STAR Methods section Estimating the Effects of Initial Posi-

tions). We found that initial positions only accounted for a minor-

ity of the MI required for correct prediction of the response clus-

ter (18.76% flash, 10.06% loom, and 5.46% sound). Similar

results were obtained after removal of 50%of the trials, for which

the cluster membership for the responses was weakly defined

(14.53% flash, 8.46% loom, and 8.99% sound). In principle, it

possible that our linear extrapolation substantially underesti-

mates the information conveyed by initial positions. However,

when the order of the trials for initial positions and response clus-

ters were separately re-organized to maximize their match, our

extrapolation of theMI well captured the entropy of the response

clusters (92.68%, 95%, and 93.03% of entropy for flash, loom,

and sound; Figure 7F, gray dots and lines). This indicates that

our extrapolation could capture a one-to-one mapping between

initial positions and behavioral responses, but such mapping

was not present in the data.

DISCUSSION

A fundamental goal of neuroscience is to link neural circuits to

behaviors. Two unescapable tasks are essential prerequisites

for approaching this problem: the generation of a detailed

anatomical and physiological description of brain circuits—the

neural repertoire—and the charting of all the relevant behaviors

exhibited by the model organism of choice—the behavioral

repertoire. Then, in order to uncover meaningful links, the reso-

lutions of the neural and the behavior repertoires have to match,

because a high resolution on one side cannot compensate for

low resolution on the other [15].

In the last decade, enormous advances have beenmade in un-

derstanding functional and anatomical connectivity of the CNS

[16–18]. Thanks to these techniques, a detailed sketching of

the neural repertoire underlying sensory-guided defensive be-

haviors in the mouse is in process and substantial advances

have been made in the last few years [6, 9, 19–22].

High-dimensional reconstruction of rodent behavior is now

starting to catch up (see, e.g., [23, 24] for comprehensive re-

views). Such reconstructions have been first developed for con-

strained situations (e.g., treadmill walk) and by applying physical

markers to detect body landmarks [25]. More recently, machine

learning [26–28] and deep learning [29–31] have allowed to

obviate for the need to use physical markers. Alternative ap-

proaches have also been taken by using depth cameras [32] or

by combining traditional video with head-mounted sensors to

measure head movements [33] and even eye movements and

pupil constriction [34]. In spite of these advancements, the

behavioral repertoire for defensive behaviors has so far only

been quantified by measuring changes in locomotion state.

The first aim of this work was to provide a higher resolution

map of sensory-guided behaviors. To achieve this aim, we

used four cameras that allowed us to triangulate 2D body land-

marks and obtain a 3D reconstruction of the mouse body. The

accuracy of such a reconstruction was substantially improved

by training 3D SSM that we used to correct the 3D coordinates

(Figure S2). Our approach is supervised in that it requires to

pre-specify a set of body landmarks (nose, ears, neck base,

body center, and tail base; see Figure 1A). Previous approaches

to perform a mouse 3D reconstruction, realized by using a depth
camera, took instead an unsupervised approach using all body

points in the images followed by dimensionality reduction [32,

35]. The main advantage of our supervised approach relies on

the fact that the poses are easier to interpret. For example, a

mouse looking up can be easily described by a change in nose

elevation in respect to the neck base. The main disadvantage

is represented by the potential errors in 3D reconstruction arising

from incorrect tracking of body landmarks. However, recon-

struction errors can be minimized by using multiple camera

views and SSMs, and this approach is easily scalable to any

number of views.

Our first main finding was that the level of stimulus-response

specificity provided by a high-dimensional description of mouse

behavior is higher than the specificity measured with locomotion

alone (Figures 3 and 4). This increase in specificity was particu-

larly remarkable when comparing behavioral responses to a loud

sound and a visual looming. It has been previously shown that

both stimuli induce escape to a shelter or freeze when the shelter

is not present [7, 36]. As a result, the responses to these stimuli

have been considered equivalent and no attempts have been

made to differentiate them. Here, we show that looming and

sound responses can be discriminated with �78% accuracy

(Figure 4). This result can be explained by the fact that a higher

dimensional behavioral quantification revealed a larger number

of distinct behaviors that are stimulus specific. Thus, for both

looming and sound, the animals typically froze, but they did so

according to two different postures: a straight, upward-looking

pose for loom (Figure 3A and cluster no. 4 in Figures 5 and 6)

and a hunched pose for sound often preceded by a body spin

(Figure 3A and cluster no. 3 in Figures 5 and 6). Moreover, in

several trials, a looming stimulus was more likely than sound to

elicit rearing or short-lasting freeze in rearing position (clusters

no. 2 and no. 5 in Figures 5 and 6).

In locomotion data, where this diversity was lost (Figure 5),

specificity for looming and soundwas substantially reduced (Fig-

ure 4). Linking the neural repertoire to the behavioral repertoire

based on locomotion alone would indicate almost perfect

convergence—different sensory processes ultimately lead to

only one single action. Instead, by increasing the resolution of

the behavioral repertoire, wewere able to reject the convergence

hypothesis, showing that behavioral outputs preserve a signifi-

cant level of stimulus specificity.

For other pairs of stimuli, such as flash versus loom, locomo-

tion alone granted a good level of discrimination (z90% accu-

racy; Figure 4). A higher dimensional quantification of postures

and movements did not provide substantial advantages in

discriminating between such stimuli but enabled to better

describe behavioral responses. Therefore, although locomotion

data could well differentiate a response to a flash as opposed

to a looming stimulus, a higher dimensional quantification could

tell us whether the animal was rearing or running (clusters no. 1

and no. 2 in Figures 5 and 6).

Our second main finding was a one-to-many mapping be-

tween stimulus and response. Thus, a high-dimensional descrip-

tion revealed at least seven behavioral responses, and each

stimulus could evoke at least three (Figure 5). The same analysis

on locomotion data identified only two behaviors across all stim-

uli (Figures 5B and 5C). The reduced, essentially binary, mapping

between stimulus and response is consistent with previous
Current Biology 30, 4619–4630, December 7, 2020 4627
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results that employed locomotion as unique behavioral

descriptor. In absence of shelter, a looming stimulation was

shown to evoke either immediate freeze or escape followed by

freeze [9]. When a shelter was present, a dark sweeping object

typically evoked a freeze, but flight was also observed in a

smaller number of trials [5]. Our higher dimensional descriptors

provide a substantially enhanced picture of this phenomenon

and indicate that the one-to-many mapping between stimulus

and response occurs robustly across different sensory stimuli.

The overall figure of seven distinct behaviors represents a con-

servative estimate and reflects the criterion we used to define the

granularity of our behavioral classification. Previous studies,

aimed at providing an exhaustive description of spontaneous

behaviors, identified �60 distinct classes in the mouse [32] and

�100 in fruit fly [28]. The smaller set of behaviors identified in

this study, although more tractable and still sufficient for

capturing stimulus-response specificity, likely underestimates

the repertoire of mouse defensive actions.

The one-to-many mapping we described could not be trivially

explained by different initial conditions, i.e., by the variety of pos-

tures and motor states or by the position of eyes and ears at the

time of stimulus presentation (Figure 7). This is consistent with

recent results in Drosophila, where ongoing behavior had statis-

tically significant, but not deterministic, effects on future behav-

iors [37] and on responses to optogenetic stimulation of de-

scending neurons [38]. Therefore, at least to some extent, the

one-to-many mapping reflects stimulus-independent variability

in the internal state of the animal that generates diversity in the

behavioral output. Variability in the internal states could take

many forms, ranging from noise in the neuronal encoding of

the stimuli along the visual and auditory pathways [39] to fluctu-

ating levels of arousal [40, 41] or anxiety [42], and further studies

will be required to discriminate among those contributions. The

high level of functional degeneracy in neuronal networks (see,

e.g., [43–45]) provides the suitable substrate for the observed

behavioral diversity. The presence of functional degeneracy is

consistent with recent studies reporting that the expression of

defensive responses can be affected by activation of multiple

neuronal pathways [9, 10, 46–50]. However, our current under-

standing of the anatomical and functional substrates of this di-

versity is still insufficient and limited to the locomotion pheno-

type. We believe that further investigations of such substrates,

matched with a more-detailed description of defensive behav-

iors, represent an important avenue for future studies.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
462
B Lead Contact

B Materials Availability

B Data and Code Availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Animals

B Ethical Statement

d METHOD DETAILS
8 Current Biology 30, 4619–4630, December 7, 2020
B Behavioral Experiments

B Visual and Auditory Stimuli

B Experimental Set-Up

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Reconstruction of 3D poses

B Validation of the 3D reconstruction

B Interpretation of the eigenposes

B Normalization of the behavioral measures

B Validation of the postural and movement measures

B Response Divergence

B Rank estimation

B Stimulus-response specificity

B Decoding Analysis

B Clustering and Information Analysis

B Analysis of Behavioral Primitives

B Clustering Refinement

B Estimating the Effects of Initial Positions

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

cub.2020.09.007.

ACKNOWLEDGMENTS

This study was funded by a David Sainsbury Fellowship from National Centre

for Replacement, Refinement and Reduction of Animals in Research (NC3Rs)

to R.S. (NC/P001505/1), by a Medical Research Council grant to R.J.L. (MR/

N012992/1), and by a Fight for Sight Fellowship to N.M. (5047/5048).

AUTHOR CONTRIBUTIONS

Conceptualization, R.S. and R.J.L.; Methodology, R.S., A.G.Z., and T.F.C.;

Formal Analysis, R.S., A.A., and A.G.Z.; Investigation, R.S. and N.M.; Writing,

R.S., N.M., A.E.A., and R.J.L.; Funding Acquisition, R.S. and R.J.L.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 13, 2020

Revised: July 6, 2020

Accepted: September 3, 2020

Published: October 1, 2020

REFERENCES

1. Cooke, S.F., Komorowski, R.W., Kaplan, E.S., Gavornik, J.P., and Bear,

M.F. (2015). Erratum: Visual recognition memory, manifested as long-

term habituation, requires synaptic plasticity in V1. Nat. Neurosci. 18, 926.

2. Smeds, L., Takeshita, D., Turunen, T., Tiihonen, J., Westö, J., Martyniuk,
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
In this study we used C57BL/6 mice (n = 29, all male) obtained from obtained from the Biological Services facility at University of

Manchester. All mice were stored in cages of 3 individuals and were provided with food and water ad libitum. Mice were kept on

a 12:12 light dark cycle.

Ethical Statement
Experiments were conducted in accordance with the Animals, Scientific Procedures Act of 1986 (United Kingdom) and approved by

the University of Manchester ethical review committee.

METHOD DETAILS

Behavioral Experiments
The animals were recorded in a square open field arena (dimensions: 30cm x 30 cm; Figures S1A and S1B). Experiments were con-

ducted at Zeitgeber time 6 or 18 (respectively n = 14 and 15 animals). During transfer between the cage and the behavioral arena we

used the tube handling procedure instead of tail picking, as prescribed in [51], in order tominimize stress and reduce variability across

animals. After transferring to the behavioral arena the animals were allowed 10 minutes to habituate to the environment before start-

ing the experiment. Auditory white noise background at 64 dB(C) and background illumination (4.08*1010, 1.65*1013, 1.94*1013 and

2.96*1013 photon/cm2/s respectively S-cone opsin, Melanopsin, Rhodopsin and M-cone opsin) were delivered throughout habitua-

tion and testing. In each experiment we delivered 6 blocks of stimuli where each block was constituted by a flash, a looming and a

sound. The order of the stimuli was independently randomized within each block. The inter-stimulus-interval was fixed at 70 s.

Visual and Auditory Stimuli
The flash stimulus provided diffuse excitation of all photoreceptors (S-cone opsin: 4.43*1012 photon/cm2/s; Melanopsin: 2.49*1015

photon/cm2/s; Rhodopsin: 1.98*1015 photon/cm2/s; M-cone opsin: 7.09*1014 photon/cm2/s). As looming stimulus we used two var-

iants: a ‘‘standard’’ black looming (87%Michelson Contrast; looming speed = 66deg/s) and amodified looming where the black disc
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was replaced by a disc with a grating pattern (Spatial Frequency = 0.068 cycles/degree; Michelson Contrast: 35% for white versus

gray, 87% for gray versus black, 94% for white versus black; looming speed = 66deg/s). As auditory stimuli we used either a pure tone

(C6 at 102 dB(C)) or a white noise (at 89 dB(C)) both presented for 1 s. The selection of looming and sound variants was randomly

generated at each trial.

Experimental Set-Up
The animals were recorded with 4 programmable cameras (Chamaleon 3 from Point Grey; frame rate = 15Hz). The camera lenses

were covered with infrared cut-on filters (Edmund Optics) and fed with constant infrared light. The experiments were controlled

by using Psychopy (version 1.82.01) [52]. Frame acquisition was synchronized with the projected images and across cameras by

a common electrical trigger delivered by an Arduino Uno board (arduino.cc) controlled by Psychopy through a serial interface (py-

serial). Trigger control was enabled on Chamaleon 3 cameras through FlyCapture2 software (from Point Grey). All videos were en-

coded as M-JPEG from RGB 1280 (W) x 1040 (H) images. For tracking RGB images were converted to grayscale.

In order to deliver the flash stimulation we used two LEDs mounted inside the arena (model LZ4-00B208, LED engin; controlled by

T-Cube drivers, Thorlabs). The auditory stimuli were provided by two speakers positioned outside the arena. Background illumination

and the looming stimuli were delivered by a projector onto a rear projection screen mounted at the top of the arena. Calculation of

retinal irradiance for each photoreceptor was based on Govardovskii templates [53] and lens correction functions [54].

QUANTIFICATION AND STATISTICAL ANALYSIS

Reconstruction of 3D poses
Three dimensional reconstruction of the mouse body was based on simultaneously tracked body landmarks from four the cameras

(Figures S1A andS1B). The four camera systemwas calibrated using theDirect Linear Transform algorithm [55] before data collection

by using Lego� objects of known dimensions (Figures S1C–S1F). The reconstruction error after triangulation was 0.153 ± 0.0884SD

cm. For source codes and a detailed description of the calibration process see online material (https://github.com/RStorchi/

HighDimDefenseBehaviours/tree/master/3Dcalibration).

After data collection body landmarks were detected independently for each camera by using DeepLabCut software [29]. We used

n = 5 body landmarks: the nose-tip, the left and right ears, the neck base and the tail base (as shown Figure 1A). When the likelihood

of a landmark was higher than 0.5 the landmarkwas considered valid. Valid landmarks were then used to estimate the 3D coordinates

of the body points using least square triangulation. The result of this initial 3D reconstruction was saved as raw reconstruction (Fig-

ure 1B, Raw).

The raw reconstruction contained outlier poses caused by incorrect or missing landmark detections (typically occurring when the

relevant body parts were occluded). To correct those outliers we developed a method that automatically identifies correctly recon-

structed body points and uses the knowledge of the geometrical relations between all points to re-estimate the incorrectly recon-

structed (or missing) points. Knowledge of these geometrical relations was provided by a Statistical Shape Model (SSM).

We first estimated a statistical shapemodel (SSM) of themouse body based on n = 5 body points [56]. This was achieved by using

a set of 400 poses, each represented by a n33matrix X train whose correct 3D reconstruction wasmanually assessed. During manual

assessment the coordinate of each body landmark across the four cameras was evaluated by a human observer. When all landmark

location (n = 20, 5 landmarks for each of the 4 cameras) were approved the associated 3D pose was labeled as correct. Each training

poseX train was then aligned to a reference pose using Partial Procrustes Superimposition (PPS) and themean poseX calculated. This

algorithm estimates the 3 3 3 rotation matrix R and the n33 translation T matrix that minimize the distance X -- ðX trainR+ TÞF calcu-
lated by using the Frobenius norm. A principal component analysis was then performed on the aligned poses to obtain a set of

eigenposes P and eigenvalues l. The first p = 3 eigenposes were sufficient to explain 90.37% of the variance associated with shape

changes in our training set (42.68%, 30.85% and 16.84% respectively). Based on those eigenposes the SSM model enabled to ex-

press any aligned pose X as

X = X +
Xp
i

biPi (Equation 3)

where bi represent the shape parameters. To identify outlier poses each pose Xwas first aligned to the mean pose X and shape pa-

rameters were estimated. A pose was labeled as incorrect when either the Euclidean distance between X and X or any of the shape

parameters exceeded pre-set thresholds.

Outlier poses could be corrected if only 1-2 body points were incorrectly reconstructed by using the remaining body points and the

trained SSM. Correctly reconstructed body points, represented by the ðn�2Þ 3 3 matrix Xsubset, were identified as the subset of

points, out of all possible ðn�2Þ subsets, that minimized the distance X subset Rsubset + Tsubset -- XsubsetF: Here the matrices Rsubset

and Tsubset were obtained by aligning the corresponding body points of the reference pose,X subset , to the selected ðn�2Þ 3 3matrix

Xsubset. The shape parameters bi were treated andmissing data and re-estimated by applying Piecewise Cubic Hermite Interpolation

on the shape parameter time series. The corrected pose X was then re-estimated as X = ð X +
Pp
i = 1

biPiÞ Rsubset + Tsubset :
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These preliminary stages enabled to replace gross outliers in the raw 3D reconstruction. We then used all poses X and associated

shape parameters as input for an optimization procedure aimed at obtaining a refined 3D reconstruction by minimizing the following

cost function:

Cðb;R;TÞ = X �
 
X +

Xp
i = 1

biPi

!
R+TF + a

XNp

i = 1

b2
i

li
(Equation 4)

where the right-hand side of the Equation 3 represents a regularization factor to penalize for excessive changes in body shape. The

value for the regularization parameter a, set at 0.001, was determined by first applying this cost function to a simulated dataset. For all

further analyses the time series of each element of b; R and T were smoothed using the kernelw = [0.2 0.6 0.2]. After smoothing each

rotation matrix RðtÞ was renormalized by using Singular Value Decomposition.

Following this reconstruction procedure the mouse pose at any given frame t was defined by shape parameters bðtÞ and rigid

transformations RðtÞ and TðtÞ as reported in Equation 1. The final 3D poses were defined as refined reconstruction (Figure 1B,

Refined). A dynamic visualization of the refined reconstruction can be found in Video S1. All 3D data and source codes for estimating

SSM and the refined reconstruction can be found here:

https://github.com/RStorchi/HighDimDefenseBehaviours/tree/master/3Dreconstruction

Validation of the 3D reconstruction
In order to compare raw and refined poseswe first quantified the number of outliers. A posewas defined as outlier when, once aligned

with the reference pose, its Euclidean distance from the reference in a 15 dimensional space (5 body points along the X,Y,Z axes) was

larger than 5cm. For the raw and refined poses we detected respectively %3.31 (1037/31320) and 1.26% (395/31320) outliers (Fig-

ures S2A and S2B). In the raw 3D reconstruction the outliers were widespread across 178 trials while in the refined 3D reconstruction

the outliers were concentrated in 7 trials that were then removed for all the subsequent analyses. Among inlier poses the distance

from reference posewas only slightly reduced (Figure S2C, inset). However for the refined inlier poses the distance from the reference

pose was fully explained by only 3 components while 9 components were required for the raw inlier poses (Figure S2D). The low

dimensional variability associated with the refined inlier poses reflects the constraints imposed by the SSM (via the 3 eigenposes)

while the high dimensional variability associated with the raw inlier poses reflects the effect of high dimensional noise. Such low

and high dimensional variability can be clearly observed for the whole dataset of inlier poses in Figure S2E.

Interpretation of the eigenposes
The SSM enabled to identify a set of eigenposes that captured coordinated changes in the 3D shape of the animal body encompass-

ing all the five body landmarks (see Equation 2). To gain more intuitive insights about what type of shape changes were captured by

each eigenpose it is useful to visualize those changes.We did so by creating a video (Video S2) where we applied a sinusoidal change

to individual shape parameters in Equation 3. In this way, at any given time t and for the ith eigenpose, the mouse body could be

described as XðtÞ = X + li
ffiffiffi
6

p
sinð2ptÞ$Pi. By looking at the video it is apparent that each eigenpose captures coordinated changes

in the distances between body landmarks and angles between head and body. To quantify those changes as function of each eigen-

pose we selected, based on the video inspection, a set of four measures: nose-tail distance, neck-tail distance and head-to-body

angles on the XY and the YZ planes. We found that the first eigenpose best correlated with nose-tail distance and head-to-body

on the YZ plane indicating that this eigenpose captures different levels of body elongation (Figures S3A and S3D). The second eigen-

pose best correlated with head-to-body on the XY plane thus capturing left-right bending (Figure S3B). The third eigenpose corre-

lated best with neck-tail distance indicating again a change in body elongation (Figure S3C).

Normalization of the behavioral measures
The full set of posture and movement measures was calculated from the refined 3D reconstruction as analytically described in Fig-

ure 1D. Eachmeasure was then quantile normalized in the range [0, 1]. First all the values of eachmeasure (n = #time points x #trials =

3203 516 = 165120) were ranked from low to high. Then, according to its rank, each value was assigned to an interval. Each interval

contained the same number of values. The interval containing the lowest values was assigned to 0 and the interval containing the

lowest value was assigned to 1. All intermediate intervals were linearly spaced in the range (0,1). Finally the values were converted

to their interval number.

Validation of the postural and movement measures
In order to validate the measures of postures and movements (Figure 1C) we compared such measures with a manually annotated

set. The human observer (AA) watched the behavioral videos and annotated the start and end timing of each action across a subset of

data (18 trials from 24mice, 18 trials/mouse). We focused on four annotated actions: ‘‘Walk,’’ ‘Turn,’’ ‘‘Freeze’’ and ‘‘Rear.’’ The action

‘‘Turn’’ included left/right bending of the body as well as full body rotations around its barycenter. The action ‘‘Rear’’ included both

climbing up walls and standing on hind legs without touching the walls. All annotated actions lasted on average less than 1 s (‘‘Walk’’:

0.71 s ± 0.49 s, n = 473; ‘‘Turn’’: 0.68 s ± 0.42 s, n = 214; ‘‘Rear’’: 0.88 s ± 0.78 s, n = 505; mean ± SD) except ‘‘Freeze’’ (1.12 s ± 0.70 s,

n = 371; mean ± SD).
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Overall the automatic measures of Locomotion, Body Rotation, Freeze and Rearing (Figure 1C) were well matched with manual

annotations while also providing additional information about changes in body shape. Thus ‘‘Walk’’ was associated with the largest

increase in Locomotion (Figure S4A, right panel) as well as an increase in Body Elongation and decrease in Rearing andBodyBending

(Figure S4A, left panel). ‘‘Turn’’ was associated with the largest increase in Body Rotation and Body Bending (Figure S4B). ‘‘Freeze’’

was associated with the largest increase in our measure of Freeze and the largest decrease in Locomotion (Figure S4C, right pane).

‘‘Rear’’ was associated with the largest increase in our measure of Rearing and high sustained Body Elongation (Figure S4D, left

pane).

Response Divergence
We first calculated the Euclidean distance D between average time series obtained from two stimuli. This measure was then normal-

ized by the average distance Dsh obtained by randomly shuffling across trials the association between stimulus and response (n =

1000 shuffles). Finally response divergence was calculated as ððD � CD shDÞÞ=CD shD. To test for significance we used a shuffle

test. We counted the number of times D was larger than Dsh and identified response divergence as significant when D > Dsh in

more than 95% of the shuffle repeats.

Rank estimation
For rank estimation we used the Bi-Cross Validation method proposed by Owen and Perry [14]. Them 3 n response matrix X is par-

titioned into four submatrices A; B; C; D where A˛ Rr 3 s; B˛ Rr 3 ðn�sÞ; C˛ Rðm�rÞ 3 s; A˛ Rðm�rÞ 3 ðn�sÞ: Then the matrices B, C

and D could be used to predict A. Specifically if both X and D have rank k then A=BD+C= BðbDkÞ+C [14], where D+ represents

the pseudoinverse ofD and bDk
represents the k-rank approximation ofD obtained by Singular Value Decomposition. Using this prop-

erty we partitioned the rows and columns of X respectively into h and l subsets so that each h3l subset represented a different hold

out matrix A. Finally we estimated the Bi-Cross Validation error as function of the k-rank approximation of the D matrices as:

BCVðkÞ =
Xh
i =1

Xl

j = 1

Ai;j � Bi;j

� bDðkÞ
i;j

�+

Ci;j
2
F (Equation 5)

By systematically changing k we expect the error would reach its minimum around the true rank of X.

Stimulus-response specificity
The Specificity Index (SI) for each behavioral response was estimated as the weighted fraction nearest neighbor responses evoked

by the same stimulus class. A formal definition of this index is given as follows. Let each ith behavioral response be quantified by

its projection Xi on the Rd space of the first d principal components. We define the distance between each pair of responses as

distij = Xi � XjL2 and its inverse wij = 1=distij. The K-neighborhood of each target response is then defined as the K responses asso-

ciated with the smallest pairwise distances. Let each ith response be also associated with a variable Yi = f1;2g representing the

stimulus class. In this way each ith response is defined by the pair ðXi; YiÞ˛ Rd 3 f1; 2g . We can then define SIi, the Specificity Index

for the ith response as:

SIi =

PK
j = 1wijIðYi =YjÞPK

j = 1wij

(Equation 6)

Where the indicator function IðÞ is equal to 1 if Yi = Yj and 0 otherwise.

Decoding Analysis
Decoding performances for K-Nearest Neighbor (KNN) and Random Forest were estimated by using 10-fold cross-validation.

Dimensionality reduction based on Principal Component Analysis was performed on the data before training the classifiers. To maxi-

mize performances the KNN algorithm was run by systematically varying the parameter K and the number of Principal Components

(Figures S6A and S6B) while the Random Forest algorithm was run by systematically varying the number of Trees (within the set [10,

20, 40, 80, 160, 320]) and the number of Principal Components. Each tree was constrained to express a maximum number of 20

branches. For robustness, the estimates of decoding performances for both KNN and Random Forest were repeated 50 times for

each parameter combination. Data and source codes for specificity and decoding analyses can be found here:

https://github.com/RStorchi/HighDimDefenseBehaviours/tree/master/Decoding

Clustering and Information Analysis
Clustering was performed by using k-means algorithmwith k-means++ initialization [57]. The number of clusters k was systematically

increased in the range (2-30). For each value of k, clustering was repeated 50 times and for each repeat the best clustering results was

selected among 100 independent runs. We then used Shannon’s Mutual Information to estimate the statistical dependence between

response clusters and stimuli. A similar approach has been previously applied to neuronal responses (see e.g., [58–60]). In order to

estimate Shannon’s Mutual Information the probabilities distributions pðGÞ and pðGjSÞ, whereG = ðg1; .; gkÞ indicates the cluster

set and S= ðs1; .; snÞ the stimulus set, were estimated directly from the frequency histograms obtained from our dataset. Thus for
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pðGÞwe counted the number of elements in each cluster and we divided by the overall number of elements. We estimated pðG;SÞ in
the same way and used it to estimate pðGjSÞas pðG;SÞ=pðSÞ. From these distributions the response and noise entropies were calcu-

lated as

HðGÞ = �
X
g ˛G

pðgÞlog2pðgÞ (Equation 7)
X

HðGjSÞ = �

g ˛G; s ˛S

pðg; sÞlog2pðgjsÞ (Equation 8)

These naive estimates were then corrected for the sampling bias by using quadratic extrapolation as in [61]. Mutual Information (MI)

was then calculated from the difference of these corrected estimates. The change inMI as function of the number of clusters was fit

by using Equation 2 through a mean square error minimization based on the interior point method (MATLAB function fmincon). For

fitting the values of the parameters a; b and t were constrained to be positive. Data and source code for clustering analysis can be

found here:

https://github.com/RStorchi/HighDimDefenseBehaviours/tree/master/Diversity

Analysis of Behavioral Primitives
Behavioral primitives were first identified by applying kmeans++ clustering ([57], best of n = 100 replicates for each parameter com-

bination) to the response matrix. For this analysis the response matrix encompassed an epoch starting 0.33 s before the stimulus

onset and ending 2 s after the onset. Since both the number of clusters and the duration of the primitive was unknown we repeated

the clustering for a range of [2, 10] clusters and for six different durations (0.133 s, 0.2 s, 0.333 s, 0.4 s, 0.666 s and 1 s). In order to

model arbitrarily (finite) long temporal relations between subsequent primitives occurring on the same trial we used Variable-order

Markov Models (VMMs [62, 63],). Therefore an additional parameter of this analysis was represented by the maximumMarkov order

that ranged from 0 (no statistical dependence between two subsequent primitives), to the whole length L of the trial (L = 15, 10, 6, 5, 3

and 2 for primitives of 0.133 s, 0.2 s, 0.333 s, 0.4 s, 0.666 s and 1 s duration). To determine the best VMMs we took a decoding

approach. This enabled us to rank the models according to their accuracy in predicting the stimulus on hold-out data. For each

combination of cluster cardinality, primitive duration and maximum Markov order we trained three VMMs, one for each

stimulus (flash, loom and sound). Thus each of the three VMM (respectively VMMflash, VMMloom, VMMsound) was separately

trained by using a lossless compression algorithm based on Prediction by Partial Matching [64] on a subset of trials

associated with only one stimulus. On the test set the stimulus bS was then decoded by choosing the VMM with highest likelihoodbS = argmaxstim ε fflash; loom; soundgðVMMstimÞ. Increasing the temporal resolution of themodel by using a larger number of shorter dura-

tion primitives increased decoding accuracy (Figure S7A). Parameters for the eight most accurate models are reported in Figure S7B.

Data and source code for VMMs analysis can be found here:

https://github.com/RStorchi/HighDimDefenseBehaviours/tree/master/VMMs

Clustering Refinement
To test the possibility that the ‘‘one-to-many’’ mapping shown in Figure 7B arise from incorrect cluster membership we developed a

procedure to improve goodness-of-clustering. The element of each cluster were ranked according to their distance from the

centroid. Then for each centroid we removed up to 50% of its elements according to such distance. This resulted in improved clus-

tering metrics as shown in Figures S7D and S7E.

Estimating the Effects of Initial Positions
Initial positions were quantified according to 5 dimensions: head elevation and azimuth, and head X,Y,Z coordinates. In order to parti-

tion the space of initial conditions we first generated a set of 5 elements arrays with up to 8 partitions (each partition with the same

number of trials) for each dimension (e.g., [1, 3, 4, 1, 1] indicates 3 and 4 partitions respectively along the 2nd and 3rd dimension) . For

each array in this set the overall number of partitions across the 5 dimensions was the product of the number of partitions in each

dimension (e.g., equal to 12 for the previous example). From the initial set we then removed all the items with an overall number

of partitions larger than 20. Mutual Information was then estimated for each partition array as described in Clustering and Information

Analysis. Finally a linear extrapolation was performed to estimate Mutual Information in the limit of an infinite number of partitions.
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Figure S1: Calibration of 4 camera system for 3D reconstruction related to Figure 1A and STAR 
Methods. A)  A picture of our system. The behavioural arena is placed in the centre and cameras 
are indicated by red arrows. B) Visual stimuli, such as the standard black looming disc, are presented 
through a rear-projection screen. C) To calibrate the cameras we used 24 landmarks on a Lego® 
plate that tiled a large portion of the arena. These landmarks were repeated at 5 different heights 
by using Lego® bricks as shown in panels D and E. F) After calibration the 3D reconstructed position 
of the landmarks (red dots) matched the nominal positions (black dots).  
 
  



 

 
Figure S2: Validation of the 3D reconstruction related to Figure 1B and STAR Methods. A) 
Distribution of Euclidean distances between all poses and the mean pose for raw and refined 3D 
reconstruction (respectively left and right panel). The threshold that separates outlier and inlier 
poses is indicated by black vertical lines. B) Percentage of variance explained by a Principal 
Component Analysis of raw and refined 3D poses (respectively blue and black lines). C) Full dataset 
of aligned poses obtained via the raw 3D reconstruction. The 3D poses are shown from a side and 
top view (respectively left and right panel). D) Same as in panel C but for the refined 3D 
reconstruction.    
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure S3: interpretation of the eigenposes related to Figure 1C&D. A) Shape parameters b1, b2 
and b3 are plotted as function of nose-tail distance. B-D) Same as panel a but here shape parameters 
are plotted as function of head-angle on the XY plane (B), neck-tail distance (C) and   head-angle on 
the YZ plane (D). Pearson’s correlation values are reported at the top of each panel. 
 
 



 

 



Figure S4: Validation of the postural and movement measures related to Figure 1D and STAR 
Methods. Manually annotated actions “Walk”, “Turn”, “Freeze” and “Rear” are compared with 
postural measures of Rearing, Body Elongation and Body Bending (Re, Be and Bb in centre panels) 
and movement measures of Locomotion, Freezing and Body Rotation (Lc, Fr and Br in left panels). 
Right panels show representative samples of two superimposed frames 0.267 seconds apart.  Centre 
and left panels show mean±sem of each measure (n = 473, 214, 371 and 505 for Walking, Turning, 
Freezing and Rearing). In each panel the two vertical grey lines indicate the beginning (at time 0) 
and average duration of each action.  
 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S5: Higher dimensionality reveals increased specificity in sensory guided behaviours related 
to Figure 3B&C. A) Specificity Index is shown as function of the number of Principal Components for 
the full set (continuous lines) and for locomotion only (dashed lines). Different response epochs are 
represented in different levels of brightness (bright: 0-1s; intermediate: 1-2s; dark: 2-3s). B) Same 
as panel A but here SI is shown as function of K. C) Scatterplot of the first two Principal Components 
for full set and locomotion only (respectively left and right panel). Each dot correspond to an 
individual trial and is coloured according the stimulus (black, blue and red for Flash, Loom and Sound 
respectively). D) Euclidean distance (Mean±SD) of the nearest neighbours to target trials. Blue and 
Red error bars indicate respectively those trials in which the nearest neighbours was associated with 
the same (blue) or with a different stimulus (red). None of the 45 pairwise comparisons between 
the two groups is significant at 0.05 after applying rank-sum tests with Bonferroni correction.              



 

 
Figure S6: Higher dimensionality improves stimulus decoding related to Figure 4A. A) Stimulus 
decoding performances across a range of K values for the full set (continuous lines) and for 
locomotion only (dashed lines). Different response epochs are represented in different levels of 
brightness (bright: 0-1s; intermediate: 1-2s; dark: 2-3s).  B) Same as panel a but here the 
performances are shown as function of the number of Principal Components used for decoding. C) 
Comparison between Random Forest decoding performances based on the full set and on 
locomotion only. Pairwise comparisons are shown for flash vs loom (black-blue), sound vs flash (red-
black) and loom vs sound (blue-red) across different response epochs (0-1s, 1-2s, 2-3s).  



 



 
Figure S7: Distinct behaviours differ both in rate and latency of behavioural primitives related to 
Figure 6A&B and Figure 7A&B.  A) Decoding performances of the VMMs as function of primitive 
duration (Mean±SD for the 10 best models of each duration). B) Defining parameters (Primitive 
Duration, Number or Clusters, maximum order of VMMs) for the 8 best VOMMs. C) Distribution of 
the 8 primitives for spontaneous activity preceding the stimulus and across responses to flash, loom 
and sound. D) Davies-Bouldin (DB) and Silhouette (SL) indexes as function of the number of pre-
stimulus trials. Subset of trials are gradually removed from the full dataset in order to increase 
goodness-of-clustering as measured by decreasing DB and increasing SL indexes. E) Same as panel 
D for response trials. F,G) Same as Fig.7A&B but here we consider only those trials associated with 
better DB and SL indexes for pre-stimulus and response (indicated in panels D and E by arrows). 
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