
Importance Sampling Alignment Algorithm

Technical appendix accompanying Wilburn & Eddy (2020),

“Remote homology search with hidden Potts models”

1 Introduction

When aligning or scoring sequences with a fully parameterized hidden Potts model, we use

an approximate method called importance sampling. Unlike with profile HMMs (pHMMs)

and profile SCFGs (pSCFGs) [1–3], HPMs are incompatible with dynamic programming

algorithms that complete in polynomial time. In importance sampling, we randomly sample

possible alignments from a pHMM and “propose” them to an HPM, which rescores them.

Below, we review background of the technique and our justification for its use in HPM

homology search and alignment. The derivations below were inspired by [4] and [5].

2 Background and derivation

2.1 Monte Carlo estimation

Consider a discrete variable a. We are given a normalized probability distribution P (a) such

that
∑

a P (a) = 1. Now consider a function f (a). The expectation value of f (a) under the

1

distribution P (a) is given by:

F ≡ 〈f (a)〉a∼P =
∑
a

P (a) f (a) (1)

If the sum in equation 1 is difficult to evaluate, we can approximate this expectation

value using Monte Carlo estimation. If we can sample R independent values
{
a(r)
}R
r=1

from P (a), the expectation value is approximated as:

F ≈ f̂ ≡ 1

R

R∑
r=1

f
(
a(r)
)

(2)

It can be shown:

• The expectation value 〈f̂〉 is equal to F for any number of samples R.

• If f (x) has variance σ2
f , the variance of f̂ is

σ2
f

R
.

For example, Monte Carlo estimation can be used to calculate marginal probability dis-

tributions. Consider a joint probability distribution P (a, b). The marginal probability of b

is:

P (b) =
∑
a

P (a, b) (3)

Using Bayes’ theorem, we can rewrite the argument of the sum as:

P (b) =
∑
a

P (b|a)P (a) (4)

2

In this case, P (b|a) is analogous to f (a) in our first example. We can approximate P (b)

via Monte Carlo estimation.

P (b) ≈ 1

R

R∑
r=1

P
(
b|a(r)

)
(5)

2.2 Importance sampling

We may not want to sample from P (a) for any number of reasons. For one, it may not be

possible to generate samples from P (a). A more subtle issue may be that the value of f (a)

is negligibly small for all but a small region of a space, meaning most of the samples
{
a(r)
}

contribute almost nothing to the sum in equation 2.

Consider another distribution Q (a) from which we are able to sample. We will call Q (a)

the proposal distribution. So long as Q (a) is nonzero for every a at which the product of

f (a) and P (a) is nonzero, we can use it to estimate 〈f (a)〉(a∼P).

First, we multiply the right hand side of equation 1 by one.

F =
∑
a

P (a) f (a)
Q (a)

Q (a)
(6)

Rearranging, we have an expectation value of the product of multiple terms under Q (a).

F =
∑
a

Q (a)
P (a)

Q (a)
f (a) = 〈P (a)

Q (a)
f (a)〉a∼Q (7)

3

By drawing samples from Q (a), we can approximate the expectation value as:

F ≈ 1

R

R∑
r=1

P
(
a(r)
)

Q (a(r))
f
(
a(r)
)
≡ f̂Q (8)

Introducing the importance weight w
(
a(r)
)
≡ P(a(r))

Q(a(r))
, our estimation becomes:

f̂Q =
R∑
r=1

w
(
a(r)
)
f
(
a(r)
)

(9)

The importance weight corrects for the fact that we are sampling from Q (a) while trying

to calculate an expectation value under P (a). For values of a where Q (a) is larger than

P (a), we will generate more samples using importance sampling than we would if sampling

from P (a), but these samples will be downweighted. For values of a where Q (a) is smaller

than P (a), we will generate fewer samples under importance sampling, but the samples will

be upweighted.

In the case of marginalization, given a proposal distribution Q (a) from which to sample,

the marginal probability can be approximated as:

P (b) ≈ 1

R

R∑
r=1

P
(
b|a(r)

) P (a(r))
Q (a(r))

(10)

2.3 Is importance sampling accurate?

In order for importance sampling to work, we need the value of our estimator f̂Q to converge

to the value of F . We can show f̂Q is an unbiased estimator of F , as the expectation value

4

of f̂Q is F for any R. Mackay Exercise 29.1 shows this for the continuous case [4], but we

will show it for the discrete case here. The expectation value of f̂Q is given by:

〈f̂Q〉 = 〈 1

R

R∑
r=1

f
(
a(r)
)
w
(
a(r)
)
〉 (11)

As each sample a(r) is drawn independently from Q (a), we can rewrite the expectation

of the sum as a sum of expectation values.

〈f̂Q〉 =
1

R

R∑
r=1

〈f
(
a(r)
)
w
(
a(r)
)
〉 = 〈f (a)w (a)〉 (12)

Under the distribution Q (a), the right hand side can be written as a sum over all possible

values of a.

〈f̂Q〉 =
∑
a

f (a)w (a)Q (a) (13)

Using the definition of the importance weight, we see that 〈f̂Q〉 is equal to F .

〈f̂Q〉 =
∑
a

f (a)
P (a)

Q (a)
Q (a) =

∑
a

f (a)P (a) = F (14)

Note that the above does not necessarily hold true if Q (a) is zero for certain values of a

for which the product of P (a) and f (a) is nonzero!

5

B N C EM M M

I I

2 31

1 2

P(A)=0.25
P(C)=0.25
P(G)=0.25
P(U)=0.25

P(A)=0.25
P(C)=0.25
P(G)=0.25
P(U)=0.25

P(A)=0.25
P(C)=0.25
P(G)=0.25
P(U)=0.25

P(A)=0.25
P(C)=0.25
P(G)=0.25
P(U)=0.25

B N C EM M M

I I

2 31

1 2
P(A)=0.25
P(C)=0.25
P(G)=0.25
P(U)=0.25

P(A)=0.25
P(C)=0.25
P(G)=0.25
P(U)=0.25

P(A)=0.25
P(C)=0.25
P(G)=0.25
P(U)=0.25

D2D2 D2

P(A)=0.25
P(C)=0.25
P(G)=0.25
P(U)=0.25

P(A)=0.45
P(C)=0.45
P(G)=0.05
P(U)=0.05

P(A)=0.80
P(C)=0.12
P(G)=0.04
P(U)=0.04

P(A)=0.05
P(C)=0.05
P(G)=0.45
P(U)=0.45

Figure 1: Model architecture of an 3-site HPM (top) and corresponding pHMM (bottom).

6

3 Applying importance sampling to HPM scoring and

alignment

Given an unaligned sequence ~x and a fully parameterized hidden Potts model over all pos-

sible sequences and alignments (or “paths”), P (~x, ali), we wish to calculate the marginal

distribution P (~x) when scoring sequences.

P (~x) =
∑
ali

P (~x, ali) (15)

We will use importance sampling. For our proposal distribution Q (ali), we require the

following qualities:

1. We can generate samples from Q in polynomial time.

2. The probability mass of Q (ali) is concentrated in a region of probability space in which

P (~x, ali) is generally non-negligible.

3. Q (ali) is non-zero everywhere P (~x, ali) is non-zero.

As our proposal distribution, we will generate alignments from the probability distri-

bution of alignments under a pHMM conditioned on sequence ~x, as it satisfies the above

criteria. First, samples can be generated efficiently using dynamic programming algorithms.

Given a sequence ~x with L characters, stochastic traceback generates a pHMM path in O (L)

time [3]. At initiation, the stochastic traceback needs the dynamic programming matrix cal-

culated by the forward algorithm, which takes O (LM) time to complete, where M is the

7

number of match states in the profile HMM. However, the forward algorithm only needs to

be run once per sequence prior to generating paths.

Second, we have observed that pHMMs generally align noncoding RNAs pretty well de-

spite only capturing primary sequence conservation (see Table 2 in main text). It is our

experience that pHMMs align plausible homologs mostly right, even in the case of highly

structured RNAs such as tRNA.

Third, as the transition structure of the HPM model architecture is derived from a

pHMM, there are generally no paths with zero probability under a pHMM and non-zero

probability under an HPM.

So our importance sampling estimate for P (~x) becomes:

P (~x) ≈ 1

R

R∑
r=1

P
(
~x, ali(r)

)
PHMM

(
ali(r)|~x

) (16)

However, there is a critical issue: a path under an HPM, ~σ, is different than a path under

a pHMM, ~π. pHMM paths handle match columns in an MSA with two types of states: match

states, which emit characters; and delete states, which allow for the absence of a character

in a match column. HPM paths only use match states to represent MSA match columns,

with deletions represented as an extra character emitted by match states. As such, an HPM

path ~σ does not correspond to a single pHMM path ~π, but rather 2M possible pHMM paths.

However, the converse is true: a given ~π corresponds to one and only one ~σ.

As the stochastic traceback algorithm samples pHMM paths from PHMM (~π|~x), we are

8

sampling paths from one sample space (pHMM space) and proposing them to a probability

distribution defined over a different sample space (HPM space). In order to use PHMM (~π|~x),

we need to define HPMs and pHMMs using the same variables.

3.1 Describing HPMs in terms of four variables

We usually think of generative sequence homology models as being distributions over two

variables: the observed data, corresponding to a biological sequence in our case; and a path,

representing columns in a multiple sequence alignment. Equivalently, an HPM can be cast

as a probability distribution over four variables:

• ~x: an unaligned, observed sequence.

• ~xm: characters emitted from match states (including deletion characters).

• ~xi: characters emitted from intermediate insert states (Ik, where k denotes the index

of the preceding match column) and flanking insert states (N , C).

• ~σ: An HPM-style path through the model.

The joint probability of these four variables under the HPM is the product of four terms.

P (~x, ~xm, ~xi, ~σ) = P (~x|~xm, ~xi, ~σ)P (~xm, ~xi, ~σ) (17)

9

The first term on the right hand side of equation 17 is the compatibility function.

P (~x|~xm, ~xi, ~σ) = δ (~x, ~xm, ~xi, ~σ) (18)

The compatibility function is 1 if ~xm, ~xi, and ~σ are compatible with unaligned sequence

~x, and it is 0 otherwise. Compatibility means that ~xm, ~xi, and ~σ can be combined and

dealigned to produce unaligned sequence ~x.

For instance, given the 3-state HPM in figure 1 and sequence ~x = “ACU”, ~xm = “AU”,

~xi = ‘C’, and ~σ = B → N → M1 → I1 → M2 → M3 → C → E are compatible with ~x.

However, ~xm = “AC-”, ~xi = ‘U’, and ~σ = B → N → M1 → I1 → M2 → M3 → C → E are

not compatible with ~x, as they form unaligned sequence “AUC” rather than“ACU”.

For a given ~x, many possible combinations of ~xm, ~xi, and ~σ yield a compatibility value

of 1. However, given ~xm, ~xi, and ~σ, only one ~x is compatible.

The second term on the right hand side of equation 17 factorizes into three terms.

P (~xm, ~xi, ~σ) = PPotts (~xm)Pi (~xi|~σ)Pt (~σ) (19)

PPotts (~xm) is the Potts distribution, Pi (~xi|~σ) is the HPM’s site-independent insert emis-

sion probability model, and Pt (~σ) is the HPM’s transition probability model.

Here are the steps to generate an unaligned sequence ~x under an HPM using this four

variable scheme.

1. Generate a path ~σ from Pt (~σ).

10

• This is a Markov process; we perform a random, memoryless walk between the

states.

• Knowing ~σ does not mean we know where deletion characters are.

• However, ~σ does tell us which insert states (both flanking and intermediate) are

visited and emit characters.

2. Generate ~xi from Pi (~xi|~σ).

• This process is the independent emission of characters from the insert states

visited in ~σ, just as in a pHMM.

3. Generate ~xm from the Potts distribution, PPotts (~xm).

• Note that this distribution is not conditioned on ~σ. Every HPM path passes

through every match state.

• All match characters, including deletion characters, are generated in a single emis-

sion from the Potts model.

4. Choose ~x from δ (~x, ~xm, ~xi, ~σ).

• Once we have ~xm, ~xi, and ~σ, only one ~x is possible.

To obtain the probability of ~x under an HPM, we need to marginalize over the other 3

variables.

P (~x) =
∑
~xm

∑
~xi

∑
~σ

P (~x, ~xm, ~xi, ~σ) (20)

11

Writing this in terms of the compatibility function, we have:

P (~x) =
∑
~xm

∑
~xi

∑
~σ

δ (~x, ~xm, ~xi, ~σ)P (~xm, ~xi, ~σ) (21)

We can now approximate P (~x) by sampling ~xm, ~xi, and ~σ from a pHMM. However, we

first need to formulate a pHMM under the four variable scheme.

3.2 Redefining profile HMMs in terms of four variables

Just as with HPMs, profile HMMs can be recast using ~x, ~xm, ~xi, and ~σ. ~xm will still contain

deletion characters in this formulation. For importance sampling, we will need to define

PHMM (~π|~x) in the four variable scheme.

3.2.1 Relating pHMM paths to HPM paths

First, we must define the HPM path ~σ in terms of the pHMM path ~π. The HPM path is

a modification of a pHMM path in which delete and match states corresponding to a given

MSA column are combined into one state. Given ~σ, we know a path through match columns,

but not whether a character or a deletion is present in a match column.

A specific ~σ corresponds to 2M possible pHMM paths ~π, as each HPM match state

corresponds to a pHMM match or delete state. However, given ~π, we know ~σ: PHMM (~σ|~π)

is 1 for only one ~σ, and 0 otherwise.

12

The probability of ~σ under a pHMM is given by the sum of the probabilities of all 2M

~π’s that correspond to that ~σ.

PHMM (~σ) =
∑
~π

PHMM (~σ|~π)PHMM (~π) =
∑
~π∈~σ

PHMM (~π) (22)

Given a ~σ, the probability of a specific corresponding path ~π is the ratio of the probability

of ~π over the probability of ~σ.

PHMM (~π|~σ) =
PHMM (~σ|~π)PHMM (~π)

PHMM (~σ)
=

PHMM (~π)∑
~π′∈~σ PHMM (~π′)

(23)

3.2.2 Relation of the pHMM joint probability distributions in the different

schemes

Here is the procedure for producing an unaligned sequence ~x with a pHMM under the four

variable scheme. This method for sequence generation is much more convoluted than the

method under the two variable scheme, but we are including it for the sake of clarity.

1. Generate an HPM-style path ~σ from PHMM (~σ), as defined in equation 22.

2. Generate ~xi from PHMM (~xi|~σ) by emitting from the insert states in ~σ.

3. Generate ~xm from PHMM (~xm|~σ). This is done in two steps:

(a) Given ~σ from step 1, pick a pHMM-style path ~π from PHMM (~π|~σ) using equation

23.

(b) Generate ~xm by emitting from the match and delete states in ~π using PHMM (~xm|~π).

13

4. Choose ~x from δ (~x, ~xm, ~xi, ~σ)

• This is the exact same compatibility function we used with HPMs.

The joint probability of all 4 variables under a pHMM factors into individual terms.

PHMM (~x, ~xm, ~xi, ~σ) = PHMM (~σ)PHMM (~xi|~σ)PHMM (~xm|~σ) δ (~x, ~xm, ~xi, ~σ) (24)

However, we need to write this probability in terms of ~π rather than ~σ if we are to have

any hope of using a pHMM as a proposal distribution in importance sampling.

First, we examine the insert emission process. Both ~π and ~σ specify insert states in the

same manner. Therefore, the probability of a particular ~xi is the same if either ~σ or ~π is

given.

PHMM (~xi|~σ) = PHMM (~xi|~π) (25)

Next, we turn to the emission of match characters. Step 3 suggests the conditional

probability of a match sequence given ~σ can be factored into two terms.

PHMM (~xm|~σ) = PHMM (~π|~σ)PHMM (~xm|~π) (26)

We can arrive at this result in a different way by introducing ~π as a nuisance variable.

PHMM (~xm|~σ) =
∑
~π

PHMM (~xm, ~π|~σ) =
∑
~π

PHMM (~xm|~π, ~σ)PHMM (~π|~σ) (27)

14

Only pHMM paths that correspond to the given ~σ will yield non-zero PHMM (~π|~σ), mean-

ing we only sum over these pHMM paths.

PHMM (~xm|~σ) =
∑
~π∈~σ

PHMM (~xm|~π, ~σ)PHMM (~π|~σ) (28)

Of the 2M ~π’s that correspond to our given ~σ, only one will have delete states in the

match columns in which xm has deletion characters, so our sum collapses to only one term.

PHMM (~xm|~σ) = PHMM (~xm|~π, ~σ)PHMM (~π|~σ) (29)

This result looks like what we have in equation 26, except ~xm is conditioned on ~σ. We

argue that we can eliminate this condition, as we only need ~π to generate ~xm.

PHMM (~xm|~σ) = PHMM (~xm|~π)PHMM (~π|~σ) (30)

Aside: This is in analogy to a Markov chain. If we transition from state A to state B,

and then state B to state C, the probability of being in state C is given by:

P (C) = P (C|B)P (B|A)P (A) (31)

That is, C is not directly conditioned on A. (end aside)

Now, we can write the joint probability of the four variables under the pHMM in terms

of ~π.

PHMM (~x, ~xm, ~xi, ~σ) = PHMM (~σ)PHMM (~xi|~π)PHMM (~xm|~π)PHMM (~π|~σ) δ (~x, ~xm, ~xi, ~σ) (32)

15

Using equation 23, we can replace PHMM (~π|~σ).

PHMM (~x, ~xm, ~xi, ~σ) = PHMM (~σ)PHMM (~xi|~π)PHMM (~xm|~π)
PHMM (~π)

PHMM (~σ)
δ (~x, ~xm, ~xi, ~σ) (33)

The PHMM (~σ) terms cancel.

PHMM (~x, ~xm, ~xi, ~σ) = PHMM (~xi|~π)PHMM (~xm|~π)PHMM (~π) δ (~x, ~xm, ~xi, ~σ) (34)

Note that this looks like the joint probability of ~x and ~π under the two variable scheme,

multiplied by the delta function.

PHMM (~x, ~π) = PHMM (~x|~π)PHMM (~π) (35)

By breaking ~x into two noncontiguous subsequences ~xm and ~xi, we have:

PHMM (~x, ~π) = PHMM (~xi|~π)PHMM (~xm|~π)PHMM (~π) (36)

We can eliminate the δ-function in equation 34 by noting that if we know ~x and ~π, we

can uniquely determine ~xm, ~xi, and ~σ; that is to say, δ (~x, ~xm, ~xi, ~σ) = 1.

So we have proven PHMM (~x, ~π) = PHMM (~x, ~xm, ~xi, ~σ).

16

3.2.3 Relation of the pHMM posterior probability distributions across the dif-

ferent schemes

Using Bayes’ theorem, the probability of ~xm, ~xi, and ~σ given ~x is the ratio of the joint

probability of all four variables and the marginal probability of ~x.

PHMM (~xm, ~xi, ~σ|~x) =
PHMM (~x, ~xm, ~xi, ~σ)

PHMM (~x)
(37)

The numerator we have shown to be PHMM (~x, ~π), while the denominator is calculated

via the forward algorithm [3].

PHMM (~xm, ~xi, ~σ|~x) =
PHMM (~x, ~π)

PHMM (~x)
(38)

Therefore, PHMM (~x, ~xm, ~xi, ~σ|~x) = PHMM (~π|~x). So by sampling pHMM paths from

PHMM (~π|~x), we are simultaneously sampling ~xm, ~xi, and ~σ.

3.3 Redefining the importance estimator under the four variable

scheme

We can estimate the marginal probability of ~x under an HPM by using importance sampling.

Our importance estimator is defined as:

Φ ≡ 1

R

R∑
r=1

δ
(
~x, ~x(r)m , ~x

(r)
i , ~σ(r)

) P
(
~x
(r)
m , ~x

(r)
i , ~σ(r)

)
PHMM

(
~x
(r)
m , ~x

(r)
i , ~σ(r)|~x

) (39)

17

In this case, our importance weight is the rightmost term in the sum.

w
(
~x(r)m , ~x

(r)
i , ~σ(r)

)
=

P
(
~x
(r)
m , ~x

(r)
i , ~σ(r)

)
PHMM

(
~x
(r)
m , ~x

(r)
i , ~σ(r)|~x

) (40)

In order for Φ to be an accurate, unbiased estimator of P (~x), the expectation value of Φ

under the proposal distribution must equal P (~x). We will prove this is so.

〈Φ〉 = 〈 1

R

R∑
r=1

δ
(
~x, ~x(r)m , ~x

(r)
i , ~σ(r)

)
w
(
~x(r)m , ~x

(r)
i , ~σ(r)

)
〉 (41)

As we samle each combination of ~xm, ~xi, and ~σ independently, we can rewrite the expec-

tation of the sum as the sum of R independent expectation values.

〈Φ〉 = 〈δ (~x, ~xm, ~xi, ~σ)w (~xm, ~xi, ~σ)〉 (42)

Now we can write the expectation as a weighted average over all ~xm, ~xi, and ~σ with

non-zero probability under PHMM

(
~x
(r)
m , ~x

(r)
i , ~σ(r)|~x

)
.

〈Φ〉 =
∑
~xm

∑
~xi

∑
~σ

δ (~x, ~xm, ~xi, ~σ)w (~xm, ~xi, ~σ)PHMM (~xm, ~xi, ~σ|~x) (43)

The factor of PHMM (~x, ~xm, ~xi, ~σ|~x) in the denominator of w cancels with the rightmost

term in the sum, so we are left with a sum over two terms.

〈Φ〉 =
∑
~xm

∑
~xi

∑
~σ

δ (~x, ~xm, ~xi, ~σ)P (~xm, ~xi, ~σ) (44)

This is the marginal probability defined in equation 20. We have proven 〈Φ〉 = P (~x).

18

4 Testing the accuracy of importance sampling scores

While the importance sampling estimate of P (~x) converges to the exact answer in theory,

two important questions remain: does importance sampling accurately estimate P (~x) in the

case of real biological sequences; and if so, how many sampled paths are sufficient? Ideally,

we would answer these questions by comparing importance sampling estimates of P (~x) with

exact values calculated by enumerating all possible paths under an HPM. However, this is

not tractable with HPMs representing actual sequence families.

As a control, we instead score sequences with a covariance model (CM), a type of stochas-

tic context free grammar specific to RNA homology search [2], using the software package

Infernal [6]. A CM can be viewed as a special case of Potts model in which all ekl terms are

zero except for a set of disjoint nested basepairing interactions. The marginal probability of

a sequence under a CM, PCM (~x), can be calculated exactly using the dynamic programming

inside algorithm [3]. Importance sampling a CM using a pHMM as a proposal distribution

is also feasible.

PCM (~x) ≈ 1

R

R∑
r=1

PCM
(
~x, ~π(r)

)
PHMM (~π(r)|~x)

(45)

Therefore, we can compare our importance sampling estimates to exact, efficiently calculated

probability values under a model similar to a Potts model.

We train a CM on our tRNA training MSA (modified from data in [7]) using Infernal (see

4.1 Control experiment methods). For a proposal distribution, we once again use a pHMM

trained by HMMER 4 (in progress). We then score the train, test, and decoy sequences from

19

our tRNA benchmark using the inside algorithm and importance sampling with 5 million

sampled paths per sequence. Rather than marginal probability, Infernal reports a log odds

score, comparing PCM (~x) to the probability that ~x is generated by a null model, PN (~x).

SCM (~x) = log
PCM (~x)

PN (~x)
(46)

Figure 2 shows that for most tRNA homologs, importance sampling accurately estimates

Scm (~x). For decoys, the agreement is not as sharp, and importance sampling generally

underestimates the exact value of Scm (~x). We conclude importance sampling is an accurate

method for estimating the marginal probability of a homologous sequence under a CM, does

not inflate the score of non-homologous decoys on average, and is therefore likely accurate

in estimating P (~x) under an HPM.

In general, the importance sampling estimate of SCM (~x) quickly converges to the exact

value. For instance, figure 3 shows the log odds score for tRNA test sequence DM4701

converges well before 1 million samples. A few sequences’ scores do not converge, instead

showing sudden “jumps” in score estimation, like tRNA sequence DT4980. Such jumps in

importance sampling score are a known phenomenon [4]. They appear when the denominator

in equation 45 is very small compared to the numerator, meaning the posterior probability

of the path under the pHMM is much lower than the joint probability of the path and the

sequence under the CM. Jumps in score are rare and appear to be confined to a minority of

problematic homologous sequences. One million sampled paths per sequence appears to be

sufficient for most sequences’ importance sampling scores to converge, and future work will

20

100− 80− 60− 40− 20− 0 20 40 60 80

Inside Algorithm Log Odds Score

100−

80−

60−

40−

20−

0

20

40

60

80

Im
p

o
rt

a
n

c
e

 S
a
m

p
lin

g
 L

o
g

 O
d

d
s
 S

c
o

re

Figure 2: Scores for tRNA benchmark sequences under the training CM calculated with the

inside algorithm (X axis) and estimated using importance sampling (Y axis). Each point

represents an individual sequence from the tRNA remote homology benchmark, with training

sequences in blue, homologous test sequences in green, and non-homologous decoy sequences

in red. The dashed line represents y = x.

21

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

3
10×

Importance Sampling Iteration (r)

28

30

32

34

36

38

40

42

)
x

 (
C

M
 S~

DM4701

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

3
10×

Importance Sampling Iteration (r)

12

14

16

18

20

22

24

26

28

)
x

 (
C

M
 S~

DT4980

Figure 3: Importance sampling estimate of sequence log odds score for an individual sequence

(Y axis) versus number of sampled paths (X axis). The red dashed line represents the exact

log odds of the sequence under the CM, as calculated by the inside algorithm. Left: tRNA

test sequence DM4701, a mitochondrial methionine tRNA from Mytilus edulis. Right: tRNA

test sequence DT4980, a mitochondrial threonine tRNA from Pisaster ochraceus [7].

22

focus on increasing convergence of importance sampling scores and eliminating score jumps.

4.1 Control experiment methods

CMs are built from the tRNA remote homology benchmark training MSA using Infernal

1.1.3 program cmbuild. As Infernal generally aligns and scores sequences locally, transitions

to and from flanking insert states (analogous to the N and C states in figure 1) are not

trained using observed frequencies in the MSA by default. As importance sampling works

glocally, we build the CM such that the flanking insert transitions are learned using the

--iflank option. In addition, we specify the match columns in the MSA using --hand.

cmbuild --hand --iflank <infernal_model.cm> <training_msa.sto>

The pHMM is built with HMMER 4, again using the --hand option to specify the

consensus columns in the input MSA.

hmmer build --hand <training_msa.sto> <hmmer_model.hmm>

To exactly score the sequences with the training CM using the inside algorithm, we

use Infernal 1.1.3 program cmalign. We use the -g and --notrunc options for glocal

scoring. We additionally use the --nonbanded option to run the inside algorithm without

any approximation schemes.

23

cmalign -g --notrunc --nonbanded --sfile <inside_scores.tbl>

<infernal_model.cm> <seqfile.fa>↪→

To score the sequences with the training CM using importance sampling, we use our own

program, cmscoreISh4.

cmscoreISh4 <infernal_model.cm> <hmmer_model.hmm> <seqfile.fa>

<IS_scorefile.csv>↪→

Code used in this experiment is included with S1 Code.

References

[1] Haussler D, Krogh A, Mian IS, Sjolander K. Protein Modeling Using Hidden Markov

Models: Analysis of Globins. In: Proceedings of the Twenty-Sixth Hawaii International

Conference on System Sciences; 1993. p. 792–802.

[2] Eddy SR, Durbin R. RNA Sequence Analysis Using Covariance Models. Nucl Acids Res.

1994;22:2079–2088.

[3] Durbin R, Eddy SR, Krogh A, Mitchison GJ. Biological Sequence Analysis: Probabilistic

Models of Proteins and Nucleic Acids. Cambridge UK: Cambridge University Press; 1998.

[4] Mackay DJC. Information Theory, Inference, and Learning Algorithms. Cambridge UK:

Cambridge University Press; 2003.

24

[5] Anderson EC. Monte Carlo Methods and Importance Sampling: Lecture notes for

Stat 578C Statistical Genetics; 1999 [cited 11 June 20]. Available from: http://ib.

berkeley.edu/labs/slatkin/eriq/classes/guest_lect/mc_lecture_notes.pdf.

[6] Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold Faster RNA Homology Searches. Bioin-

formatics. 2013;29:2933–2935.

[7] Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S. Compilation of tRNA Sequences

and Sequences of tRNA Genes. Nucl Acids Res. 1998;26:148–153.

25

