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A.1. Univariate model-based frequency domain analysis 
Univariate model-based frequency domain analysis was performed via a parametric approach 
exploiting the autoregressive (AR) model [1,2]. Briefly, the AR model describes the zero-mean 
series y={yn, n=1, …, N}, where n is the progressive sample counter and N is the series length, as  
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where ak with k=1, …, p are real coefficients and w is a realization of zero-mean Gaussian white 
noise with variance λ2. The series y is the sum of two parts: i) a fully predictable portion modeled as 
a linear combination of p past samples weighted by real coefficients; ii) a fully unpredictable 
portion described by w. The equivalent representation of the AR process in the z-domain allows one 
to write the z-transformation of the AR process as the product of the z-transformation of w by the 
function  
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referred to as transfer function of the AR process, featuring p singularities pk=ρejφ with k=1, …, p 
called poles where j is the imaginary unit in the complex plane. Given that the coefficients of the 
AR process are real, if a complex pole (i.e. pk=ρejφ with φ≠0 and φ≠π) is present, the conjugate 
pk=ρe-jφ is found as well. The Levinson-Durbin recursive algorithm [2,3] was utilized to estimate 
directly from y, the coefficients ak with k=1, …, p and λ2. The model order p is decided with some 
figure of merit, for example the Akaike information criterion [4]. According to the maximum 
entropy spectral estimation approach [2,3], the power spectral density S(f) can be computed from 
H(z) and λ2 as  
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where T is the sampling period. S(f) can be factorized in a sum of terms [5], referred to as spectral 
components that, transformed back in the time domain, correspond to basic AR processes 
associated to a real pole or a pair of complex and conjugate poles of H(z). The sum of the power of 
all components is equal to the variance of the AR process. A spectral component was attributed to a 
given frequency band if the phase φ of the associated real pole or pair of complex and conjugate 
poles, when converted into a frequency f using the transformation f=φ∙(2πT)-1, dropped in that 
frequency band. The total power in a given frequency band was computed as the sum of the powers 
of all spectral components attributed to that band and the power of each spectral component was 
efficiently computed via the residue theorem [5]. 
 
A.2. Bivariate model-based frequency domain analysis 
Bivariate model-based frequency domain analysis of y1={y1,n, n=1, …, N} and y2={y2,n, n=1, …, N} 
was performed via a parametric approach exploiting the bivariate AR model [1,5,6]. Briefly, the 
bivariate AR model jointly describes y1 and y2 as  
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where a11,k and a22,k with k=1, …, p are the real coefficients of the auto-regressions of y1 and y2 on 
its own past respectively, a12,k with k=τ12, …, p and a21,k with k=τ21, …, p are the real coefficients of 
the cross-regressions of y1 on past values of y2 and vice versa, and w1 and w2 are two uncorrelated 
zero-mean white noises with variance λ21 and λ22 respectively. τ12 and τ21 represent the delay of 
interactions from y2 to y1 and from y1 to y2 respectively. The equivalent representation of the 
bivariate AR process y=|y1 y2|′ in the z-domain allows one to provide the z-transformation of y as the 
product the z-transformation of the white noise w=|w1 w2|′ by the transfer function matrix 
 H(z)=(I-A(z))-1, where I is the identity 2x2 matrix and  
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is the 2x2 matrix of polynomials in z and the symbol ′ denotes the transpose operator. The 
coefficients of A(z) are estimated directly from y via the traditional least squares approach solved 
using Cholesky decomposition method [2,3]. The number of useful past samples p is usually fixed a 
priori according to methodological considerations about spectral resolution or optimized using 
some figure of merit, for example the Akaike information criterion extended to bivariate processes 
[4] and the delays τ12 and τ21 were usually set to 1 when cross-spectral features were estimated [5]. 
According to the maximum entropy spectral estimation approach [2,3], power spectral density 
matrix S(f) can be computed from H(z) and the covariance matrix Λ of w as  
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S(f) features the power spectral densities of y1 and y2, S11(f) and S22(f), on the main diagonal and the 
cross-spectral densities from y2 to y1 and from y1 to y2, S12(f) and S21(f), out of the main diagonal. 
While S11(f) and S22(f) are real functions of f, cross-spectral densities are complex functions of f 
with S12(f)=S*21(f), where the symbol * denotes the complex conjugation operator. The transfer 
function from y2 to y1 is H12(f)=S12(f)/S22(f) [7]. The transfer function modulus from y2 to y1 is 
|H12(f)|=|S12(f)|/S22(f), where |·| takes the modulus of S12(f). The phase of H12(f) is coincident with the 
phase of S12(f). It ranges from –π to + π and it is known at multiples of 2π. This means that, if the 
phase of H12(f) is ∠H12(f), also ∠H12(f)+2πk with k=0, ±1, ±2, … is admissible leading to the 
ambiguous conversion of phase values into delays or advancements [8,9] that might be solved using 
a priori information about the latency of interactions [8,9]. Squared coherence function 
K212(f)=|S12(f)|2/[S11(f)·S22(f)] [7] is a measure of the strength of linear association between y1 and y2 
as a function of f. K212(f) ranges from 0 to 1, where 0 indicates null and maximum linear association 
between y1 and y2 respectively. K212(f) is a symmetric function [i.e. K212(f)=K221(f)] [7]. 
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