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Supplementary Note

Evaluation of apple genome assemblies
We used multiple approaches to evaluate the quality of the apple genome assemblies. All analyses
generated competitive metrics compared to the recently published high-quality assemblies of the

double-haploid GDDH13 (ref. ) and the triple-haploid HFTH1 (ref. 2).

1) Mapping of DNA reads against the assembly

We used reads from the paired-end (PE) libraries with an insert size of 470 bp from this study and
randomly selected PE libraries from previous studies!-? to evaluate the genome assemblies based
on read mapping rates. For the haploid consensuses, the mapping rates were 99.38% (properly
paired: 90.00%), 99.40% (properly paired: 91.75%) and 99.50% (properly paired: 94.54%) for
Gala, M. sieversii and M. sylvestris, respectively. As expected, the mapping rates to the diploid
assemblies were higher, particularly the rates of properly mapped read pairs, 99.73% (mapped)
and 94.39% (properly paired) for Gala, 99.53% and 92.97% for M. sieversii, and 99.75% and 97.86%
for M. sylvestris. As a comparison, the mapping rates to GDDH13 and HFTH1 genome assemblies
were 92.64% (properly paired: 86.33%) and 98.50% (properly paired: 96.58%), respectively.

2) BUSCO evaluation

We performed BUSCO? analysis on the assemblies. The percentage of complete BUSCO captured
by the Gala (haploid: 97.9%; diploid: 97.7%), M. sieversii (haploid: 97.9%; diploid: 97.7%) and
M. sylvestris (haploid: 97.9%; diploid: 97.7%) genome assemblies were high and comparable to
that of GDDH13 (97.4%) and HFTH1 (98.2%) (Supplementary Table 2).

3) Whole genome alignment and collinearity with genetic maps

Whole genome alignments between our assemblies and GDDHI13 (Supplementary Fig. 3)
showed good collinearity between all of these assemblies. Furthermore, the genome assemblies
also had high collinearity with the two recently published apple genetic maps*°. Together these

results suggested that our assemblies and chromosome anchoring are of high quality.



4) LTR assembly index

The LTR assembly index (LAI) provides a reference-free genome contiguity evaluation based on
LTR-RTs®. The LAI value positively correlates with the quality of assembly, and is usually larger
than 10 in reference-quality assemblies. LAI values for Gala, M. sieversii and M. sylvestris genome

assemblies were 14.79, 17.41 and 18.32, respectively, which were comparable to the values of

GDDH13 (17.53) and HFTHI (19.60).

5) K-mer spectrum analysis

The 27-mer spectrum analysis, which compared the diversity and abundance of all distinctive 27-
mers in the PE libraries and the assembled genomes, indicated that our diploid assemblies
successfully captured most of the genome contents (94-98% of 27-mers) present in the PE libraries
(Extended Data Fig. 1). A considerable amount of 27-mers (9-13%) were missing in the haploid
consensus assemblies, and these 27-mers were presumably encoded by alternative alleles. This is
expected as lacking of some k-mers is a common feature for a haploid consensus assembled from

a heterozygous genome.

Disease resistance gene

Improving disease resistance is one of the main goals in current apple breeding programs. Most
plant disease resistance genes encode nucleotide-binding site leucine-rich repeat (NLR) proteins.
We identified 170 to 562 NLR proteins in the genomes of three cultivated apples, Gala, GDDH13
and HFTH1, and their two wild progenitors, M. sieversii and M. sylvestris (Supplementary Table
3). The HFTHI genome encodes an exceptionally low number of NLR proteins (170) compared
to that of GDDH13 (514) and Gala (562). We found that 373 NLR proteins in GDDH13 could be
identified in the HFTH1 genome under the stringent criteria (identity > 95% & coverage > 80%),
suggesting that a majority of NLR genes could be mis-annotated in HFTH1, which agrees with the
finding that NLR gene prediction is sensitive to annotation pipelines’. NLR genes are often
clustered in the genome and disease resistance sometimes requires joint action of two adjacent
NLR genes with the head-to-head configuration®®. We identified 34-112 NLR gene clusters in
different assemblies, which accounted for 65-77% of total NLR genes (Supplementary Table 3).
Approximately 32-55% of adjacent NLR gene pairs were heterogeneous (encoding different

domains) and 4-16% were arranged head-to-head, suggesting that they were not simply derived



from local duplications. The chromosomal distribution of NLR genes/clusters was not uniform,
with the highest density on chromosome 2 (Supplementary Fig 2). Among chromosome pairs
arising from whole genome duplication'?, chromosomes 3 and 11 harbored significantly different
number of NLR genes, which is likely due to an expansion of NLR genes/clusters on chromosome
11 (Supplementary Fig 2). The difference of NLR genes/clusters between the varieties and
species was obvious on some chromosomes. Given that many NLR genes/clusters approximate to

or overlap with disease resistance QTLs'!-!?

, the expansion of NLR genes on particular
chromosomes might be a consequence of adaptive evolution, which can provide selective

advantage during apple evolution and domestication.

LTR-RT bursts and their contribution to apple evolution

We identified 13,196, 15,873 and 14,246 intact LTR-RTs in the diploid genomes of Gala, M.
sieversii and M. sylvestris, respectively. Insertion time estimation of these LTR-RTs unraveled
two bursts that occurred at the same periods in all three accessions. The older burst took place
5.69-5.50 million years ago (mya), which predated the divergence of apple and pear (5.1 mya; Fig.
1b,c¢ and Supplementary Fig. 6). Concordantly, a similar but weaker peak was found in pear
(Supplementary Fig. 7). The second LTR-RT burst occurred 1.17-1.07 mya, prior to the time
when M. sylvestris and M. sieversii were diversified into subpopulations, respectively (Fig. 1b,c¢).
Transposable element (TE) insertions are often deleterious, and therefore are subjective to
purifying selection!*!>. However, the occurrence of whole genome duplication (WGD) in the
common ancestor of apple and pear may have provided a relaxed environment for LTR-RT
proliferation as increased gene dosage is presumably more tolerant to the deleterious effects of TE
transposition. It is worth noting that TE burst is not necessarily accompanied by WGDs as other
mechanisms (e.g. horizontal transfer) can also contribute to TE family expansion in different
systems.

Historical and recent TE proliferation has changed the diversity and abundance of TE
families across species. Consequently, 56-57% of the LTR-RT insertions in the M. sieversii or the
M. sylvestris genome were not found in their syntenic regions. Similarly, 39-51% of the LTR-RT
insertions in the genomes of wild species were not found in cultivated apples, suggesting that only
partial LTR-RT diversity present in the wild progenitors was inherited by cultivated apples

(Extended Data Fig. 4a), which as a result inflated genetic diversity among apple varieties



(Extended Data Fig. 4b). Inheritance of adaptive LTR-RTs from different progenitors may have
a profound impact on fruit traits. One such example is the redTE LTR-RT, whose insertion in the
upstream region of MYBI, a transcription factor known to control fruit skin color'®, enhanced the
MYBI expression, leading to red skin color'. We found that redTE was present in the M. sieversii
genome but not in the upstream of MYBI, while the M. sylvestris genome did not harbor redTE.
The red-skinned HFTH1 inherited the MYB1 locus from M. sieversii and underwent a recent redTE
transposition into the upstream of MYBI. The yellow-skinned GDDH13 inherited the MYBI locus
from M. sylvestris, and likely passed it to Gala, as it is one of the parents of Gala. Interestingly,
Gala has another MYB] allele that originated from M. sieversii with a different LTR-RT insertion
in the upstream of MYBI. We found that this insertion was originated from redTE but only left
with the LTR sequences (solo-LTR) surrounded by target site duplications, likely derived from
homologous recombination of redTE (Extended Data Fig. 4¢). Since the solo-LTR itself encodes
functional elements and is sufficient to enhance MYBI expression', we hypothesize that the allele-
specific expression of MYBI caused by redTE could have contributed to fruit skin color of Gala
(Extended Data Fig. 4¢). Unfortunately, the CDS and UTR sequences of the two MYB] alleles in
Gala are identical, which prevented us from explicitly investigating the effect of redTE on the

allele-specific expression of MYBI using the RNA-Seq data we generated.
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Supplementary Fig. 1 Workflow for genome assembly, error correction, phasing and anchoring.
Pictures representing the apple accessions were retrieved from the GRIN database
(https://www.ars-grin.gov/) and the heterozygosity was estimated based on the k-mer distribution
of reads from paired-end libraries (right figure of each panel on the top). Scale bars represent 5 cm.
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Supplementary Fig. 2 NLR gene clusters in the five apple genome assemblies. The NLR gene
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Supplementary Fig. 3 (Continued)
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Supplementary Fig. 4 Size distribution of structure variants between different assemblies and
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Supplementary Fig. 5 Fraction and distribution of gypsy and copia retrotransposons in the
genomes of the three apple accessions. The fraction was calculated based on a sliding window of
3 Mb and a step size of 300 kb.
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Supplementary Fig. 6 Divergence time and evolutionary distance of the Malus species. a,
Divergence time estimation based on 481 single-copy orthologous groups (OGs). M. domestica
genes in these OGs clustered either with M. sieversii (256 OGs) or with M. sylvestris (225 OGs);
therefore, these OGs were used to infer the divergence time of M. sieversii subpopulations (extant
population vs M. domestica direct progenitor population) and M. sylvestris subpopulations
separately. The tree was constrained with a Rosids age between 128.63-85.8 mya and a root age <
200 mya. b, Histogram and Gaussian modeling of evolutionary distance between M. sieversii and

M. sylvestris.
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Supplementary Fig. 7 Distribution of LTR insertion time as measured by the evolutionary
distance of LTR sequences. The histogram was fitted with the Gaussian mixture model (only the
part with positive distance values was plotted). The first two components were plotted and peak
value of each component was shown. A total of 13,196, 15,873, 14,264 and 3,580 intact LTR-RTs
from Gala, Malus sieversii, M. sylvestris, and Pyrus communis, respectively, were used for the

analysis.
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Supplementary Fig. 8 Principal component analysis of 91 Malus accessions using 9,988,777 bi-
allelic SNPs.
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Supplementary Fig. 9 Split networks showing the relative genetic distance of organelle genomes
of different Malus accessions. The complete genome sequences of mitochondrion (a) or
chloroplast (b) were aligned using clustal omega (https://www.ebi.ac.uk/Tools/msa/clustalo/).
Split networks were inferred and visualized with SplitsTree4
(https://github.com/husonlab/splitstree4) based on the whole genome alignments. Some accessions
(e.g. RO5, R0O6, RO8, R11, and M27) showed unusual genomic composition, which was consistent
with their phylogenetic placement based on nuclear genome SNPs. Given that many of these
accessions are rootstocks, this suggests that they may not belong to M. domestica, or otherwise
they may have undergone substantial genetic introgression from other Malus species.
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Supplementary Fig. 10 Percentage of the PG/ genotypes comprising alleles associated with
mealy or crispy texture of apple fruit in three Malus populations.
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Supplementary Fig. 11 Selection of the optimal number of clusters (K) based on the AK analysis.
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Supplementary Fig. 12 Geographic distribution of M. sieversii accessions from Kazakhstan. The
geographic information of 15 M. sieversii accessions from Kazakhstan were retrieved from the
GRIN database (https://www.ars-grin.gov/), and navigated on the Google map. The long red line
indicates the route of ancient Silk Road. Samples were classified based on the genome proportion
that may have been introgressed.
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Supplementary Fig. 13 Computational pipeline for apple pan-genome construction. a, Strategy
for constructing the pan-reference genome of Malus domestica from the four published genome
assemblies and the Gala consensus assembly. b, Strategy for building the pan-genomes of M.
domestica, M. sieversii and M. sylvestris.
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Supplementary Fig. 14 GO term enrichment analysis of novel genes in the pan-genomes of the
three Malus species. Only GO terms with adjusted P value < 0.01 are shown.
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Supplementary Fig. 15 Neighbor-joining phylogeny of the Malus accessions constructed using
the pan-genome PAVs.
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Supplementary Fig. 16. Functional analysis of genes with allele-specific expression. a, Box plot
showing the distribution of the distance between genes and their upstream nearest SVs. b, ASE
pattern of genes associated with diverse biological processes. ¢, Unrooted maximum likelihood

phylogeny of the AAT1 gene in M. sieversii, M. sylvestris and apple cultivars Gala and Granny
Smith.
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