
Scalable multiple whole-genome alignment and locally collinear

block construction with SibeliaZ

Supplementary information

Minkin et al



Supplementary Note 1: Parameter details and command lines

We tried to find the optimal parameters for all tools. For Sibelia, which could only run on simulated
data, we used the parameter set designed to yield the highest sensitivity (called the “far” set in
Sibelia). Progressive Cactus requires a phylogenetic tree in addition to the input genome which
it uses for adjusting the internal parameters. For the simulated datasets, we used the real tree
generated by the simulator; for the mice genomes, we used the guide tree from .1 Multiz+TBA
were run with default parameters since its documentation does not provide a clear guideline on
how to adjust the parameters according to evolutionary distances between the input sequences. We
could not compile the version of MultiZ+TBA publicly available for download and used a slightly
modified version provided by Robert S. Harris. For TwoPaCo and spoa, we set the parameters
following the guidelines provided with the respective software. SibeliaZ was run with k = 25,
b = 200, m = 50, and a = 150.

We performed all experiments on a machine running Ubuntu 16.04.3 LTS with 512 GB of RAM
and a 64 core CPU Intel Xeon CPU E5-2683 v4. We were limited to using at most 32 threads at
any given time. Progressive Cactus was run with 32 threads, since the authors recommended to use
as many threads as possible for the best performance. MultiZ+TBA and Sibelia are both single-
threaded. (There were several submissions to Alignathon which used an extensively parallelized
MultiZ or TBA; unfortunately, the software packages used for those submissions are not available
publicly for download.) TwoPaCo and SibeliaZ-LCB were run 16 and 32 threads respectively. We
note that spoa is run on each block, and our software includes a wrapper to automate this.

Here are the exact command lines for the tools we ran.

TwoPaCo:

twopaco -k <k_value> -f <bloom_filter_size> -t 16 -o <dbg_graph> <genomes_file>

SibeliaZ-LCB:

SibeliaZ-LCB --fasta <genomes_file> --graph <dbg_graph> -o <output_directory>

-k 25 -b 200 -m 50 -a 150 -t 4

spoa:

spoa <input_fasta_file> -l 1 -r 1 -e 8

Sibelia:

Sibelia <genomes_file> -o <output_directory> -s far --lastk 50 -m 50 --nopostprocess

MultiZ:

all_bz <guide_tree>

tba <guide_tree> *.*.maf <outputMafFile>

Progressive Cactus:

runProgressiveCactus.sh --maxThreads 32 <seqFile> <workDir> <outputHalFile>

source ./environment && hal2mafMP.py <outputHalFile> <outputMafFile>

All running times and memory usage numbers were obtained using the GNU time utility. The
exact versions of the software are in Table 4.

2



Supplementary Note 2: Simulation details

We used small simulated data in order to understand the role of a dataset’s genomic distance and
of our parameter settings. We used ALF2 for simulation because it simulates point mutations as
well as genome-wide events such as inversions, translocations, fusions/fissions, gene gain/loss, and
lateral gene transfer. Furthermore, ALF is useful for benchmarking as it also produces an alignment
which represents the true homology between the genomes, making it possible to directly assess the
precision and recall. We simulated 6 datasets, each one consisting of 10 bacterial genomes. Each
genome is composed of 1500 genes and of size approximately 1.5 Mbp. We used such relatively small
datasets to allow us to efficiently explore the parameter space. Each of the 6 datasets corresponded
to a different parameter for distance from the root to leaf species, which we varied from 0.03 to 0.18
substitutions per site with the step of 0.03. In ALF, different proteins evolve with different rates,
which are derived from the base value using a probabilistic distribution. See2 for more details and
the simulation recipes for the exact values of the parameters. For genome-wide events, we used
ALF’s default rates. Links to download the the simulation parameter files, the simulated genomes,
and their alignments are available at the GitHub repository (see “Data availability” section in the
main paper).

3



Supplementary Note 3: Other related work

A closely related problem to multiple whole-genome alignment is synteny reconstruction. In this
setting, genomes are decomposed into large blocks such that the gene order within each block is
preserved. This is similar to locally collinear blocks, but collinear blocks are usually smaller blocks
representing single genes or exons (or non-coding DNA). Collinear blocks can be viewed as high
resolution synteny blocks and, in general, the distinction between the two concepts can be blurry.
For a discussion on representation of synteny blocks at multiple scales, see.3 Synteny blocks are
often reconstructed from anchors such as genes,4–7 locally-collinear blocks8 and, less commonly,
from the nucleotide sequences directly.3,9

A related active research area is data structures for representing pan-genomes.10 A pan-genome
as a collection of related genomes that are to be analyzed jointly. For a review on computational
pan-genomics, see.11–13 Constructing a data structure for the efficient storage and querying of
a pan-genome is related but tangential to the problem of identifying collinear blocks, which we
consider in this paper. Pan-genome data structures are concerned with efficiently representing the
homology within the pan-genome, while we focus on fast algorithms for obtaining such homologies.
There is naturally some overlap between the two areas, e.g. some pan-genome tools include a
multiple whole-genome alignment component.14,15 Others use the de Bruijn graph for representing
the pan-genome.16–19 Our approach also relies on a de Bruijn graph, though we use it as a technique
to find collinear blocks rather than to represent them.

4



Supplementary Tables and Figures

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
101

102

103

104

105

106

107

Annotation nucleotide identity

N
u
m
b
er

(l
o
g
sc
a
le
)

Orthologs

1-2
1-4
1-8
1-16

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
101

102

103

104

105

106

107

Annotation nucleotide identity
N
u
m
b
er

(l
o
g
sc
a
le
)

Paralogs

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

Annotation nucleotide identity

C
o
v
er
a
g
e

Orthologs

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.02

0.04

0.06

Annotation nucleotide identity

C
o
v
er
a
g
e

Paralogs

(d)

Supplementary Figure 1: Properties of the pairwise alignments constructed from pairs of homolo-
gous protein-coding genes in the various mice datasets. Panels (a) and (b) show the total number
of genes for each nucleotide identity value for orthologous and paralogous pairs respectively; (c)
and (d) demonstrate coverage of the genomes by these two categories of the genes.

5



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Column score

P
ro
p
o
rt
io
n

Dataset 1-2

SibeliaZ
Cactus

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Column score

P
ro
p
o
rt
io
n

Dataset 1-4

(b)

Supplementary Figure 2: Histogram of the average number of nucleotide differences π(c) calculated
for each column of SibeliaZ’s and Cactus’ alignment, for datasets 1-2 (a) and 1-4 (b) consisting of
2 and 4 mice geneomes respectively.

6



Supplementary Figure 3: The recall of paralogous genes by SibeliaZ as a function of inferred family
size, using the two-mice dataset. The n = 5152 gene pairs were split into 25 equally-sized disjoint
bins based on the inferred family size. The top histogram shows the number of gene pairs in each
bin. Exact sizes for each bin are (267, 250, 360, 452, 396, 489, 481, 155, 24, 35, 21, 12, 450, 5, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1755). Points belonging to non-empty bins of size less than 10 are shown
individually. Each box plot shows the median (middle line), the interquartile range (outer borders
of the box), minimum and maximum values within ±1.5 of the interquartile range (whiskers). Data
points outside of the ±1.5 interquartile range are represented by individual data points.

7



15 20 25 30
100

200

300

400

k

b
Divergence 0.03

15 20 25 30

k

Divergence 0.06

15 20 25 30

k

Divergence 0.09

15 20 25 30
100

200

300

400

k

b

Divergence 0.12

0.7 0.8 0.9 1.0

Recall

15 20 25 30

k

Divergence 0.15

15 20 25 30

k

Divergence 0.18

(a) (b) (c)

(d) (e) (f)

Supplementary Figure 4: Effects of the parameters k and b on recall. Each panel (a-f) contains a
heatmap corresponding to a simulated dataset with the specified root-to-leaf divergence in substi-
tutions per site and a cell corresponds to a combination of parameters.

8



15 20 25 30
100

200

300

400

k

b
Divergence 0.03

15 20 25 30

k

Divergence 0.06

15 20 25 30

k

Divergence 0.09

15 20 25 30
100

200

300

400

k

b

Divergence 0.12

0.985 0.990 0.995 1.000

Precision

15 20 25 30

k

Divergence 0.15

15 20 25 30

k

Divergence 0.18

(a) (b) (c)

(d) (e) (f)

Supplementary Figure 5: Effects of the parameters k and b on precision. Each panel (a-f) con-
tains a heatmap corresponding to a simulated dataset with the specified root-to-leaf divergence in
substitutions per site and a cell corresponds to a combination of parameters.

9



0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

0.985

0.990

0.995

1.000 0.03

0.06

0.09 0.09

0.12
0.12

0.15

0.150.18 0.18

Recall

P
re
ci
si
o
n

k = 15
k = 25

Supplementary Figure 6: The accuracy of SibeliaZ as a function of genomic divergence. Each
point is labeled with the height of the phylogenetic tree (in terms of substitutions per site) of its
respective simulated dataset.

10



ID Strain Size (Mb) N. Scaffolds

1 C57BL/6J 2,819 336
2 129S1/SvImJ 2,733 7,154
3 A/J 2,630 4,688
4 AKR/J 2,713 5,953
5 CAST/EiJ 2,654 2,977
6 CBA/J 2,922 5,466
7 DBA/2J 2,606 4,105
8 FVB/NJ 2,589 5,013
9 NOD/ShiLtJ 2,982 5,544
10 NZO/HiLtJ 2,699 7,022
11 PWK/PhJ 2,560 3,140
12 WSB/EiJ 2,690 2,239
13 BALB/cJ 2,627 3,825
14 C57BL/6NJ 2,807 3,894
15 C3H/HeJ 2,701 4,069
16 LP/J 2,731 3,499

Supplementary Table 1: Properties of the assembled mice genomes available at GenBank.

11



Dataset SibeliaZ/TwoPaCo SibeliaZ/SibeliaZ-LCB SibeliaZ/spoa SibeliaZ/Total Cactus

1-2 12 (9.30) 74 (36.00) 68 (121.50) 154 (121.50) 2,279 (37.50)
1-4 25 (17.70) 96 (72.70) 115 (133.60) 236 (133.60) 6,105 (89.80)
1-8 49 (34.50) 104 (106.30) 240 (132.50) 393 (132.50) -
1-16 101 (68.10) 153 (183.60) 736 (133.50) 990 (183.60) -

Supplementary Table 2: Running time (minutes) and memory usage (gigabytes, in parenthesis) of
SibeliaZ and Cactus on the mice datasets. A dash in a column indicates that the program did not
complete within in a week.

12



Dataset SibeliaZ Recall Cactus Recall SibeliaZ Precision Cactus Precision

1-2 0.95 0.97 0.93 0.89
1-4 0.95 0.92 0.96 0.90

Supplementary Table 3: Recall and precision of SibeliaZ and Cactus. We used pairwise local
alignments of chromosomes 1 from the different datasets produced by LASTZ as the ground truth.

13



Software Version Repostiory Commit
Sibelia 3.0.7 bioinf/Sibelia 397e6877116006c8591cbe14a7c6d366d1e0751a
SibeliaZ 1.2.0 medvedevgroup/SibeliaZ e90f5b25c931b5b011b98c558670f1697334ef69
TwoPaCo 0.9.4 medvedevgroup/TwoPaCo 9b9fee321dd561b7bd2b18892b0b2653c58eb6dd
spoa 3.0.1 rvaser/spoa 4c87d6831e9898dcaf2830182afece85e77b09ce
Progressive Cactus 0.0 glennhickey/progressiveCactus c4bed56c0cd48d23411038acb9c19bcae054837e
ALF 0.97 DessimozLab/ALF 7dfed367bd1f5c002dbbd2a23d597638b36b379c
LASTZ 1.04.00 lastz/lastz ce6e5f598e3e2190b23c512e571b9f9c244adb6e
LAGAN 2.0 - -
MULTIZ 11.2 - -

Supplementary Table 4: GitHub revisions of the software we used. We used the most up-to-date
versions available at the time of development of our project. A dash indicates that we downloaded
the software from the author’s website.

14



Supplementary References

[1] Lilue, J. et al. Sixteen diverse laboratory mouse reference genomes define strain-specific hap-
lotypes and novel functional loci. Nature Genetics 50, 1574 (2018).

[2] Dalquen, D. A., Anisimova, M., Gonnet, G. H. & Dessimoz, C. ALF – A Simulation Framework
for Genome Evolution. Molecular Biology and Evolution 29, 1115–1123 (2011).

[3] Minkin, I., Patel, A., Kolmogorov, M., Vyahhi, N. & Pham, S. Sibelia: A scalable and com-
prehensive synteny block generation tool for closely related microbial genomes. In Darling, A.
& Stoye, J. (eds.) Algorithms in Bioinformatics, 215–229 (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013).

[4] Pevzner, P. & Tesler, G. Genome rearrangements in mammalian evolution: lessons from human
and mouse genomes. Genome Research 13, 37–45 (2003).

[5] Ng, M.-P. et al. Orthoclusterdb: an online platform for synteny blocks. BMC Bioinformatics
10, 192 (2009).

[6] Pham, S. & Pevzner, P. Drimm-synteny: decomposing genomes into evolutionary conserved
segments. Bioinformatics 26, 2509–2516 (2010).

[7] Proost, S. et al. i-adhore 3.0 – fast and sensitive detection of genomic homology in extremely
large data sets. Nucleic Acids Research 40, e11–e11 (2011).

[8] Kolmogorov, M. et al. Chromosome assembly of large and complex genomes using multiple
references. Genome Research 28, 1720–1732 (2018).

[9] Doerr, D. & Moret, B. M. Sequence-based synteny analysis of multiple large genomes. In
Comparative Genomics, 317–329 (Springer, 2018).

[10] Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of streptococcus agalactiae:
implications for the microbial pan-genome. Proceedings of the National Academy of Sciences
of the United States of America 102, 13950–13955 (2005).

[11] Vernikos, G., Medini, D., Riley, D. R. & Tettelin, H. Ten years of pan-genome analyses.
Current Opinion in Microbiology 23, 148–154 (2015).

[12] Marschall, T. et al. Computational pan-genomics: status, promises and challenges. Briefings
in Bioinformatics 19, 118–135 (2018).

[13] Zekic, T., Holley, G. & Stoye, J. Pan-genome storage and analysis techniques. In Comparative
Genomics, 29–53 (Springer, 2018).

[14] Ernst, C. & Rahmann, S. Pancake: a data structure for pangenomes. In OASIcs-OpenAccess
Series in Informatics, vol. 34 (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013).

[15] Laing, C. et al. Pan-genome sequence analysis using panseq: an online tool for the rapid
analysis of core and accessory genomic regions. BMC Bioinformatics 11, 461 (2010).

[16] Marcus, S., Lee, H. & Schatz, M. C. Splitmem: a graphical algorithm for pan-genome analysis
with suffix skips. Bioinformatics 30, 3476–3483 (2014).

15



[17] Holley, G., Wittler, R. & Stoye, J. Bloom filter trie: an alignment-free and reference-free data
structure for pan-genome storage. Algorithms for Molecular Biology 11, 3 (2016).

[18] Beller, T. & Ohlebusch, E. A representation of a compressed de bruijn graph for pan-genome
analysis that enables search. Algorithms for Molecular Biology 11, 20 (2016).

[19] Sheikhizadeh, S., Schranz, M. E., Akdel, M., de Ridder, D. & Smit, S. Pantools: representation,
storage and exploration of pan-genomic data. Bioinformatics 32, i487–i493 (2016).

16


