1

# 2 This supplement contains the following items:

3 1. Original protocol (Page 2 – 44), final protocol (Page 45 – 89),

4 amendment list (Page 90– 94).

5 2. Original statistical analysis plan (Page 95–106), final statistical

analysis plan (Page 107 – 118), amendment list (Page 119– 120).

7

8

| 10 | A multicenter, phase III randomized study                       |
|----|-----------------------------------------------------------------|
| 11 | of metronomic capecitabine maintenance                          |
| 12 | after standard treatment in patients with                       |
| 13 | operable triple-negative breast cancer                          |
| 14 |                                                                 |
| 15 | (Protocol code: SYSUCC-EBC-CHEMO-001)                           |
| 16 | (Coding description: Sun Yat-sen University Cancer Center-Early |
| 17 | Breast Cancer–Chemotherapy–001)                                 |
| 18 | Version: 1.0                                                    |
| 19 |                                                                 |
| 20 |                                                                 |
| 21 |                                                                 |
| 22 | Principle Investigators                                         |
| 23 | Zhong Yu YUAN, M.D. and Xi WANG, M.D.                           |
| 24 | Sun Yat-sen University Cancer Center                            |
| 25 |                                                                 |
| 26 |                                                                 |
| 27 |                                                                 |
| 28 | Date of approved version: April 05, 2010                        |
| 29 |                                                                 |

| 30 |                                               |     |
|----|-----------------------------------------------|-----|
| 31 | Table of Contents                             |     |
| 32 |                                               |     |
| 33 | 1. Synopsis of the study5                     | 1   |
| 34 | 1.1 Objectives                                | )   |
| 35 | 1.2 Study Design                              | 5   |
| 36 | 1.3 Main Inclusion/ Exclusion Criteria        | 5   |
| 37 | 1.4 Investigational Drug and Administration   | 7   |
| 38 | 1.5 Study Endpoints                           | 8   |
| 39 | 2. Background                                 | 8   |
| 40 | 3. Objectives                                 | 2   |
| 41 | 3.1 Primary Endpoint                          | 2   |
| 42 | 3.2 Secondary Endpoints1                      | 3   |
| 43 | 4. Study design                               | 4   |
| 44 | 4.1 Summary of Design                         | 4   |
| 45 | 4.2 Randomization                             | 16  |
| 46 | 4.3 Capecitabine Administration               | 7   |
| 47 | 4.3.1 Initiating Dose                         | 7   |
| 48 | 4.4.2 Dose Adjustment1                        | 8   |
| 49 | 4.3.3 Concomitant and Prophylactic Medication | 20  |
| 50 | 5. Selection of Subjects                      | 21  |
| 51 | 5.1 Enrollment                                | 21  |
| 52 | 5.2 Inclusion Criteria                        | 21  |
| 53 | 5.3 Exclusion Criteria                        | 22  |
| 54 | 5.4 Discontinuation Criteria                  | 23  |
| 55 | 6. Study Protocol                             | 24  |
| 56 | 6.1 Study Drug                                | 24  |
| 57 | 6.2 Assessment and Follow–up                  | 24  |
| 58 | 6.2.1 Baseline assessment                     | 24  |
| 59 | 6.2.2 Assessment during Treatment             | 25  |
| 60 | 6.2.3 Assessment during Follow–up             | .26 |
| 61 | 6.2.4 Follow–up                               | .26 |
| 62 | 7. Safety Assessment                          | 28  |

| 63 | 7.1. Adverse Events28                          |
|----|------------------------------------------------|
| 64 | 7.1.1 Definition of Adverse Events             |
| 65 | 7.1.2 Severity of Adverse Events               |
| 66 | 7.1.3 Association between Adverse Events       |
| 67 | and Study Treatment29                          |
| 68 | 7.2. Serious Adverse Events                    |
| 69 | 7.2.1 Definition of Serious Adverse Events     |
| 70 | 7.2.2 Serious Adverse Event Reporting          |
| 71 | 8. Statistics                                  |
| 72 | 8.1 Statistical Method <del>s</del> 31         |
| 73 | 8.2 Sample Size32                              |
| 74 | 9. Ethics                                      |
| 75 | 9.1 Informed Consent                           |
| 76 | 9.2 Ethic Policies and Regulations             |
| 77 | 9.3 Protocol Modifications                     |
| 78 | 10. Quality Assurance35                        |
| 79 | 11. Data Processing and Storage                |
| 80 | 11.1 Case Report Form (CRF)35                  |
| 81 | 11.2 Database Establishment                    |
| 82 | 11.3 Data Storage                              |
| 83 | 12. References                                 |
| 84 | 13. Appendix 1 Schedule of Study42             |
| 85 | 14. Appendix 2 Common Terminology Criteria for |
| 86 | Adverse Events v4.044                          |
| 87 |                                                |
| 88 |                                                |
| 89 |                                                |
| 90 |                                                |

91

## 92 1. SYNOPSIS OF THE STUDY

#### 93 **1.1 Objectives**

This study is designed to compare the efficacy (disease-free survival, DFS) and safety of metronomic capecitabine maintenance for one year with observation after standard local and systemic treatment in patients with operable triple negative breast cancer (TNBC).

99

## 100 1.2 Study Design

This study is to be a multi-center, phase III, randomized controlled 101 trial. The study will include the following two treatment arms: 684 102 subjects will be randomized in a 1:1 fashion (342 in each arm) to 103 receive either metronomic capecitabine maintenance (experimental 104 arm) or observation (control arm) until objective disease recurrence, 105 protocol violation, intolerable toxicity, death, or withdrawal of 106 consent. Subjects will be stratified by lymph node status (positive or 107 negative). Subjects discontinuing from the active treatment phase 108 will enter the follow-up phase during which survival information will 109 be collected. 110

111

#### 112 **1.3 Main Inclusion/ Exclusion Criteria**

## 113 Main Inclusion Criteria:

114 1) Female, aged  $\geq$  18 years old and  $\leq$  75 years.

115 2) Histologically confirmed invasive ductal carcinoma, no
 116 specific type (NOS).

117 3) Pathologic stage  $T_{1c-3}N_{0-2}M_0$ .

4) estrogen receptor (ER)–/progesterone receptor
(PR)–negative and human epidermal growth factor receptor 2
(HER2) negative (ER– and PR–negative is defined by lower
than 1% immunohistochemistry staining; HER2–negative is
define by IHC score 0,1 or 2 with HER2–fluorescence in situ
hybridization negative).

124 5) Have completed adequate surgery, neo-/adjuvant
 125 chemotherapy and radiation therapy (if indicated).

6) Available results for contralateral mammography, chest X–ray,

abdominal ultrasonography, 99mTc-bone scanning (required

for patients with stage II b–IIIa disease) within 3 months before randomization.

7) Adequate organ function including bone marrow, renal
 function, hepatic function, et al.

132 8) Compliance with the study protocol.

133 9) Have provided written and signed informed consent.

## 134 Main Exclusion Criteria:

| 135 1) Patients with T4, including inflammate | rv carcinomas. |
|-----------------------------------------------|----------------|
|-----------------------------------------------|----------------|

- 136 2) Patients with N3.
- 3) Previously diagnosed with other malignancies (not including
   cured cervical carcinoma *in situ*, cutaneous squamous cell
   carcinoma, and cutaneous basal cell carcinoma).
- 140 4) History of invasive breast cancer.
- 141 5) Patients who are receiving or will receive other biological142 agents or immunotherapy.
- 143 6) Severe dysfunction of the heart, lung, liver, or kidney.
- Patients with malabsorption syndrome diseases impairing GI
   function, resection of stomach or small intestine, or who are
   unable to swallow capecitabine tablets.
- 147 8) Patients who are pregnant or who are unwilling to use
   148 contraception during the study period.
- 149 9) Known intolerance to capecitabine or allergy to its excipients.
- 150

## 151 **1.4 Investigational Drug and Administration**

<sup>152</sup> Capecitabine group (experimental arm): Capecitabine will be <sup>153</sup> administered at a dose of 650 mg/m<sup>2</sup> orally twice daily (ie, total <sup>154</sup> daily dose = 1300 mg/m<sup>2</sup>) continuous for one year, starting within 2

155 weeks of randomization.

156

#### 157 **1.5 Study Endpoints**

158 The primary efficacy parameter, DFS, will be analyzed in the full 159 analysis set (FAS) population.

160 The secondary efficacy parameters, including overall survival (OS),

disease-free survival (DDFS), and locoregional recurrence-free

survival (LRFS), will be analyzed in the FAS populations.

163 Safety and tolerability will be assessed using reporting of adverse

events (AEs), graded according to NCI–CTC (version 4.0).

165

#### 166 **2. BACKGROUND**

Breast cancer comprises a group of diseases that show genetic 167 heterogeneity and biological diversity [1, 2], which could be 168 classified into five subtypes distinguished by their gene expression 169 profiles [3, 4], including luminal A, luminal B, HER2+, normal breast, 170 and basal-like [5]. The genotype of breast cancer is established 171 using complicated gene analysis, which unsuitable for formalin-172 fixed specimens. Immunohistochemistry-based classification 173 (using ER, PR, HER2, and KI-67) is more widely used in clinical 174 practice [6-8], revealing a group of breast cancers characterized by 175

negative expression of ER, PR, and HER2, termed 176 as "triple-negative" breast cancer (TNBC) [9]. Basal-like breast 177 cancer and TNBC are differently defined, and might overlap with 178 each other. The majority of basal-like breast cancers are 179 triple-negative. Therefore, TNBC is used as an alternative 180 histopathological definition of basal-like breast cancer in clinical 181 practice, as well as in the inclusion criteria of most clinical trials. 182

TNBC comprises approximately 15%-25% of breast cancer in 183 [10–14], women and is considered an independent 184 clinicopathological subtype, with special clinical, pathological, and 185 molecular genetic characteristics. In terms of clinical characteristics, 186 TNBC is more common among young patients, with a high risk of 187 early (within 2 years after surgery) recurrence, distant metastasis, 188 and death [15–19]. TNBC has a shorter median survival after first 189 recurrence than other types of breast cancer, with most deaths 190 occurring within the first 5 years [10]. Visceral metastasis 191 (especially in the lung and brain) is more frequent than bone 192 metastasis, which might be one of the major contributors to the 193 poor prognosis of TNBC. Pathologically, TNBC is associated with 194 the presence of high histological grade, invasive ductal carcinoma, 195 a high proliferation index, and high expression of p53 and EGFR 196

197 [20-24]. Molecularly, gene expression profiles of TNBC have
198 revealed its high molecular homology [1, 4, 9].

For hormone receptor positive breast cancer, anti-estrogen 199 therapies have significantly reduced recurrence and death [25]. For 200 HER2+ breast cancers, anti-HER2 therapies (e.g., trastuzumab) 201 have also significantly reduced recurrence [26]. Currently, there are 202 few targeted therapies for TNBC, and chemotherapy is the only 203 effective strategy to reduce recurrence, which is another reason for 204 the poor prognosis of TNBC. Endocrine therapy for HR+ breast 205 cancer and anti-HER2 therapy for HER2+ breast cancer are all 206 long-term maintenance therapies after standard treatment [27]. 207 Therefore, we propose that a long-term effective maintenance 208 treatment might significantly improve the outcome in patients with 209 early TNBC. 210

Most TNBC is more chemosensitive than HR+ breast cancer. Traditional regimens tend to achieve a better response in patients with TNBC; however, the duration of the response usually dose not last long. TNBC is still characterized with dismal DFS, PFS, and OS [14, 28, 29]. Therefore, the aggressive biological behavior and the lack of effective risk–reducing treatment have both contributed to the poor prognosis of TNBC.

Metronomic chemotherapy is a relatively novel regimen using 218 continuous and low-dose chemotherapeutic agents with short or no 219 intervals. Browder and Klement, et al. reported the anti-tumor 220 activity of metronomic chemotherapy for the first time. The novel 221 pattern of dosage has a different mechanism compared with 222 conventional dosage regimens by exerting anti-angiogenesis 223 effects [30, 31]. In addition, metronomic chemotherapy also 224 produces antitumor effects by upregulating anti-tumor immune 225 response in the host [32]. Metronomic chemotherapy had achieved 226 good efficacy with low toxicity in advanced breast cancer [33-36]. 227 Considering that angiogenesis and immune surveillance escape 228 major mechanisms of tumor metastasis. metronomic 229 are chemotherapy might be a potential therapeutic option for operable 230 TNBC with high risk of distant metastasis. 231

Capecitabine is an effective agent with good tolerability and is convenient for breast cancer [37–41], which makes it an optimal choice for long–term metronomic use. The most common adverse events of capecitabine include hand–foot syndrome (HFS), diarrhea, and stomatitis, which are non–life threatening and can be managed using eduction without impairing efficacy [40]. Two recent phase III trials (FinXX and USO), which enrolled all subtypes of

breast cancer, have shown by subgroup analysis that the addition
of capecitabine to standard treatment significantly reduced the risk
of relapse for TNBC, especially the risk of distant metastases.

In summary, high rate of distant metastases and lack of effective 242 treatment are the major reasons for the poor prognosis of TNBC. 243 As a novel model of treatment, metronomic chemotherapy might be 244 effective for TNBC by targeting angiogenesis and immune escape. 245 The good efficacy and tolerability of capecitabine make it an 246 optimal drug for metronomic chemotherapy. Clinical studies have 247 also demonstrated a reduced risk of relapse in patients with TNBC 248 receiving capecitabine in addition to standard treatment. This study 249 aims to evaluate the efficacy and safety of capecitabine 250 metronomic chemotherapy after standard treatment in patients with 251 early TNBC. 252

253

#### 254 **3. OBJECTIVES**

#### 255 **3.1 Primary Endpoint**

To compare the DFS in patients who are randomized at enrollment to treatment with metronomic capecitabine maintenance (experimental arm) with in observation arm (control arm).

DFS is defined as time from randomization to the first of any of

the following events:

- 1) Relapse of invasive breast cancer in the ipsilateral chest wall
   and regional lymph nodes
- 263 2) Distant metastases (histologically confirmed or clinically
   264 diagnosed)
- 3) Breast cancer related, non–breast cancer related or unknown
   deaths
- 4) Contralateral invasive breast cancer.
- 268

#### 269 3.2 Secondary Endpoints

To compare the overall survival (OS), distant disease–free survival (DDFS), locoregional recurrence–free survival (LRFS) and safety between the experimental arm and observation arm. In addition, exploratory analysis will include biomarkers that predict the efficacy and toxicity of capecitabine.

OS is defined as time from randomization to death caused by anyreason.

277 DDFS is defined as time from randomization to the first 278 occurrence of any of the following events: Distant metastases, 279 death caused by any reason, and contralateral invasive breast 280 cancer (NEJM 2005; 353:2747).

LRFS is defined as time from randomization to locoregional invasive recurrence or death.

Safety: The frequency and severity degree of AEs were judged
based on NCI CTC V4.0.

285

#### 286 4. STUDY DESIGN

#### 287 4.1 Summary of Design

288 This is a multi-center, phase III, randomized controlled study of

289 metronomic capecitabine maintenance versus observation.

Approximately 684 subjects with TNBC will be randomized in a

1:1 fashion (342 in each arm) to receive treatment with either:

292 Metronomic capecitabine maintenance (experimental arm); or

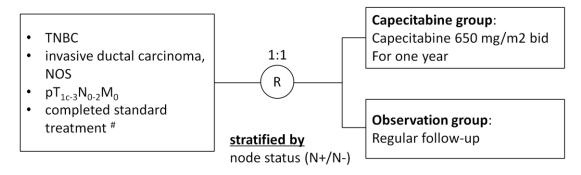
observation (control arm) until objective disease recurrence,

<sup>294</sup> protocol violation, intolerable toxicity, death, or withdrawal of

295 consent. Subjects will be stratified by lymph node status (positive or

296 negative).

Subjects will participate in the study within 4 weeks after


completion of standard curative treatment including surgery,

neo-/adjuvant chemotherapy and radiotherapy. Patients in the two

arms will be follow-up every 3 months using physical, laboratory,

and radiological examinations according to the study protocol. This

study will be completed in approximately 72 months including 48
months for accrual and approximately 36 months of follow–up
survival for the last subject enrolled. An overview of the study
design is depicted below:



# standard treatment including surgery, (neo)adjuvant chemotherapy and radiation therapy (if indicated)

307

306

**Recommended chemotherapy regimens:** According to the 308 NCCN guidelines version 2010, recommended chemotherapy 309 regimens and dosage are listed in Table 1. Dosages adjustment 310 according to a patient's toleration will be allowed with no more than 311 25% reduction of standard dose. A minimum of four cycles of 312 neo-/adjuvant chemotherapy should delivered. For be 313 node-positive patients, chemotherapy regimens containing 314 anthracyclines and taxanes are recommended. 315

Recommended indications for post–operative radiotherapy include: Involvement of  $\geq$  four axillary nodes, primary tumor  $\geq$  5 cm in size, post breast conserving surgery, positive surgical margins,

- involvement of internal mammary nodes (in selected cases), and
- involvement of 1–3 axillary nodes (in selected cases).
- 321

 Table 1 Recommended chemotherapy regimen and dosage

| Regimens(drugs) |                                                                        | Dose(mg/m <sup>2</sup> )   |
|-----------------|------------------------------------------------------------------------|----------------------------|
| CMF             | cyclophosphamide/methotrexate/fluorouracil                             | 500/ 40/ 600               |
| AC              | doxorubicin/cyclophosphamide                                           | 60/ 600                    |
| EC              | epirubicin/cyclophosphamide                                            | 75–90/ 600                 |
| FAC             | 5-fluorouracil/doxorubicin/cyclophosphamide                            | 500/ 50/ 500               |
| FEC             | 5-fluorouracil/epirubicin/cyclophosphamide                             | 500/ 75–90/ 500            |
| TAC             | docetaxel/doxorubicin/cyclophosphamide                                 | 75/ 50/ 500                |
| TEC             | docetaxel/epirubicin/cyclophosphamide                                  | 75/ 75/ 500                |
| AC-P            | doxorubicin/cyclophosphamide→paclitaxel weekly or every 3–weeks        | 60/ 600→80 (qw), 175 (q3w) |
| EC-P            | epirubicin/cyclophosphamide→paclitaxel weekly or<br>every 3–weeks      | 90/ 600→80 (qw), 175 (q3w) |
| AC-wP           | doxorubicin/cyclophosphamide→paclitaxel<br>(Dose–dense)                | 60/ 600→175 (q2w)          |
| FEC-T           | 5–fluorouracil/epirubicin/cyclophosphamide→docetaxel,<br>every 3 weeks | 500/ 75–90/ 500→75         |
| тс              | docetaxel/cyclophosphamide                                             | 75/ 600                    |

322

#### 323 4.2 Randomization

On verification of the inclusion and exclusion criteria, eligible 324 patients will be randomized using the method of stratified permuted 325 blocks to receive metronomic capecitabine maintenance or 326 observation in a 1:1 ratio. Patients will be stratified according to 327 lymph node status (negative vs. positive). A computerized number 328 329 generator in the SAS software (version 8.01) generate a randomization table, the results of which were placed in 330 sequentially numbered opaque envelopes and remained concealed 331

332 until after enrollment.

333 Central randomization will be performed. When a suitable patient 334 is to be enrolled into the study, the Investigator site will contact 335 principal investigator (PI) site, and will be informed over the 336 telephone at the time of individual patient enrollment what the 337 treatment allocation is, and to which treatment arm the patient has 338 been randomized. This is a multicenter study to be conducted at 339 approximately 15 study sites.

340

## 341 **4.3 Capecitabine Administration**

#### 342 **4.3.1 Initiating Dose**

The approved dose of capecitabine was 1250 mg/m<sup>2</sup> bid, days 1–14 every 21 days. However, the dose of capecitabine for metronomic chemotherapy is uncertain, particularly in the adjuvant setting. Several studies suggested that capecitabine at 650 mg/m<sup>2</sup> bid, continuously for one year in metastatic breast cancer had lower toxicity and was well tolerated [42–44]. The initiate dose of capecitabine was 650 mg/m<sup>2</sup> bid, continuously for one year.

Body surface area is calculated from height and body weight. Given that the height and weight of Chinese woman are 150–180 cm and 40–80 kg, respectively, their body surface area lie between

1.30 m<sup>2</sup> and 2.0 m<sup>2</sup>. Combining the availability of capecitabine in
China with the convenience of patients, the daily actual dose will be
decided upon by using the **Table 2**.

356

357

#### Table 2 The daily dose of capecitabine

| Body surface | Total Daily | Morning dose | Evening dose |
|--------------|-------------|--------------|--------------|
| area (m²)    | Dose (mg)   | (mg)         | (mg)         |
| 1.30–1.32    | 1690–1716   | 1000         | 500          |
| 1.33–1.71    | 1729–2223   | 1000         | 1000         |
| 1.72–2.0     | 2236–2600   | 1500         | 1000         |

358

#### 359 **4.3.2 Dose Adjustment**

The most common AEs of capecitabine is HFS, and grading of HFS 360 is listed in Table 3. Studies suggested that almost all AEs could 361 improve after dose modification [45]. Dose adjustment of 362 capecitabine in patients who experience HFS is listed in Table 4. 363 Note, because of lower dose in patients with body surface areas 364 1.3–1.32 m<sup>2</sup>, only one dose reduction of capecitabine is allowed, 365 from 1500 mg to 1000mg (morning 500mg, evening 500mg). In 366 addition, once a dose has been reduced for a subject, all 367 subsequent doses should be administered at that dose, unless 368 further dose reduction is required. Dose reescalation is not 369 permitted. If dosage delay occurs because of AEs, whether to 370 continue treatment should be determined by the investigator by 371

balancing the benefit and risk on an individual basis. Regardless of
the cause of the delay, patients who discontinue dosage for more
than 4 weeks should terminate treatment and withdraw from the
trial.

## Table 3 Grading of HFS Caused by Capecitabine

| Grade | Manifestation                                                                                                                 |
|-------|-------------------------------------------------------------------------------------------------------------------------------|
| 1     | Numbness, tingling sensation, erythema of hands and/or feet that                                                              |
|       | cause painless swelling or discomfort without affecting daily activities                                                      |
| 2     | Painful erythema or swelling of hands and/or feet that affect daily activities                                                |
| 3     | Wet desquamation, ulceration, blistering, severe pain of hands and/or feet, and/or unable to work or perform daily activities |

## Table 4 Dose Adjustment of Capecitabine

| Grade | Dose modification of capecitabine                                       |  |
|-------|-------------------------------------------------------------------------|--|
| 1     | Dose modifications are not recommended                                  |  |
| 2     | -First appearance: Interrupt therapy until resolved to grade 0 or 1 and |  |
|       | maintain the dose level for the next treatment at 100%                  |  |
|       | -Second appearance: Interrupt therapy until resolved to grade 0 or 1    |  |
|       | and maintain the dose level for the next treatment at 75%               |  |
|       | -Third appearance: Interrupt therapy until resolved to grade 0 or 1 and |  |
|       | maintain the dose level for the next treatment at 50%                   |  |
|       | -Fourth appearance: Discontinue therapy permanently                     |  |
| 3     | -First appearance: Interrupt therapy until resolved to grade 0 or 1 and |  |
|       | begin the next cycle at 75% of the starting dose                        |  |
|       | -Second appearance: Interrupt therapy until resolved to grade 0 or 1    |  |
|       | and begin the next cycle at 50% of the starting dose                    |  |
|       | -Third appearance: Discontinue therapy permanently                      |  |
| 4     | First appearance: Discontinue therapy permanently, or if the physician  |  |

deems it to be in the patient's best interest to continue, interrupt until resolved to grade 0 or 1 and begin the next cycle at 50% of the starting dose

380

#### **4.3.3 Concomitant and Prophylactic Medication**

In addition to HFS, the other common toxicities of capecitabine are 382 diarrhea and stomatitis. Symptom-relieving treatment can be given 383 by investigators according to clinical need and should be recorded. 384 Dose adjustment is not required for patients with mild to moderate 385 hepatic impairment. Currently there are no data on the 386 pharmacokinetics of capecitabine in patients with renal dysfunction 387 (as evaluated by serum creatinine levels). 388

Mild myelosuppression related to capecitabine and the 389 predominance of its active metabolic enzymes inside tumor cells 390 mean that, hematologic toxicities of grade  $\leq 2$  can be managed 391 according to clinical routine without discontinuation of capecitabine. 392 For patients experiencing hematologic toxicities of grade  $\geq$  3, 393 capecitabine should be interrupted until resolved to grade 0. 394 Treatment should be terminated if dosage interruption occurs for 395 more than 4 weeks. Treatment should be terminated if patients 396 experience two episodes of grade  $\geq$  3 hematological toxicities 397 consecutively, with any episode resulting in drug discontinuation for 398 more than 2 weeks. Patient should be followed-up after termination 399

400 of therapy and toxicities and prognosis should be recorded.

401

#### 402 **5. SELECTION OF SUBJECTS**

#### 403 **5.1 Enrollment**

All patients meeting the inclusion criteria must be provided with detailed information about this study and written informed consent for participation must be obtained. The patients will then be randomly assigned into the observation arm or capecitabine arm using a random number table, and the assignment will be recorded on the case report form (CRF)by investigators. Analysis will be stratified by lymph node status (N0 or N+).

411

#### 412 **5.2 Inclusion Criteria**

Patients must fulfill ALL of the following criteria to be eligible forstudy

415 enrollment and randomization.

416 1) Female, aged  $\geq$  18 years old and  $\leq$  75 years old.

417 2) Histologically confirmed invasive ductal carcinoma, no
418 specific type (NOS).

419 3) Pathologic stage  $T_{1c-3}N_{0-2}M_0$ .

420 4) ER-, PR-, and HER2-negative (ER- and PR-negative is

| 421 |    | defined by lower than 1% immunohistochemistry (IHC)                       |
|-----|----|---------------------------------------------------------------------------|
| 422 |    | staining; HER2 negative is define by an IHC score of 0, 1 or 2,           |
| 423 |    | with HER2–fluorescence in situ hybridization negative).                   |
| 424 | 5) | Have completed adequate surgery, neo-/adjuvant                            |
| 425 |    | chemotherapy and radiation therapy (if indicated).                        |
| 426 | 6) | Available results of contralateral mammography, chest X-ray,              |
| 427 |    | abdominal ultrasonography, and <sup>99m</sup> Tc-bone scanning within 3   |
| 428 |    | months before randomization.                                              |
| 429 | 7) | Adequate organ function:                                                  |
| 430 |    | a) Bone marrow: ANC $\geq$ 1.5 *10 <sup>9</sup> /L; platelet count $\geq$ |
| 431 |    | 100*10 <sup>9</sup> /L; hemoglobin ≥ 10 g/dL                              |
| 432 |    | b) Renal function: Serum creatinine $\leq$ 1.5×ULN by local               |
| 433 |    | laboratory                                                                |
| 434 |    | c) Hepatic function: Total bilirubin $\leq$ 1.5×ULN; AST $\leq$           |
| 435 |    | $1.5 \times ULN$ , ALT $\leq 1.5 \times ULN$                              |
| 436 | 8) | Compliance with study protocol.                                           |
| 437 | 9) | Providing written and signed informed consent.                            |
| 438 |    |                                                                           |

## **5.3 Exclusion Criteria**

440 Patients meeting **ANY** of the following criteria are not eligible for441 study enrollment and randomization.

1) Patients with T4, including inflammatory carcinomas.

443 2) Patients with N3.

- 444 3) Previously diagnosed other malignancies (not including cured
   445 cervical carcinoma in situ, cutaneous squamous cell
   446 carcinoma, and cutaneous basal cell carcinoma).
- 447 4) History of invasive breast cancer.
- 448 5) Patients who are receiving or will receive other biological449 agents or immunotherapy.
- 6) Severe dysfunction of the heart, lung, liver, or kidney.
- 7) Patients with malabsorption syndrome diseases impairing GI
   function, resection of stomach or small intestine, or unable to
   swallow capecitabine tablets.
- 454 8) Patient who are pregnant or who are unwilling to use
  455 contraception during the study period.
- 456 9) Known intolerance to capecitabine or allergy to its excipients.

457

- 458 **5.4 Discontinuation Criteria**
- 459 1) Recurrence of breast cancer.
- 2) Development for serious advent event develops.
- 461 3) Patients desire to withdraw from the study.
- 462 4) Patients are unable to receive treatment or follow-up

according to the study protocol.

464 5) Patients receive other anti-tumor treatment or other treatment
465 that might affect the study results without the consent of the
466 investigators.

6) Dosage discontinuation for more than 28 days.

468

469 6. STUDY PROTOCOL

## 470 **6.1 Study Drug:**

<sup>471</sup> Capecitabine (Xeloda<sup>®</sup>, Roche, Basel, Switzerland), 500mg per

tablet. The treatment schedule is described in section 4.3.

473

## 474 6.2 Assessment and Follow–up

The schedule of assessment during treatment and follow–up are showed in Appendix 1.

477

#### 478 6.2.1 Baseline Assessment

479 Baseline assessment should complete within 1 week before480 enrollment).

481 ✓ Screening form. Patients who meet all inclusion criteria and

do not meet any exclusion criteria are eligible for this study.

483 Investigators must complete a screening form at baseline.

- 484 Medical history and clinical examination. Medical history,
   485 including risk factors for cardiac disease and their medical
   486 history of nervous system diseases must be collected before
   487 enrollment.
- ✓ Complete blood count, hepatic function (including AST, ALT,
   T-Bil, D-Bil, TP, and ALB), renal function (including BUN and Cr), serum electrolytes (including K<sup>+</sup> and Ca2<sup>+</sup>), serum
   LDH, AKP, and blood glucose.
- 492 ✓ Electrocardiogram and echocardiogram;
- 493 ✓ Serum CEA and CA153;
- 494 ✓ Imaging studies including chest X–ray, and abdominal 495 ultrasonography. A bone ECT scan is recommended for 496 patients with disease of stage ≥ IIb, unexplained bone pain, 497 or elevated serum ALP
- 498 ✓ 10 mL of peripheral blood will be collected for biomarker
   499 analysis.

500

## **6.2.2 Assessment during Treatment (repeated every 3 months)**

- 502 Assessment during Treatment are to repeat every 3 monthsS.
- <sup>503</sup> ✓ Physical examination and vital signs;
- 504 ✓ Complete blood count, hepatic function, and renal function;

505 ✓ Serum CEA and CA153;

506 ✓ Electrocardiogram;

507 ✓ Abdominal ultrasonography.

508

## 509 6.2.3 Assessment during Follow–up

Several randomized studies have shown that regular examination 510 comprising bone scans, liver US, chest X-rays, and blood tests 511 could not improve the survival and quality of life (QoL) of patients, 512 compared with routine physical examination [46, 47]. Therefore, 513 every 3 months during follow-up, physical examination and 514 mammography are required for asymptomatic patients in both arms. 515 However, this is the minimum requirement specified by the protocol, 516 and investigators are allowed to perform additional evaluations 517 according to the individual situation of the patients. 518

519

### 520 6.2.4 Follow–up

Follow–up of patients in both arms will be initiated after randomization and will be repeated every 3 months ( $\pm$  28 days) during the first 2 years after randomization. Patients in the capecitabine arm are allowed to take medicine at home but must return to the study site every 3 months ( $\pm$  28 days) for follow–up.

Follow–up will be repeated every 6 months (± 28 days) during the
3rd to 5th year after randomization, and then annually thereafter.

Diagnosis of relapse will be established on clinical manifestation, radiological findings, and/or histological evidence. If the diagnosis of relapse is based on clinical symptoms without laboratory or radiological evidence, other supporting evidence should be collected as much as possible. After a diagnosis of recurrence is established, the sites and date of relapse should be recorded.

534 Diagnosis of relapse could also be established if the treatment 535 strategy is altered based on the hypothesis of relapse, even without 536 adequate evidence.

537 Chest wall relapse: Defined as soft tissue recurrence in the area 538 comprising the sternum as the middle line, the clavicle as the upper 539 margin, the rib as the lower margin, and the posterior axillary line as 540 lateral margin.

541 <u>Regional relapse</u>: Defined as relapse in the area of the 542 supraclavicular fossa, subclavicular area, ipsilateral internal 543 mammary area, and/or ipsilateral axillary lymph nodes. Tissue 544 biopsy should be performed whenever possible.

545 <u>Distant metastases</u>: Cutaneous or subcutaneous metastasis 546 should be supported by histological or cytological evidence. Bone

metastasis should be supported by imaging studies (e.g., X–ray or
MR). Metastasis in the lung, liver, or brain should be supported by
CT or MRI.

550

## 551 **7. SAFETY ASSESSMENT**

#### 552 7.1 Adverse Events

#### 553 7.1.1 Definition of Adverse Events

An AE is defined as any untoward medical occurrence during the period from randomization to the 28<sup>th</sup> day after the last dose or to the most recent follow–up, regardless of causal attribution with the study drug. An AE can be any of the following: A symptom, a sign, abnormal examination results, or a disease, which may occur at any time since the initiation of treatment.

- 560 An AE should be accurately recorded during the study, including 561 its time, severity, duration, management, and prognosis.
- 562

#### 563 **7.1.2 Severity of Adverse Events**

564 Severity of AEs is graded according to NCI CTCAE 4.0 (Appendix

- 2). Grades of AEs that are not listed in Appendix 2 are as follows:
- Mild: An effect on the daily function of subjects.
- Moderate: A mild effect on the daily function of subjects.

569

568

#### 570 7.1.3 Association between AEs and Study Treatment

571 The relationship between AEs and the study drug should be 572 assessed by investigators according to the following criteria:

Severe: A significant effect on the daily function of subjects.

573 Definitely related: An AE that follows a reasonable temporal 574 sequence from administration of the study intervention, follows a 575 known or expected response pattern to the suspected intervention, 576 and is confirmed by improvement on stopping and reappearance of 577 the event on repeated exposure

578 Probably related: An AE that follows a reasonable temporal 579 sequence from administration of the study intervention, follows a 580 known or expected response pattern to the suspected intervention, 581 but that could readily have been produced by the patient's clinical 582 conditions or other treatments.

583 Probably unrelated: An AE that does not follow a reasonable 584 temporal sequence from administration of the study intervention, 585 does not follow a known or expected response pattern to the 586 suspected intervention, and could readily have been produced by 587 the patient's clinical conditions or other treatments.

588 Unrelated: An AE that does not follow a reasonable temporal

sequence from administration of the study intervention, but follows
a known or expected response pattern to other treatments, and
could readily have been produced by the patient's clinical
conditions or other treatments. The AE can be relieved by
improvement of the clinical conditions or stopping other treatments,
and reappears after repeating other treatments.

595 Unable to determine: An AE that does not follow a reasonable 596 temporal sequence from administration of the study intervention, 597 but follows a known or expected response pattern to the study 598 intervention, and could readily have been produced by other 599 treatments.

600

## 601 7.2 Serious Adverse Events (SAEs)

- 602 7.2.1 Definition of SAEs
- Results in death.
- Is life—threatening.
- Requires or prolongs hospitalization.
- Causes persistent or significant disability or incapacity.
- Results in congenital anomalies or birth defects.

608

## 609 7.2.2 SAE Reporting

Any SAEs occurring during the study or follow–up should be reported to the PI and ethics committee by telephone within 24 hours regardless of their causal relationship with the study drug. The PI is responsible of reporting SAEs to the State Food and Drug Administration (SFDA) (also to the drug manufacturer within 24 hours if the SAE is considered to be related to the study drug).

616

#### 617 8. STATISTICS

Additional details of the analysis will be provided in the statisticalanalysis plan.

#### 620 8.1 Statistical Methods

<sup>621</sup> The primary endpoint is DFS, defined as time from randomization <sup>622</sup> to the first of breast cancer recurrence or death from any reason.

<sup>623</sup> The secondary endpoints include OS, DDFS, LRFS, and safety.

Efficacy analyses will be based on the FAS population, defined as all randomized patients excluding those who withdraw informed consent before protocol treatment, or who had no follow–up data after randomization. Safety analyses will be based on the safety analyses set (SAS) population, defined as all randomized patients who initiated the protocol treatment and who undergo safety assessment.

For the efficacy analysis, PFS, OS, DDFS, and LRFS will be analyzed using the Kaplan–Meier method and will be compared using the log–rank test. The hazard ratio and corresponding 95% confidence interval will be calculated using stratified Cox proportional hazard regression.

AEs and SAEs will be summarized by arm. The incidence of grade 3 HFS will be compared between the two arms using Fisher's exact test.

For continuous variables, the distribution, mean, median, standard deviation, and interquartile rang (IQR) will be calculated and compared using a *t*-test or non-parametric test. For categorical variables, the number and percentage will be presented in contingency table data and compared using the chi–squared test or Fisher's exact test.

645 All statistical tests are two–sided with a *P* value of < 0.05 being 646 considered statistically significant.

647

#### 648 8.2 Sample Size

The assumptions for sample size calculations are as follows: 5–year DFS is 68% in the control arm [10, 13, 28], and 80% in the experimental arm. The estimated periods of enrollment and

follow-up will be 48 and 36 months, respectively. The design is
based on a 2-sided log-rank test with alpha = 0.05, power = 90%,
and an interim analysis when the last one patient has completed 12
months of follow-up. The dropout rate is assumed to be 20%.
Approximately 684 patients (342 patients in each arm) will be
enrolled.

658

#### 659 **9. ETHICS**

### 660 9.1 Informed Consent

Before enrollment, study physicians are responsible for a complete 661 and comprehensive presentation to patients of the study purpose, 662 the properties of the drug, its possible side effects and potential 663 risks. Patients should be informed of their rights, the risk, and the 664 benefit. It should be emphasized that they can withdraw from the 665 trial at any stage without affecting their subsequent treatment. 666 Subjects should be promptly informed of any updates of the study. 667 and a renewed informed consent to continue in the study should be 668 obtained. Patients should sign the informed consent in duplicate 669 with their name and date. One copy is given to the patient and the 670 other is kept in the study archives. 671

672

#### 673 9.2 Ethic Policies and Regulations

The investigator will ensure that this study is conducted in full conformance with the principles of the "Declaration of Helsinki" as well as "Guideline for Good Clinical Practice (GCP)" and relevant laws and regulations of the SFDA, whichever affords the greater protection to the individual.

The study will be initiated only after the protocol is approved by the ethics committee of the Sun Yat–sen University Cancer Center. Any changes to the protocol during the study should be reported to the ethics committee and filed.

683

## 684 9.3 Protocol Modifications

All protocol modifications must be submitted to the Independent Ethics Committee (IEC). Approval must be awaited before any changes can be implemented, except for changes necessary to eliminate an immediate hazard to the trial patients, or when the change involve only logistical or administrative aspects of the trial.

690

#### 691 **10. QUALITY ASSURANCE**

<sup>692</sup> To ensure accordance with study protocols, physicians are asked to <sup>693</sup> strictly follow the requirements of GCP throughout the trial, to

694 achieve standard procedures, accurate data, and reliable
 695 conclusions. Specific requirements are as follows:

696 ✓ Obtain informed consent that is signed by each subject or
 697 their agents.

 $\checkmark$  Complete the case report form (CRF) as required.

699 ✓ Follow–up on schedule.

Keep complete records of laboratory examinations, clinical
 records, and the original medical documents of the subjects.

702

#### 11. DATA PROCESSING AND STORAGE

#### 704 11.1 Case Report Form (CRF)

The CRF will be completed by investigators in a timely manner to ensure the accuracy and timeliness of the content. Generally, the CRF should not be altered. If there are any errors to be corrected, the original record should be crossed out with a horizontal line, and the modified text should be signed and dated. The completed CRFs are reviewed by the quality control officer for data input. No further modification of CRFs is allowed once the database is locked.

## 712 **11.2 Database Establishment**

713 Statisticians will have questions in the CRFs checked with 714 investigators, who should reply and return the CRFs promptly. Statisticians should establish the database in a timely manner, and
the data will be locked by investigators, statisticians, and research
assistants after the database has been reviewed. To ensure data
security, an non-permitted person cannot modify the data, and the
data must be backed up.

## 720 **11.3 Data Storage**

Investigators should keep the data intact. According to the principle
of GCP in China, research data should be stored for at least five
years.

### 725 **12. REFERENCES**

- 726
- Perou CM, Sorlie T, Eisen MB, et al.: Molecular portraits of human breast
   tumours. Nature 2000, 406: 747–52.
- 2. Sorlie T. Molecular portraits of breast cancer: tumour subtypes as distinct
  disease entities. Eur J Cancer 2004; 406: 2667–75.
- Sorlie T, Perou CM, Tibshirani R, et al.: Gene expression patterns of breast
   carcinomas distinguish tumor subclasses with clinical implications. Proc
   Natl Acad Sci USA 2001, 98: 10869–74.
- 4. Sotiriou C, Neo SY, McShane LM, et al. Breast cancer classification and
  prognosis based on gene expression profiles from a population–based
  study. PNAS, 2003; 100(18): 10393–8.
- 5. Weigelt B, Glas AM, Wessels LF, et al. Gene expression profiles of primary
  breast tumors maintained in distant metastases. Proc Natl Acad Sci USA.
  2003; 100(26): 15901–5.
- Abd El–Rehim DM, Pinder SE, Paish CE, et al. Expression of luminal and
  basal cytokeratins in human breast carcinoma. J Pathol. 2004; 203(2):
  661–71.
- 743 7. Jacquemier J, Ginestier C, Rougemont J, et al. Protein expression profiling
  r44 identifies subclasses of breast cancer and predicts prognosis. Cancer Res.
  r45 2005; 65(3): 767–79.
- Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal–like subtype of invasive breast carcinoma.
   Clin Cancer Res. 2004; 10: 5367–74.
- 9. Sørlie T, Tibshirani R, Parker J, et al. Repeated observation of breast
  tumor subtypes in independent gene expression data sets. PNAS, 2003;
  100(14): 8418–23.
- 10. Dent R, Trudeau M, Pritchard KI et al. Triple–negative breast cancer:
  clinical features and patterns of recurrence. Clin. Cancer Res. 2007; 13;
  4429–34.
- Tischkowitz M, Brunet JS, Begin LR et al. Use of immunohistochemical
  markers can refine prognosis in triple negative breast cancer. BMC Cancer
  2007; 7; 134.

12. Bauer KR, Brown M, Cress RD, et al. Descriptive analysis of estrogen
receptor (ER)–negative, progesterone receptor (PR)–negative, and
HER2–negative invasive breast cancer, the so–called triple–negative
phenotype: a population–based study from the California cancer Registry.
Cancer 2007; 109; 1721–8.

13. Haffty BG, Yang Q, Reiss M, et al. Locoregional Relapse and Distant
Metastasis in Conservatively Managed Triple Negative Early-Stage Breast
Cancer. J Clin Oncol 2006;24(36):5652-7.

- 14. Carey LA, Dees EC, Sawyer L, et al: The triple negative paradox: Primary
  tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res, 2007;
  13:2329–34.
- 15. Abd El–Rehim DM, Ball G, Pinder SE, et al. High–throughput protein
  expression analysis using tissue microarray technology of a large
  well–characterised series identifies biologically distinct classes of breast
  cancer confirming recent cDNA expression analyses. Int J Cancer 2005;
  116: 340–50.
- 16. van de Rijn M, Perou CM, Tibshirani R, et al. Expression of cytokeratins 17
  and 5 identifi es a group of breast carcinomas with poor clinical outcome.
  Am J Pathol 2002; 161:1991–96.
- 17. Banerjee S, Reis–Filho JS, Ashley S, et al. Basal–like breast carcinomas:
  clinical outcome and response to chemotherapy. J Clin Pathol 2006; 59:
  779 729–35.
- 18. Rodriguez–Pinilla SM, Sarrio D, Honrado E, et al. Prognostic significance
  of basal–like phenotype and fascin expression in node negative invasive
  breast carcinomas. Clin Cancer Res 2006; 12: 1533–39.
- Tsuda H, Takarabe T, Hasegawa F, et al. Large, central cellular zones
  indicating myoepithelial tumor differentiation in high–grade invasive ductal
  carcinomas as markers of predisposition to lung and brain metastases. Am
  J Surg Pathol 2000; 24: 197–202.
- 20. Korsching E, Packeisen J, Agelopoulos K, et al. Cytogenetic alterations
  and cytokeratin expression patterns in breast cancer: integrating a new
  model of breast differentiation into cytogenetic pathways of breast
  carcinogenesis. Lab Invest 2002; 82: 1525–33.

- 791 21. Fulford LG, Easton DF, Reis–Filho JS, et al. Specific morphological
  792 features predictive for the basal phenotype in grade 3 invasive ductal
  793 carcinoma of breast. Histopathology 2006; 49; 22–34.
- 22. Livasy CA, Karaca G, Nanda R et al. Phenotypic evaluation of the
  basal–like subtype of invasive breast carcinoma. Mod. Pathol. 2006; 19;
  264–71.
- 23. Jacquemier J, Padovani L, Rabayrol L et al. Typical medullary breast
  carcinomas have a basal / myoepithelial phenotype. J. Pathol. 2005; 207;
  260–8.
- 24. Rakha EA, El–Sayed ME, Green AR et al. Prognostic markers in
  triple–negative breast cancer. Cancer 2007; 109; 25–32.
- 25. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of
  chemotherapy and hormonal therapy for early breast cancer on recurrence
  and 15–year survival: an overview of the randomised trials. Lancet. 2005;
  365(9472): 1687–717.
- 26. Dahabreh IJ, Linardou H, Siannis F, Fountzilas G, Murray S. Trastuzumab
  in the adjuvant treatment of early–stage breast cancer: a systematic
  review and meta–analysis of randomized controlled trials. Oncologist.
  2008;13(6):620–30.
- 810 27. Cole BF. Gelber RD, Gelber S, Coates AS, Goldhirsch Α. Polychemotherapy for early breast cancer: an overview of the randomised 811 812 clinical trials with quality-adjusted survival analysis. Lancet 2001; 358(9278): 277-86. 813
- 28. Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy
  and long-term survival in patients with triple-negative breast cancer. J Clin
  Oncol. 2008; 26(8): 1275–81.
- 817 29. Rouzier R, Perou CM, Symmans WF, et al. Breast Cancer Molecular
  818 Subtypes Respond Differently to Preoperative Chemotherapy. Clin Cancer
  819 Res, 2005; 11(16): 5678–5685.
- 30. Browder T, Butterfield CE, Kräling BM, et al. Antiangiogenic scheduling of
  chemotherapy improves efficacy against experimental drug–resistant
  cancer. Cancer Res 2000; 60: 1878–86.
- 31. Klement G, Baruchel S, Rak J, et al. Continuous low-dose therapy with

- vinblastine and vegf receptor–2 antibody induces sustained tumor
  regression without overt toxicity. J Clin Invest 2000; 105: R15–24
- 32. Ghiringhelli F, Menard C, Puig PE, et al. Metronomic cyclophosphamide
  regimen selectively depletes CD4+ CD25+ regulatory T cells and restores
  T and NK effector functions in end stage cancer patient. Cancer Immunol
  Immunother 2006; 56: 641–8.
- 33. Colleoni M, Rocca A, Sandri MT, et al. Low–dose oral methotrexate and
  cyclophosphamide in metastatic breast cancer: antitumor activity and
  correlation with vascular endothelial growth factor levels. Ann Oncol 2002;
  13: 73–80.
- 34. Colleoni M, Orlando L, Sanna G, et al. Metronomic low-dose oral
  cyclophosphamide and methotrexate plus or minus thalidomide in
  metastatic breast cancer: antitumor activity and biological effects. Ann
  Oncol 2006; 17: 232–8.
- 35. Orlando L, Cardillo A, Rocca A, et al. Prolonged clinical benefit with
  metronomic chemotherapy in patients with metastatic breast cancer.
  Anticancer Drugs 2006; 17: 961–7.
- 36. Emmenegger U, Man S, Shaked Y, et al. A comparative analysis of
  low-dose metronomic cyclophosphamide reveals absent or low-grade
  toxicity on tissues highly sensitive to the toxic effects of maximum tolerated
  dose regimens. Cancer Res 2004; 64: 3994–4000.
- 37. Blum JL, Dieras V, Lo Russo PM et al. Multicenter, phase II study of
  capecitabine in taxane–pretreated metastatic breast carcinoma patients.
  Cancer 2001; 92: 1759–68.
- 38. Reichardt P, Von Minckwitz G, Thuss–Patience PC et al. Multicenter phase
  II study of oral capecitabine (Xeloda) in patients with metastatic breast
  cancer relapsing after treatment with a taxane–containing therapy. Ann
  Oncol 2003; 14: 1227–33.
- 39. O'Shaughnessy J, Miles D, Vukelja S et al. Superior survival with
  capecitabine plus docetaxel combination therapy in
  anthracyclinepretreated patients with advanced breast cancer: Phase III
  trial results. J Clin Oncol 2002; 20: 2812–23.
- 40. Leonard R, O'Shaughnessy J, Vukelja S, et al. Detailed analysis of a

- randomized Phase III trial: can the tolerability of capecitabine plus
  docetaxel be improved without compromising its survival advantage? Ann
  Oncol. 2006; 17(9): 1379–85.
- 860 41. Blum JL, Jones SE, Buzdar AU, et al. Multicenter phase II study of
  861 capecitabine in paclitaxel– refractory metastatic breast cancer. J Clin
  862 Oncol. 1999; 17(2): 485–93
- 42. Martin M, Calvo L, Martinez N, et al. Standard Versus Continuous
  Administration of Capecitabine in Metastatic Breast Cancer
  (GEICAM/2009-05): A Randomized, Noninferiority Phase II Trial With a
  Pharmacogenetic Analysis. Oncologist 2015; 20(2): 111-2.
- 43. Stockler MR, Harvey VJ, Francis PA, et al. Capecitabine versus classical
  cyclophosphamide, methotrexate, and fluorouracil as first-line
  chemotherapy for advanced breast cancer. J Clin Oncol 2011; 29:
  4498-504.
- 44. Blum JL, Jones SE, Buzdar AU. Blum J, Jones S, Buzdar A. Capecitabine
  (Xeloda) in 162 patients with paclitaxel-pretreated mbc: updated results
  and analysis of dose modification. Eur J Cancer 2001; 37(6): S190-S.
- 45. Rosselli Del Turco M, Palli D, Cariddi A, et al. Intensive diagnostic
  follow–up aftertreatment of primary breast cancer. A randomized tial.
  National Research Council Project on Breast Cancer follow–up. JAMA
  1994; 271:1593–7
- 46. Rosselli Del Turco M, Palli D, Cariddi A, Ciatto S, Pacini P, Distante V.
  Intensive diagnostic follow-up after treatment of primary breast cancer. A
  randomized trial. National Research Council Project on Breast Cancer
  follow-up. Jama 1994; 271(20): 1593-7.
- 47. Impact of follow–up testing on survival and health–related quality of life in
  breast cancer patients. A multicenter randomized controlled trial. The
  GIVIO Investigator. JAMA 1994; 271(20):1587–92.
- 885

886

# **13. APPENDIX 1**

# Schedule of the Study

|                      |                                               | Baseline<br>(Within 7<br>days before<br>enrollment) | Treatment    | End of treatment | Follow–up<br>(d)              |
|----------------------|-----------------------------------------------|-----------------------------------------------------|--------------|------------------|-------------------------------|
| Inform               | ned consent                                   |                                                     |              |                  |                               |
| Scre                 | ening form                                    | $\checkmark$                                        |              |                  |                               |
| Blood samples        |                                               |                                                     | $\checkmark$ | $\checkmark$     | as<br>clinically<br>indicated |
| Medical recor        | ds and examinations                           | -                                                   |              |                  | -                             |
|                      | Medical history(a)                            | √                                                   |              |                  |                               |
|                      | Physical examination                          | $\checkmark$                                        | $\checkmark$ | $\checkmark$     |                               |
|                      | Vital signs                                   | $\checkmark$                                        |              | $\checkmark$     |                               |
|                      | ECOG score                                    |                                                     |              |                  |                               |
|                      | Complete blood count                          |                                                     | $\checkmark$ | $\checkmark$     | as<br>clinically<br>indicated |
|                      | Blood chemistry test(b)                       | V                                                   | $\checkmark$ | $\checkmark$     | as<br>clinically<br>indicated |
|                      | Coagulation function (4 items)                | V                                                   | $\checkmark$ | $\checkmark$     | as<br>clinically<br>indicated |
| Observation<br>items | CEA/CA153                                     | V                                                   | $\checkmark$ | V                | as<br>clinically<br>indicated |
|                      | Electrocardiogram                             | 1                                                   | V            | $\checkmark$     | as<br>clinically<br>indicated |
|                      | Echocardiogram                                | V                                                   |              | $\checkmark$     | as<br>clinically<br>indicated |
|                      | Imaging<br>examination(c)                     | 1                                                   |              | V                | as<br>clinically<br>indicated |
|                      | Adverse events                                |                                                     |              | $\checkmark$     |                               |
|                      | Concomitant medication                        |                                                     | $\checkmark$ | $\checkmark$     | $\checkmark$                  |
|                      | Assessment of<br>recurrence and<br>metastasis |                                                     | $\checkmark$ | $\checkmark$     | V                             |

#### **NOTES:**

disease should be recorded;

a) Medical history: Risk factors of heart disease and history of nervous system

- b) Blood chemistry tests: Hepatic function (AST, ALT, T–Bil, D–Bil, TP, and ALB), renal function (BUN and Cr), serum electrolytes (K<sup>+</sup> and Ca2<sup>+</sup>),
  serum LDH and AKP, and serum glucose.
- c) Imaging examination: Including chest X–ray and abdominal ultrasonography.
- Bone ECT scan is recommended for patients with disease of stage  $\geq$  IIB,
- unexplained bone pain, or elevated serum ALP; Mammography is repeatedannually;
- d) Follow–up is repeated every 3 months (± 28 days) during the first 2 years
  after randomization, every 6 months (± 28 days) during the 3rd to 5th year
  after randomization, and then annually thereafter.

905

# 907 APPENDIX 2 Common Terminology Criteria for Adverse

# 908 Events v4.0

909 ✓ The CTCAE v4.0 manual can be found at the following URL:

910 http://ctep.cancer.gov/forms/CTCAEv4.pdf.

911

| 913        | A multicenter, phase III randomized study                       |
|------------|-----------------------------------------------------------------|
| 914        | of metronomic capecitabine maintenance                          |
| 915        | after standard treatment in patients with                       |
| 916        | operable triple-negative breast cancer                          |
| 917        |                                                                 |
| 918        | (Protocol code: SYSUCC-EBC-CHEMO-001)                           |
| 919        | (Coding description: Sun Yat-sen University Cancer Center-Early |
| 920        | Breast Cancer–Chemotherapy–001)                                 |
| 921        | Version: 3.0                                                    |
| 922        |                                                                 |
| 923        | Principle Investigators                                         |
| 924        | Zhong Yu YUAN, M.D. and Xi WANG, M.D.                           |
| 925        | Sun Yat-sen University Cancer Center                            |
| 926        |                                                                 |
| 927        |                                                                 |
| 928        |                                                                 |
| 929        |                                                                 |
| 930        |                                                                 |
| 931        | Date of approved version: January 19, 2017                      |
| 932        |                                                                 |
| 933<br>934 |                                                                 |

# **Table of Contents**

| 936 |                                               |    |
|-----|-----------------------------------------------|----|
| 937 | 1. Synopsis of the study                      | 48 |
| 938 | 1.1 Objectives                                | 48 |
| 939 | 1.2 Study Design                              | 48 |
| 940 | 1.3 Main Inclusion/Exclusion Criteria         | 48 |
| 941 | 1.4 Investigational Drug and Administration   | 50 |
| 942 | 1.5 Study Endpoints                           | 51 |
| 943 | 2. Background                                 | 51 |
| 944 | 3. Objectives                                 | 55 |
| 945 | 3.1 Primary Endpoint                          | 55 |
| 946 | 3.2 Secondary Endpoints                       | 56 |
| 947 | 4. Study design                               | 57 |
| 948 | 4.1 Summary of Design                         | 57 |
| 949 | 4.2 Randomization                             | 59 |
| 950 | 4.3 Capecitabine Administration               | 60 |
| 951 | 4.3.1 Initiating Dose                         | 60 |
| 952 | 4.4.2 Dose Adjustment                         | 61 |
| 953 | 4.3.3 Concomitant and Prophylactic Medication | 63 |
| 954 | 5. Selection of Subjects                      | 64 |
| 955 | 5.1 Enrollment                                | 64 |
| 956 | 5.2 Inclusion Criteria                        | 64 |
| 957 | 5.3 Exclusion Criteria                        | 66 |
| 958 | 5.4 Discontinuation Criteria                  | 66 |
| 959 | 6. Study Protocol                             | 67 |
| 960 | 6.1 Study Drug                                | 67 |
| 961 | 6.2 Assessment and Follow–up                  | 67 |
| 962 | 6.2.1 Baseline assessment                     | 67 |
| 963 | 6.2.2 Assessment during Treatment             | 68 |
|     |                                               |    |

| 964 | 6.2.3 Assessment during Follow–up          | 69 |
|-----|--------------------------------------------|----|
| 965 | 6.2.4 Follow–up                            | 69 |
| 966 | 7. Safety Assessment                       | 71 |
| 967 | 7.1. Adverse Events                        | 71 |
| 968 | 7.1.1 Definition of Adverse Events         | 71 |
| 969 | 7.1.2 Severity of Adverse Events           | 71 |
| 970 | 7.1.3 Association between Adverse Events   |    |
| 971 | and Study Treatment                        | 72 |
| 972 | 7.2. Serious Adverse Events (SAEs)         | 73 |
| 973 | 7.2.1 Definition of SAEs                   | 73 |
| 974 | 7.2.2 SAEs Reporting                       | 74 |
| 975 | 8. Statistics                              | 74 |
| 976 | 8.1 Statistical Method <del>s</del>        | 74 |
| 977 | 8.2 Sample Size                            | 75 |
| 978 | 9. Ethics                                  | 76 |
| 979 | 9.1 Informed Consent                       | 76 |
| 980 | 9.2 Ethic Policies and Regulations         | 77 |
| 981 | 9.3 Protocol Modifications                 | 77 |
| 982 | 10. Quality Assurance                      | 77 |
| 983 | 11. Data Processing and Storage            | 78 |
| 984 | 11.1 Case Report Form (CRF)                | 78 |
| 985 | 11.2 Database Establishment                | 78 |
| 986 | 11.3 Data Storage                          | 79 |
| 987 | 12. References                             | 80 |
| 988 | 13. Appendix 1 Schedule of Study           | 87 |
| 989 | 14. Appendix 2 Common Terminology Criteria |    |
| 990 | for Adverse Events v4.0                    | 89 |
| 991 |                                            |    |

### 992 1. SYNOPSIS OF THE STUDY

#### 993 **1.1 Objectives**

This study is designed to compare the efficacy (disease–free survival, DFS) and safety of metronomic capecitabine maintenance for one year with observation after standard local and systemic treatment in patients with operable triple negative breast cancer (TNBC).

999

### 1000 **1.2 Study design**

This study is to be a multi-center, phase III, randomized controlled 1001 trial. The study will include the following two treatment arms: 424 1002 subjects will be randomized in a 1:1 fashion (212 in each arm) to 1003 with either: receive treatment Metronomic capecitabine 1004 maintenance (experimental arm); or observation (control arm) until 1005 objective disease recurrence, protocol violation, intolerable toxicity, 1006 1007 death, or withdrawal of consent. Subjects will be stratified by lymph 1008 node status (positive or negative). Subjects discontinuing from the active treatment phase will enter the follow-up phase during which 1009 survival information will be collected. 1010

1011

### 1012 **1.3 Main Inclusion/Exclusion Criteria**

1013 Main Inclusion Criteria:

1014 1) Female, aged  $\geq$  18 years old and  $\leq$  70 years.

1015 2) Histologically confirmed invasive ductal carcinoma, no
 1016 specific type (NOS).

3) Stage Ib–IIIc disease (N3 disease with involvement of the
 supraclavicular or internal mammary lymph nodes will be
 excluded).

4) estrogen receptor (ER)–/progesterone receptor (PR)–negative and human epidermal growth factor receptor 2 (HER2) negative (ER– and PR–negative is defined by lower than 1% immunohistochemistry staining; HER2–negative is define by IHC score 0,1 or 2 with HER2–fluorescence in situ hybridization negative).

1026 5) Have completed adequate surgery, neo-/adjuvant
 1027 chemotherapy and radiation therapy (if indicated).

Available results for contralateral mammography, chest X–ray,
 abdominal ultrasonography, 99mTc–bone scanning (required
 for patients with stage IIb–IIIc disease) within 3 months before
 randomization.

1032 7) Adequate organ function including bone marrow, renal1033 function, hepatic function.

- 1034 8) Compliance with the study protocol.
- 1035 9) Have provided written and signed informed consent.
- 1036 Main Exclusion Criteria:
- 1037 1) Inflammatory or bilateral breast cancer.
- Previously diagnosed with other malignancies (not including
   cured cervical carcinoma *in situ*, cutaneous squamous cell
   carcinoma, and cutaneous basal cell carcinoma).
- 1041 3) History of invasive breast cancer.
- 4) Patients who are receiving or will receive other biological
   agents or immunotherapy.
- 1044 5) Severe dysfunction of the heart, lung, liver, or kidney.
- 1045 6) Patients with malabsorption syndrome diseases impairing GI
   1046 function, resection of stomach or small intestine, or who are
   1047 unable to swallow capecitabine tablets.
- 1048 7) Patients who are pregnant or who are unwilling to use 1049 contraception during the study period.
- 1050 8) Known intolerance to capecitabine or allergy to its excipients.
- 1051

## 1052 **1.4 Investigational Drug and Administration**

<sup>1053</sup> Capecitabine group (experimental arm): Capecitabine will be <sup>1054</sup> administered at a dose of 650 mg/m<sup>2</sup> orally twice daily (total daily dose = 1300 mg/m<sup>2</sup>) continuously for one year, starting within 2 weeks from randomization.

1057

## 1058 **1.5 Study Endpoints**

1059 The primary efficacy parameter, DFS, will be analyzed in the full 1060 analysis set (FAS) population.

1061 The secondary efficacy parameters, including overall survival (OS),

1062 disease-free survival (DDFS), and locoregional recurrence-free

survival (LRFS), will be analyzed in FAS population.

1064 Safety and tolerability will be assessed using reporting of adverse

events (AEs), graded according to NCI–CTC (version 4.0).

1066

### 1067 **2. BACKGROUND**

Breast cancer comprises a group of diseases that show genetic 1068 heterogeneity and biological diversity [1, 2], which could be 1069 1070 classified into five subtypes distinguished by their gene expression profiles [3, 4], including luminal A, luminal B, HER2+, normal breast, 1071 and basal-like [5]. The genotype of breast cancer is established 1072 using complicated gene analysis, which unsuitable for formalin-1073 Immunohistochemistry-based fixed specimens. classification 1074 (using ER, PR, HER2, and KI-67) is more widely used in clinical 1075

practice [6–8], revealing a group of breast cancers characterized by 1076 negative expression of ER, PR, and HER2, termed 1077 as "triple-negative" breast cancer (TNBC) [9]. Basal-like breast 1078 cancer and TNBC are differently defined, and might overlap with 1079 each other. The majority of basal-like breast cancers are 1080 triple-negative. Therefore, TNBC is used as an alternative 1081 histopathological definition of basal-like breast cancer in clinical 1082 practice, as well as in the inclusion criteria of most clinical trials. 1083

1084 TNBC comprises approximately 15%–25% of breast cancer in women [10–14], and is considered independent 1085 an clinicopathological subtype, with special clinical, pathological, and 1086 molecular genetic characteristics. In terms of clinical characteristics, 1087 TNBC is more common among young patients, with a high risk of 1088 early (within 2 years after surgery) recurrence, distant metastasis, 1089 and death [15–19]. TNBC has a shorter median survival after first 1090 recurrence than other types of breast cancer, with most deaths 1091 1092 occurring within the first 5 years [10]. Visceral metastasis (especially in the lung and brain) is more frequent than bone 1093 metastasis, which might be one of the major contributors to the 1094 poor prognosis of TNBC. Pathologically, TNBC is associated with 1095 the presence of high histological grade, invasive ductal carcinoma, 1096

a high proliferation index, and high expression of p53 and EGFR
[20-24]. Molecularly, gene expression profiles of TNBC have
revealed its high molecular homology [1, 4, 9].

For hormone receptor positive breast cancer, anti-estrogen 1100 therapies have significantly reduced recurrence and death [25]. For 1101 HER2+ breast cancers, anti-HER2 therapies (e.g., trastuzumab) 1102 have also significantly reduced recurrence [26]. Currently, there are 1103 few targeted therapies for TNBC, and chemotherapy is the only 1104 1105 effective strategy to reduce recurrence, which is another reason for the poor prognosis of TNBC. Endocrine therapy for HR+ breast 1106 cancer and anti-HER2 therapy for HER2+ breast cancer are all 1107 long-term maintenance therapies after standard treatment [27]. 1108 Therefore, we propose that a long-term effective maintenance 1109 treatment might significantly improve the outcome in patients with 1110 early TNBC. 1111

Most TNBC is more chemosensitive than HR+ breast cancer. Traditional regimens tend to achieve a better response in patients with TNBC; however, the duration of the response usually dose not last long. TNBC is still characterized with dismal DFS, PFS, and OS [14, 28, 29]. Therefore, the aggressive biological behavior and the lack of effective risk–reducing treatment have both contributed to

the poor prognosis of TNBC.

Metronomic chemotherapy is a relatively novel regimen using 1119 continuous and low-dose chemotherapeutic agents with short or no 1120 intervals. Browder and Klement, et al. reported the anti-tumor 1121 activity of metronomic chemotherapy for the first time. The novel 1122 pattern of dosage has a different mechanism compared with 1123 conventional dosage regimens by exerting anti-angiogenesis 1124 effects [30, 31]. In addition, metronomic chemotherapy also 1125 produces antitumor effects by upregulating anti-tumor immune 1126 response in the host [32]. Metronomic chemotherapy had achieved 1127 good efficacy with low toxicity in advanced breast cancer [33-36]. 1128 Considering that angiogenesis and immune surveillance escape 1129 major mechanisms of tumor metastasis, metronomic 1130 are chemotherapy might be a potential therapeutic option for operable 1131 TNBC with high risk of distant metastasis. 1132

Capecitabine is an effective agent with good tolerability and is convenient for breast cancer [37–41], which makes it an optimal choice for long–term metronomic use. The most common adverse events of capecitabine include hand–foot syndrome (HFS), diarrhea, and stomatitis, which are non–life threatening and can be managed using eduction without impairing efficacy [40]. Two recent

phase III trials (FinXX and USO), which enrolled all subtypes of
breast cancer, have shown by subgroup analysis that the addition
of capecitabine to standard treatment significantly reduced the risk
of relapse for TNBC, especially the risk of distant metastases.

In summary, high rate of distant metastases and lack of effective 1143 treatment are the major reasons for the poor prognosis of TNBC. 1144 As a novel model of treatment, metronomic chemotherapy might be 1145 effective for TNBC by targeting angiogenesis and immune escape. 1146 1147 The good efficacy and tolerability of capecitabine make it an optimal drug for metronomic chemotherapy. Clinical studies have 1148 also demonstrated a reduced risk of relapse in patients with TNBC 1149 receiving capecitabine in addition to standard treatment. This study 1150 aims to evaluate the efficacy and safety of capecitabine 1151 metronomic chemotherapy after standard treatment in patients with 1152 early TNBC. 1153

1154

### 1155 **3. OBJECTIVES**

#### 1156 **3.1 Primary Endpoint**

To compare the DFS in patients who are randomized at enrollment
to treatment with metronomic capecitabine maintenance
(experimental arm) with in observation arm (control arm).

1160 DFS is defined as time from randomization to the first of any of 1161 the following events:

- 1162 5) Relapse of invasive breast cancer in the ipsilateral chest wall
   and regional lymph nodes
- 1164 6) Distant metastases (histologically confirmed or clinically
   1165 diagnosed)
- 1166 7) Breast cancer related, non–breast cancer related or unknown1167 deaths
- 1168 8) Contralateral invasive breast cancer

1169

1170 **3.2 Secondary Endpoints** 

1171 To compare the overall survival (OS), distant disease–free survival

1172 (DDFS), locoregional recurrence-free survival (LRFS) and safety

between the experimental arm and observation arm. In addition,

1174 exploratory analysis will include biomarkers that predict the efficacy

and toxicity of capecitabine.

1176 OS is defined as time from randomization to death caused by any 1177 reason.

DDFS is defined as time from randomization to the first occurrence of any of the following events: Distant metastases, death caused by any reason, and contralateral invasive breast

1181 cancer (NEJM 2005; 353:2747).

1182 LRFS is defined as time from randomization to locoregional 1183 invasive recurrence or death.

Safety: The frequency and severity degree of AEs were judged
based on NCI CTC V4.0.

1186

### 1187 **4. STUDY DESIGN**

### 1188 4.1 Summary of Design

1189 This is a multi–center, phase III, randomized controlled study of

1190 metronomic capecitabine maintenance versus observation.

Approximately 424 subjects with TNBC will be randomized in a

1192 1:1 fashion (212 in each arm) to receive treatment with either:

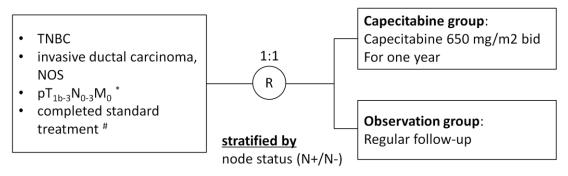
1193 Metronomic capecitabine maintenance (experimental arm); or

observation (control arm) until objective disease recurrence,

1195 protocol violation, intolerable toxicity, death, or withdrawal of

consent. Subjects will be stratified by lymph node status (positive or

1197 negative).


1198 Subjects will participate in the study within 4 weeks after

1199 completion of standard curative treatment including surgery,

neo-/adjuvant chemotherapy and radiotherapy. Patients in the two

arms will be followed-up every 3 months using physical, laboratory,

and radiological examinations according to the study protocol. This
study will be completed in approximately 108 months including 72
months for accrual and approximately 36 months of follow–up
survival for the last subject enrolled. An overview of the study
design is depicted below:



\*N3: Not including internal mammary or supraclavicular nodes involvement # standard treatment including surgery, (neo)adjuvant chemotherapy and radiation therapy (if indicated)

1208

1207

Recommended chemotherapy regimens: According to the 1209 NCCN guidelines version 2010, recommended chemotherapy 1210 regimens and dosages are listed in Table 1. Dosage adjustment 1211 according to a patient's toleration will be allowed with no more than 1212 25% reduction of the standard dose. A minimum of four cycles of 1213 neo-/adjuvant chemotherapy delivered. should be For 1214 node-positive chemotherapy 1215 patients, regimens containing anthracyclines and taxanes are recommended. 1216

1217 Recommended indications for post-operative radiotherapy

include: Involvement of  $\geq$  four axillary nodes, primary tumor $\geq$  5 cm in size, post breast conserving surgery, positive surgical margins, involvement of internal mammary nodes (in selected cases), and involvement of 1–3 axillary nodes (in selected cases).

1222

 Table 1 Recommended chemotherapy regimen and dosage

|       | Regimens(drugs)                                                        | Dose(mg/m <sup>2</sup> )      |
|-------|------------------------------------------------------------------------|-------------------------------|
| CMF   | cyclophosphamide/methotrexate/fluorouracil                             | 500/ 40/ 600                  |
| AC    | doxorubicin/cyclophosphamide                                           | 60/ 600                       |
| EC    | epirubicin/cyclophosphamide                                            | 75–90/ 600                    |
| FAC   | 5-fluorouracil/doxorubicin/cyclophosphamide                            | 500/ 50/ 500                  |
| FEC   | 5-fluorouracil/epirubicin/cyclophosphamide                             | 500/ 75–90/ 500               |
| TAC   | docetaxel/doxorubicin/cyclophosphamide                                 | 75/ 50/ 500                   |
| TEC   | docetaxel/epirubicin/cyclophosphamide                                  | 75/ 75/ 500                   |
| AC-P  | doxorubicin/cyclophosphamide→weekly or<br>every–3–week paclitaxel      | 60/ 600→80 (qw),<br>175 (q3w) |
| EC-P  | epirubicin/cyclophosphamide→weekly or<br>every–3–week paclitaxel       | 90/ 600→80 (qw),<br>175 (q3w) |
| AC–wP | doxorubicin/cyclophosphamide→paclitaxel<br>(Dose–dense)                | 60/ 600→175 (q2w)             |
| FEC-T | 5–fluorouracil/epirubicin/cyclophosphamide→docetaxel,<br>every 3 weeks | 500/ 75–90/ 500→75            |
| тс    | docetaxel/cyclophosphamide                                             | 75/ 600                       |

1223

1224

### 1225 **4.2 Randomization**

On verification of inclusion and exclusion criteria, eligible patients will be randomized using the method of stratified permuted blocks to receive metronomic capecitabine maintenance or observation in a 1:1 ratio. Patients will be stratified according to lymph node status (negative *vs.* positvie). A computerized number generator in the
SAS Software (version 8.01) will generate a randomization table,
the results of which were placed in sequentially numbered opaque
envelopes and remained concealed until after enrollment.

1234 Central randomization will be performed. When a suitable patient 1235 is to be enrolled into the study, the Investigator site will contact 1236 principal investigator (PI) site, and will be informed over the 1237 telephone system at the time of individual patient enrollment what 1238 the treatment allocation is, and to which treatment arm the patient 1239 has been randomized. This is a multicenter study to be conducted 1240 at approximately 15 study sites.

1241

# 1242 **4.3 Capecitabine Administration**

### 1243 **4.3.1 Initiating Dose**

1244 The approved dose of capecitabine was 1250 mg/m<sup>2</sup> bid, days 1245 1–14 every 21 days. However, the dose of capecitabine for 1246 metronomic chemotherapy is uncertain, particularly in the adjuvant 1247 setting. Some small sample studies suggested that capecitabine at 1248 650 mg/m<sup>2</sup> bid, continuously for one year in metastatic breast 1249 cancer had lower toxicity and was well tolerated [42–44]. The 1250 initiate dose of capecitabine was 650 mg/m<sup>2</sup> bid, continuously for 1251 one year.

Body surface area is calculated from height and body weight. Given that the height and weight of Chinese woman are 150-180cm and 40-80 kg, respectively, their body surface area lie between  $1.30 \text{ m}^2$  and  $2.0 \text{ m}^2$ . Combining the availability of capecitabine in China with the convenience of patients, the daily actual dose will be decided upon by using the **Table 2**.

1258

Table 2 The daily dose of capecitabine

| Body surface | Total Daily | Morning dose | Evening dose |
|--------------|-------------|--------------|--------------|
| area (m²)    | Dose (mg)   | (mg)         | (mg)         |
| 1.30–1.32    | 1690–1716   | 1000         | 500          |
| 1.33–1.71    | 1729–2223   | 1000         | 1000         |
| 1.72–2.0     | 2236–2600   | 1500         | 1000         |

1259

### 1260 **4.3.2 Dose Adjustment**

The most common AEs of capecitabine is HFS, and grading of HFS 1261 is listed in Table 3. Studies suggested that almost all AEs could 1262 improve after dose modification [45]. Dose adjustment of 1263 capecitabine in patients who experience HFS is listed in Table 4. 1264 Note, because of lower dose in patients with body surface areas 1265 1.3–1.32 m<sup>2</sup>, only one dose reduction of capecitabine is allowed, 1266 from 1500 mg to 1000mg (morning 500mg, evening 500mg). In 1267 addition, once a dose has been reduced for a subject, all 1268

subsequent doses should be administered at that dose, unless 1269 further dose reduction is required. Dose reescalation is not 1270 permitted. If dosage delay occurs because of AEs, whether to 1271 continue treatment should be determined by the investigator by 1272 balancing the benefit and risk on an individual basis. Regardless of 1273 the cause of the delay, patients who discontinue dosage for more 1274 than 4 weeks should terminate treatment and withdraw from the 1275 trial. 1276

1277

### Table 3 Grading of HFS Caused by Capecitabine

| Grade | Manifestation                                                                                                                                   |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Numbness, tingling sensation, erythema of hands and/or feet that<br>cause painless swelling or discomfort without affecting daily<br>activities |
| 2     | Painful erythema or swelling of hands and/or feet that affect daily activities                                                                  |
| 3     | Wet desquamation, ulceration, blistering, severe pain of hands<br>and/or feet, and/or unable to work or perform daily activities                |

1278

1279

### Table 4 Dose Adjustment of Capecitabine

| Grade | Dose modification of capecitabine                                   |
|-------|---------------------------------------------------------------------|
| 1     | Dose modifications are not recommended                              |
| 2     | -First appearance: Interrupt therapy until resolved to grade 0 or 1 |
|       | and maintain the dose level for the next treatment at 100%          |
|       | -Second appearance: Interrupt therapy until resolved to grade 0 or  |
|       | 1 and maintain the dose level for the next treatment at 75%         |
|       | -Third appearance: Interrupt therapy until resolved to grade 0 or 1 |
|       | and maintain the dose level for the next treatment at 50%           |
|       | -Fourth appearance: Discontinue therapy permanently                 |

| 3 | -First appearance: Interrupt therapy until resolved to grade 0 or 1  |
|---|----------------------------------------------------------------------|
|   | and begin the next cycle at 75% of the starting dose                 |
|   | -Second appearance: Interrupt therapy until resolved to grade 0 or   |
|   | 1 and begin the next cycle at 50% of the starting dose               |
|   | -Third appearance: Discontinue therapy permanently                   |
| 4 | First appearance: Discontinue therapy permanently, or if the         |
|   | physician deems it to be in the patient's best interest to continue, |
|   | interrupt until resolved to grade 0 or 1 and begin the next cycle at |
|   | 50% of the starting dose                                             |
|   |                                                                      |

1280

## 1281 **4.3.3 Concomitant and Prophylactic Medication**

In addition to HFS, the other common toxicities of capecitabine are 1282 diarrhea and stomatitis. Symptom–relieving treatment can be given 1283 by investigators according to clinical need and should be recorded. 1284 Dose adjustment is not required for patients with mild to moderate 1285 1286 hepatic impairment. Currently there are no data on the pharmacokinetics of capecitabine in patients with renal dysfunction 1287 (as evaluated by serum creatinine levels). 1288

Mild myelosuppression related to capecitabine and the predominance of its active metabolic enzymes inside tumor cells mean that, hematologic toxicities of grade  $\leq$  2 can be managed according to clinical routine without discontinuation of capecitabine. For patients experiencing hematologic toxicities of grade  $\geq$  3, capecitabine should be interrupted until resolved to grade 0. Treatment should be terminated if dosage interruption occurs for more than 4 weeks. Treatment should be terminated if patients experience two episodes of grade  $\geq$  3 hematological toxicities consecutively, with any episode resulting in drug discontinuation for more than 2 weeks. Patient should be followed–up after termination of therapy and toxicities and prognosis should be recorded.

1301

1302 **5. SELECTION OF SUBJECTS** 

### 1303 **5.1 Enrollment**

All patients meeting the inclusion criteria must be provided with detailed information about this study and written informed consent for participation must be obtained. The patients will then be randomly assigned into the observation arm or capecitabine arm using a random number table, and the assignment will be recorded on the case report form (CRF) by investigators. Analysis will be stratified by lymph node status (N0 or N+).

1311

### 1312 **5.2 Inclusion Criteria**

Patients must fulfill ALL of the following criteria to be eligible forstudy enrollment and randomization.

1315 1) Female, aged  $\geq$  18 years old and  $\leq$  70 years old.

1316 2) Histologically confirmed invasive ductal carcinoma, no specific

1317 type (NOS).

- 1318 3) Stage Ib–IIIc (N3 not including internal mammary or
   1319 supraclavicular nodes involvement).
- 4) ER–, PR–, and HER2–negative (ER– and PR–negative is
  defined by lower than 1% immunohistochemistry (IHC)
  staining; HER2 negative is define by an IHC score of 0,1 or 2
  with HER2–fluorescence *in situ* hybridization negative).
- 1324 5) Have completed adequate surgery, neo-/adjuvant
  1325 chemotherapy and radiation therapy (if indicated).
- 6) Available results of contralateral mammography, chest X–ray,
   abdominal ultrasonography, and <sup>99m</sup>Tc–bone scanning within 3
   months before randomization.
- 1329 7) Adequate organ function:
- 1330 d) Bone marrow: ANC ≥  $1.5 \times 10^9$ /L; platelet count ≥ 1331  $100\times 10^9$ /L; hemoglobin ≥ 10 g/dL
- e) Renal function: serum creatinine ≤ 1.5×ULN by local
   laboratory
- 1334 f) Hepatic function: total bilirubin  $\leq$  1.5×ULN; AST  $\leq$ 1335 1.5×ULN, ALT  $\leq$  1.5\*ULN
- 1336 8) Compliance with study protocol.
- 1337 9) Providing written informed and signed consent.

1338

### 1339 **5.3 Exclusion Criteria**

- 1340 Patients meeting ANY of the following criteria are not eligible for
- 1341 study enrollment and randomization.
- 1342 1) Inflammatory or bilateral breast cancer.
- Other previously diagnosed other malignancies (not including
   cured cervical carcinoma *in situ*, cutaneous squamous cell
   carcinoma, and cutaneous basal cell carcinoma).
- 1346 3) History of invasive breast cancer.
- 4) Patients who are receiving or will receive other biologicalagents or immunotherapy.
- 1349 5) Severe dysfunction of the heart, lung, liver, or kidney.
- 1350 6) Patients with malabsorption syndrome diseases impairing GI
- function, resection of stomach or small intestine, or unable toswallow capecitabine tablets.
- 7) Patient who are pregnant or who are unwilling to usecontraception during the study period.
- 1355 8) Known intolerance to capecitabine or allergy to its excipients.

1356

### 1357 **5.4 Discontinuation Criteria**

1358 1) Recurrence of breast cancer.

1359 2) Development of serious AEs.

1360 3) Patients desire to withdraw from the study.

- 4) Patients are unable to receive treatment or follow-up
   according to the study protocol.
- 1363 5) Patients receive other anti-tumor treatment or other treatment
   1364 that mighty affect the study results without the consent of the
- investigators.
- 1366 6) Dosage discontinuation for more than 28 days.

1367

### 1368 6. STUDY PROTOCOL

- 1369 **6.1 Study Drug:**
- <sup>1370</sup> Capecitabine (Xeloda<sup>®</sup>, Roche, Basel, Switzerland), 500mg per
- tablet. The treatment schedule is described in section 4.3

1372

- 1373 6.2 Assessment and Follow–up
- 1374 The schedule of assessment during treatment and follow–up 1375 are shown in Appendix 1.

1376

### 1377 6.2.1 Baseline Assessment

Baseline assessment should complete within 1 week beforeenrollment.

Screening form. Patients who meet all inclusion criteria and
 do not meet any exclusion criteria are eligible for this study.
 Investigators must complete a screening form at baseline.

- Medical history and clinical examination. Medical history,
   including risk factors for cardiac disease and their medical
   history of nervous system diseases must be collected before
   enrollment.
- 1387 ✓ Complete blood count, hepatic function (including AST, ALT,
   1388 T–Bil, D–Bil, TP, and ALB), renal function (including BUN
   1389 and Cr), serum electrolytes (including K<sup>+</sup> and Ca<sup>2+</sup>), serum
   1390 LDH, AKP, and blood glucose.
- 1391 ✓ Electrocardiogram and echocardiogram;
- 1392 ✓ Serum CEA and CA153;
- 1393 $\checkmark$  Imaging studiesy including chest X–ray, and abdominal1394ultrasonography. A Bone ECT scan is recommended for1395patients with disease of stage  $\geq$  IIB, unexplained bone pain,
- 1396 or elevated serum ALP
- 1397 ✓ 10 mL of peripheral blood was collected for biomarker
   1398 analysis.

1399

# 1400 6.2.2 Assessment during Treatment

Assessment during treatment are to repeat every 3 months.

1402 ✓ Physical examination and vital signs;

1403 Complete blood count, hepatic function, and renal function;

1404 ✓ Serum CEA and CA153;

1405 ✓ Electrocardiogram;

1406 ✓ Abdominal ultrasonography.

1407

### 1408 6.2.3 Assessment during Follow–up

Several randomized studies have shown that regular examination 1409 comprising bone scans, liver US, chest X-rays, and blood tests 1410 could not improve the survival and quality of life (QoL) of patients, 1411 compared with routine physical examination [46, 47]. Therefore, 1412 every 3 months during follow-up, physical examination and 1413 mammography are required for asymptomatic patients in both arms. 1414 However, this is the minimum requirement specified by the protocol, 1415 and investigators are allowed to perform additional evaluations 1416 according to the individual situation of the patients. 1417

1418

### 1419 **6.2.4 Follow–up**

Follow–up of patients in both arms will be initiated after
randomization and will be repeated every 3 months (± 28 days)

during the first 2 years after randomization. Patients in the
capecitabine arm are allowed to take medicine at home but must
return to the study site every 3 months (± 28 days) for follow–up.
Follow–up will be repeated every 6 months (± 28 days) during the
3rd to 5th year after randomization, and then annually thereafter.

Diagnosis of relapse will be established on clinical manifestation, radiological findings, and/or histological evidence. If the diagnosis of relapse is based on clinical symptoms without laboratory or radiological evidence, other supporting evidence should be collected as much as possible. After a diagnosis of recurrence is established, the sites and date of relapse should be recorded.

Diagnosis of relapse could also be established if the treatment strategy is altered based on the hypothesis of relapse, even without adequate evidence.

1436 Chest wall relapse: Defined as soft tissue recurrence in the area 1437 comprising the sternum as the middle line, the clavicle as the upper 1438 margin, the rib as the lower margin, and the posterior axillary line as 1439 lateral margin.

1440 <u>Regional relapse</u>: Defined as relapse in the area of the 1441 supraclavicular fossa, subclavicular area, ipsilateral internal 1442 mammary area, and/or ipsilateral axillary lymph nodes. Tissue

1443 biopsy should be performed whenever possible.

<u>Distant metastases</u>: Cutaneous or subcutaneous metastasis should be supported by histological or cytological evidence. Bone metastasis should be supported by imaging studies (e.g., X–ray or MR). Metastasis in the lung, liver, or brain should be supported by CT or MRI.

1449

1450 **7. SAFETY ASSESSMENT** 

### 1451 **7.1 Adverse Events**

1452 **7.1.1 Definition of Adverse Events** 

An AE is defined as any untoward medical occurrence during the period from randomization to the 28<sup>th</sup> day after the last dose or to the most recent follow–up, regardless of causal attribution with the study drug. An AE can be any of the following: A symptom, a sign, abnormal examination results, or a disease, which may occur at any time since the initiation of treatment.

An AE should be accurately recorded during the study, including
its time, severity, duration, management, and prognosis.

1461

### 1462 **7.1.2 Severity of AEs**

1463 Severity of AEs is graded according to NCI CTCAE 4.0 (Appendix

| 1464 | 2). Grades of AEs that are not listed in Appendix 2 are as follows:            |
|------|--------------------------------------------------------------------------------|
| 1465 | <ul> <li>Mild: An effect on the daily function of subjects.</li> </ul>         |
| 1466 | <ul> <li>Moderate: A mild effect on the daily function of subjects.</li> </ul> |
| 1467 | • Severe: A significant effect on the daily function of subjects.              |
| 1468 |                                                                                |
| 1469 | 7.1.3 Association between AEs and Study Treatment                              |
| 1470 | The relationship between AEs and the study drug should be                      |
| 1471 | assessed by investigators according to the following criteria:                 |
| 1472 | Definitely related: An AE that follows a reasonable temporal                   |
| 1473 | sequence from administration of the study intervention, follows a              |
| 1474 | known or expected response pattern to the suspected intervention,              |
| 1475 | and is confirmed by improvement on stopping and reappearance of                |
| 1476 | the event on repeated exposure                                                 |
| 1477 | Probably related: An AE that follows a reasonable temporal                     |
| 1478 | sequence from administration of the study intervention, follows a              |
| 1479 | known or expected response pattern to the suspected intervention,              |
| 1480 | but that could readily have been produced by the patient's clinical            |
| 1481 | conditions or other treatments.                                                |
| 1482 | Probably unrelated: An AE that does not follow a reasonable                    |
| 1483 | temporal sequence from administration of the study intervention,               |
| 1484 | does not follow a known or expected response pattern to the                    |

suspected intervention, and could readily have been produced bythe patient's clinical conditions or other treatments.

Unrelated: An AE that does not follow a reasonable temporal sequence from administration of the study intervention, but follows a known or expected response pattern to other treatments, and could readily have been produced by the patient's clinical conditions or other treatments. The AE can be relieved by improvement of the clinical conditions or stopping other treatments, and reappears after repeating other treatments.

Unable to determine: An AE that does not follow a reasonable temporal sequence from administration of the study intervention, but follows a known or expected response pattern to the study intervention, and could readily have been produced by other treatments.

1499

1500 7.2 Serious Adverse Events (SAEs)

1501 **7.2.1 Definition of SAEs** 

• Results in death.

- 1503 Is life—threatening.
- Requires or prolongs hospitalization.
- Causes persistent or significant disability or incapacity.

• Results in congenital anomalies or birth defects.

1507

### 1508 **7.2.2 SAEs Reporting**

Any SAEs occurring during the study or follow–up should be reported to the PI and ethics committee by telephone within 24 hours regardless of their causal relationship with the study drug. The PI is responsible of reporting SAEs to the State Food and Drug Administration (SFDA) (also to the drug manufacturer within 24 hours if the SAE is considered to be related to the study drug).

1515

### 1516 **8. STATISTICS**

Additional details of the analysis will be provided in the statisticalanalysis plan.

### 1519 8.1 Statistical Methods

The primary endpoint is DFS, defined as time from randomization
to the first of breast cancer recurrence or death from any reason.
The secondary endpoints include OS, DDFS, LRFS, and safety.
Efficacy analyses will be based on the FAS population, defined
as all randomized patients excluding those who withdraw informed
consent before protocol treatment, or who had no follow–up data
after randomization. Safety analyses will be based on the safety

analyses set (SAS) population, defined as all randomized patients
who initiated the protocol treatment and who undergo safety
assessment.

For the efficacy analysis, PFS, OS, DDFS, and LRFS will be analyzed using the Kaplan–Meier method and will be compared using the log–rank test. The hazard ratio and corresponding 95% confidence interval will be calculated using stratified Cox proportional hazard regression.

AEs and SAEs will be summarized by arm. The incidence of grade 3 HFS will be compared between the two arms using Fisher's exact test.

For continuous variables, the distribution, mean, median, standard deviation, and interquartile rang (IQR) will be calculated and compared using a *t*-test or non-parametric test. For categorical variables, the number and percentage will be presented in contingency table data and compared using the chi–squared test or Fisher's exact test.

All statistical tests are two–sided with a P value of < 0.05 being considered statistically significant.

1546

1547 **8.2 Sample Size** 

The assumptions for sample size calculations as the follows: 5–year DFS is 68% in the control arm [10, 13, 28], and 80% in the experimental arm. The estimated period of enrollment and follow–up will be 72 and 36 months, respectively. The design is based on a 2–sided log–rank test with alpha = 0.05, power = 80%. The dropout rate is assumed to be 9%. Approximately 424 patients (212 patients in each arm) will be enrolled.

1555

1556 **9. Ethics** 

### 1557 9.1 Informed Consent

Before enrollment, study physicians are responsible for a complete 1558 and comprehensive presentation to patients of the study purpose, 1559 the properties of the drug, its possible side effects and potential 1560 risks. Patients should be informed of their rights, risk, and benefit. It 1561 should be emphasized that they can withdraw from the trial at any 1562 stage of the trial without affecting their subsequent treatment. 1563 1564 Subjects should be promptly informed of any updates of the study, and a renewed informed consent to continue in the study should be 1565 1566 obtained. Patients should sign the informed consent in duplicate with their name and date. The two copies are given to the patient 1567 and kept in study archives, respectively. 1568

1569

### 1570 **9.2 Ethic Policies and Regulations**

The investigator will ensure that this study is conducted in full conformance with the principles of the "Declaration of Helsinki" as well as "Guideline for Good Clinical Practice (GCP)" and relevant laws and regulations of the SFDA, whichever affords the greater protection to the individual.

1576 The study will be initiated only after the protocol is approved by the

1577 ethics committee of the Sun Yat–sen University Cancer Center. Any

changes to the protocol during the study should be reported to theethics committee and filed.

1580

## 1581 9.3 Protocol Modifications

All protocol modifications must be submitted to the Independent Ethics Committee (IEC). Approval must be awaited before any changes can be implemented, except for changes necessary to eliminate an immediate hazard to the trial patients, or when the change involve only logistical or administrative aspects of the trial.

### 1588 **10. QUALITY ASSURANCE**

1589 To ensure accordance with study protocols, physicians are asked to

1590 strictly follow the requirements of GCP throughout the trial, to 1591 achieve standard procedures, accurate data, and reliable 1592 conclusions. Specific requirements are as follows:

✓ Obtain informed consent that is signed by each subject or
 their agents.

<sup>1595</sup> ✓ Complete the case report form (CRF) as required.

1596  $\checkmark$  Follow–up on schedule.

Keep complete records of laboratory examinations, clinical
 records, and the original medical documents of the subjects.

1599

### 1600 **11. DATA PROCESSING AND STORAGE**

### 1601 **11.1 Case Report Form (CRF)**

The CRF will be completed by investigators in a timely manner to ensure the accuracy and timeliness of the content. Generally, the CRF should not be altered. If there are any errors to be corrected, the original record should be crossed out with a horizontal line, and the modified text should be signed and dated. The completed CRFs are reviewed by the quality control officer for data input. No further modification of CRFs is allowed once the database is locked.

1609

### 1610 **11.2 Database Establishment**

1611 Statisticians will have questions in the CRFs checked with 1612 investigators, who should reply and return the CRFs promptly. 1613 Statisticians should establish the database in a timely manner, and 1614 the data will be locked by investigators, statisticians, and research 1615 assistants after the database has been reviewed. To ensure data 1616 security, an non-permitted person cannot modify the data, and the 1617 data must be backed up.

1618

# 1619 **11.3 Data Storage**

Investigators should keep the data intact. According to the principle
of GCP in China, research data should be stored for at least five
years.

#### 1624 **12. REFERENCES**

- 1625 1. Perou CM, Sorlie T, Eisen MB, et al.: Molecular portraits of 1626 human breast tumours. Nature 2000, 406: 747–752.
- 1627 2. Sorlie T. Molecular portraits of breast cancer: tumour subtypes
  1628 as distinct disease entities. Eur J Cancer 2004; 406: 2667–75.
- Sorlie T, Perou CM, Tibshirani R, et al.: Gene expression
   patterns of breast carcinomas distinguish tumor subclasses
   with clinical implications. Proc Natl Acad Sci USA 2001, 98:
   10869–10874.
- 4. Sotiriou C, Neo SY, McShane LM, et al. Breast cancer
  classification and prognosis based on gene expression profiles
  from a population–based study. PNAS, 2003; 100(18):
  10393–10398
- 1637 5. Weigelt B, Glas AM, Wessels LF, et al. Gene expression
   1638 profiles of primary breast tumors maintained in distant
   1639 metastases. Proc Natl Acad Sci USA. 2003; 100(26): 15901–5.
- Abd El–Rehim DM, Pinder SE, Paish CE, et al. Expression of
  luminal and basal cytokeratins in human breast carcinoma. J
  Pathol. 2004; 203(2): 661–71.
- 7. Jacquemier J, Ginestier C, Rougemont J, et al. Protein
  expression profiling identifies subclasses of breast cancer and
  predicts prognosis. Cancer Res. 2005; 65(3): 767–79.
- 1646 8. Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical
  1647 and clinical characterization of the basal–like subtype of
  1648 invasive breast carcinoma. Clin Cancer Res. 2004; 10:
  1649 5367–5374.
- 9. Sørlie T, Tibshirani R, Parker J, et al. Repeated observation of
   breast tumor subtypes in independent gene expression data

- sets. PNAS, 2003; 100(14): 8418–23.
- 10. Dent R, Trudeau M, Pritchard KI et al. Triple–negative breast
  cancer: clinical features and patterns of recurrence. Clin.
  Cancer Res. 2007; 13; 4429–4434.
- 1656 11. Tischkowitz M, Brunet JS, Begin LR et al. Use of
   1657 immunohistochemical markers can refine prognosis in triple
   1658 negative breast cancer. BMC Cancer 2007; 7; 134.
- 12. Bauer KR, Brown M, Cress RD, et al. Descriptive analysis of
  estrogen receptor (ER)–negative, progesterone receptor
  (PR)–negative, and HER2–negative invasive breast cancer,
  the so–called triple–negative phenotype: a population–based
  study from the California cancer Registry. Cancer 2007; 109;
  1721–1728.
- 1665 13. Haffty BG, Yang Q, Reiss M, et al. Locoregional Relapse and
   1666 Distant Metastasis in Conservatively Managed Triple Negative
   1667 Early-Stage Breast Cancer. J Clin Oncol 2006;24(36):5652-7.
- 1668 14. Carey LA, Dees EC, Sawyer L, et al: The triple negative
  1669 paradox: Primary tumor chemosensitivity of breast cancer
  1670 subtypes. Clin Cancer Res, 2007; 13:2329–2334.
- 1671 15. Abd El–Rehim DM, Ball G, Pinder SE, et al. High–throughput
  1672 protein expression analysis using tissue microarray technology
  1673 of a large well–characterised series identifies biologically
  1674 distinct classes of breast cancer confirming recent cDNA
  1675 expression analyses. Int J Cancer 2005; 116: 340–50.
- 1676 16. van de Rijn M, Perou CM, Tibshirani R, et al. Expression of
  1677 cytokeratins 17 and 5 identifi es a group of breast carcinomas
  1678 with poor clinical outcome. Am J Pathol 2002; 161:1991–96.
- 1679 17. Banerjee S, Reis-Filho JS, Ashley S, et al. Basal-like breast

carcinomas: clinical outcome and response to chemotherapy. J
 Clin Pathol 2006; 59: 729–35.

1682 18. Rodriguez–Pinilla SM, Sarrio D, Honrado E, et al. Prognostic
1683 significance of basal–like phenotype and fascin expression in
1684 node negative invasive breast carcinomas. Clin Cancer Res
1685 2006; 12: 1533–39.

- 19. Tsuda H, Takarabe T, Hasegawa F, et al. Large, central cellular 1686 indicating myoepithelial tumor differentiation zones in 1687 high-grade invasive ductal carcinomas 1688 as markers of predisposition to lung and brain metastases. Am J Surg Pathol 1689 2000; 24: 197–202. 1690
- 1691 20. Korsching E, Packeisen J, Agelopoulos K, et al. Cytogenetic
  1692 alterations and cytokeratin expression patterns in breast
  1693 cancer: integrating a new model of breast differentiation into
  1694 cytogenetic pathways of breast carcinogenesis. Lab Invest
  1695 2002; 82: 1525–33.
- 1696 21. Fulford LG, Easton DF, Reis–Filho JS, et al. Specific
  1697 morphological features predictive for the basal phenotype in
  1698 grade 3 invasive ductal carcinoma of breast. Histopathology
  1699 2006; 49; 22–34.
- 1700 22. Livasy CA, Karaca G, Nanda R et al. Phenotypic evaluation of
  1701 the basal–like subtype of invasive breast carcinoma. Mod.
  1702 Pathol. 2006; 19; 264–271.
- 1703 23. Jacquemier J, Padovani L, Rabayrol L et al. Typical medullary
  1704 breast carcinomas have a basal / myoepithelial phenotype. J.
  1705 Pathol. 2005; 207; 260–268.
- 1706 24. Rakha EA, El–Sayed ME, Green AR et al. Prognostic markers
  1707 in triple–negative breast cancer. Cancer 2007; 109; 25–32.

Early Breast Cancer Trialists' Collaborative Group (EBCTCG).
Effects of chemotherapy and hormonal therapy for early breast
cancer on recurrence and 15–year survival: an overview of the
randomised trials. Lancet. 2005; 365(9472): 1687–717.

- 1712 26. Dahabreh IJ, Linardou H, Siannis F, Fountzilas G, Murray S.
  1713 Trastuzumab in the adjuvant treatment of early–stage breast
  1714 cancer: a systematic review and meta–analysis of randomized
  1715 controlled trials. Oncologist. 2008;13(6):620–30.
- 1716 27. Cole BF, Gelber RD, Gelber S, Coates AS, Goldhirsch A.
  1717 Polychemotherapy for early breast cancer: an overview of the
  1718 randomised clinical trials with quality-adjusted survival analysis.
  1719 Lancet 2001; 358(9278): 277-86.
- 1720 28. Liedtke C, Mazouni C, Hess KR, et al. Response to
  1721 neoadjuvant therapy and long-term survival in patients with
  1722 triple-negative breast cancer. J Clin Oncol. 2008; 26(8):
  1723 1275-81.
- 1724 29. Rouzier R, Perou CM, Symmans WF, et al. Breast Cancer
  1725 Molecular Subtypes Respond Differently to Preoperative
  1726 Chemotherapy. Clin Cancer Res, 2005; 11(16): 5678–5685.
- 30. Browder T, Butterfield CE, Kräling BM, et al. Antiangiogenic
  scheduling of chemotherapy improves efficacy against
  experimental drug–resistant cancer. Cancer Res 2000; 60:
  1878–86.
- 1731 31. Klement G, Baruchel S, Rak J, et al. Continuous low-dose
  1732 therapy with vinblastine and vegf receptor-2 antibody induces
  1733 sustained tumor regression without overt toxicity. J Clin Invest
  1734 2000; 105: R15-24
- 1735 32. Ghiringhelli F, Menard C, Puig PE, et al. Metronomic

cyclophosphamide regimen selectively depletes CD4+ CD25+
regulatory T cells and restores T and NK effector functions in
end stage cancer patient. Cancer Immunol Immunother 2006;
56: 641–8.

- 1740 33. Colleoni M, Rocca A, Sandri MT, et al. Low–dose oral
  1741 methotrexate and cyclophosphamide in metastatic breast
  1742 cancer: antitumor activity and correlation with vascular
  1743 endothelial growth factor levels. Ann Oncol 2002; 13: 73–80.
- 34. Colleoni M, Orlando L, Sanna G, et al. Metronomic low–dose
  oral cyclophosphamide and methotrexate plus or minus
  thalidomide in metastatic breast cancer: antitumor activity and
  biological effects. Ann Oncol 2006; 17: 232–8.
- 35. Orlando L, Cardillo A, Rocca A, et al. Prolonged clinical benefit
  with metronomic chemotherapy in patients with metastatic
  breast cancer. Anticancer Drugs 2006; 17: 961–7.
- 36. Emmenegger U, Man S, Shaked Y, et al. A comparative
  analysis of low–dose metronomic cyclophosphamide reveals
  absent or low–grade toxicity on tissues highly sensitive to the
  toxic effects of maximum tolerated dose regimens. Cancer Res
  2004; 64: 3994–4000.
- 37. Blum JL, Dieras V, Lo Russo PM et al. Multicenter, phase II
  study of capecitabine in taxane–pretreated metastatic breast
  carcinoma patients. Cancer 2001; 92: 1759–68.
- 38. Reichardt P, Von Minckwitz G, Thuss–Patience PC et al.
  Multicenter phase II study of oral capecitabine (Xeloda) in
  patients with metastatic breast cancer relapsing after
  treatment with a taxane–containing therapy. Ann Oncol 2003;
  14: 1227–33.

- 39. O'Shaughnessy J, Miles D, Vukelja S et al. Superior survival
  with capecitabine plus docetaxel combination therapy in
  anthracyclinepretreated patients with advanced breast cancer:
  Phase III trial results. J Clin Oncol 2002; 20: 2812–23.
- 40. Leonard R, O'Shaughnessy J, Vukelja S, et al. Detailed
  analysis of a randomized Phase III trial: can the tolerability of
  capecitabine plus docetaxel be improved without
  compromising its survival advantage? Ann Oncol. 2006; 17(9):
  1379–85.
- 41. Blum JL, Jones SE, Buzdar AU, et al. Multicenter phase II
  study of capecitabine in paclitaxel– refractory metastatic
  breast cancer. J Clin Oncol. 1999; 17(2): 485–93.
- 42. Stockler MR, Harvey VJ, Francis PA, et al. Capecitabine
  versus classical cyclophosphamide, methotrexate, and
  fluorouracil as first-line chemotherapy for advanced breast
  cancer. J Clin Oncol 2011; 29: 4498-504.
- 43. Martin M, Calvo L, Martinez N, et al. Standard Versus
  Continuous Administration of Capecitabine in Metastatic
  Breast Cancer (GEICAM/2009-05): A Randomized,
  Noninferiority Phase II Trial With a Pharmacogenetic Analysis.
  Oncologist 2015; 20(2): 111-2.
- 44. Blum JL, Jones SE, Buzdar AU. Blum J, Jones S, Buzdar A.
  Capecitabine (Xeloda) in 162 patients with
  paclitaxel-pretreated mbc: updated results and analysis of
  dose modification. Eur J Cancer 2001; 37(6): S190-S.
- 45. Rosselli Del Turco M, Palli D, Cariddi A, et al. Intensive
   diagnostic follow–up aftertreatment of primary breast cancer. A
   randomized tial. National Research Council Project on Breast

1792 Cancer follow–up. JAMA 1994; 271:1593–7

46. Rosselli Del Turco M, Palli D, Cariddi A, Ciatto S, Pacini P,
Distante V. Intensive diagnostic follow-up after treatment of
primary breast cancer. A randomized trial. National Research
Council Project on Breast Cancer follow-up. Jama 1994;
271(20): 1593-7

47. Impact of follow–up testing on survival and health–related
quality of life in breast cancer patients. A multicenter
randomized controlled trial. The GIVIO Investigator. JAMA
1994; 271:1587–92.

# **13. APPENDIX 1**

# Schedule of the study

| Informed consent<br>Screening form |                                   | Baseline<br>(within 7<br>days before<br>enrollment)<br><br> | Treatment    | End of<br>treatmen<br>t | Follow–u<br>p (d)             |
|------------------------------------|-----------------------------------|-------------------------------------------------------------|--------------|-------------------------|-------------------------------|
| Bloo                               | d samples                         | v                                                           | N N          | v                       | as<br>clinically<br>indicated |
| Medical reco                       | ords and examinat                 | ions                                                        | 1            | 1                       | ·                             |
|                                    | Medical history(a                 | l) √                                                        |              |                         |                               |
|                                    | Physical                          |                                                             | $\checkmark$ |                         |                               |
|                                    | examination                       |                                                             |              |                         |                               |
|                                    | Vital signs                       |                                                             | $\checkmark$ |                         |                               |
|                                    | ECOG score                        |                                                             | $\checkmark$ |                         |                               |
|                                    | Complete blood<br>count           | V                                                           | V            | V                       | as<br>clinically<br>indicated |
| Observatio<br>nitems               | Blood chemistry<br>test(b)        | √                                                           | V            | V                       | as<br>clinically<br>indicated |
|                                    | Coagulation<br>function (4 items) | )                                                           |              | V                       | as<br>clinically<br>indicated |
|                                    | CEA/CA153                         | V                                                           |              | V                       | as<br>clinically<br>indicated |
|                                    | Electrocardiogra<br>m             | $\checkmark$                                                | V            | V                       | as<br>clinically<br>indicated |

|      |             |              |              | as         |
|------|-------------|--------------|--------------|------------|
| Ech  | ocardiogram |              |              | clinically |
|      |             |              |              | indicated  |
| Ima  | aina        |              |              | as         |
|      | ging        |              |              | clinically |
| exa  | mination(c) |              |              | indicated  |
| Adv  | erse events |              |              |            |
| Con  | comitant    | $\checkmark$ | $\checkmark$ |            |
| mec  | dication    |              |              |            |
| Ass  | essment of  |              |              |            |
| recu | irrence and |              |              |            |
| met  | astasis     |              |              |            |

1808

#### 1809 **NOTES:**

- a) Medical history: Risk factors of heart disease and history of nervous systemdisease should be recorded;
- b) Blood chemistry tests: Hepatic function (AST, ALT, T–Bil, D–Bil, TP, and ALB), renal function (BUN and Cr), serum electrolytes (K<sup>+</sup> and Ca<sup>2+</sup>), serum
  LDH and AKP, and serum glucose.
- 1815 c) Imaging examination: Including chest X–ray and abdominal ultrasonography.
- 1816 Bone ECT scan is recommended for patients with disease of stage  $\geq$  IIB, 1817 unexplained bone pain, or elevated serum ALP; Mammography is repeated 1818 annually;
- d) Follow–up is repeated every 3 months (± 28 days) during the first 2 years
  after randomization, every 6 months (± 28 days) during the 3rd to 5th year
  after randomization, and then annually thereafter.
- 1822

# 1824 APPENDIX 2 Common Terminology Criteria for Adverse Events v4.0

1825 ✓ The CTCAE v4.0 manual can be found at the following URL:
1826 http://ctep.cancer.gov/forms/CTCAEv4.pdf.

1827

1828

`

# SYSUCC-001 Study Protocol Amendment List

|       |                 | Before amendment         | After amendment        |                                    |
|-------|-----------------|--------------------------|------------------------|------------------------------------|
| page  | item            | (Protocol Ver.2.0        | (Protocol Ver.3.0      | Reasons                            |
|       |                 | November 30, 2012)       | January 9, 2017)       |                                    |
| cover |                 | Ver.2.0 approved date:   | Ver.3.0 approved date: |                                    |
|       |                 | November 30, 2012        | January 9, 2017        | _                                  |
| P76   | 8.2 Sample size | An interim analysis when | (None)                 | The number of DFS events was       |
|       |                 | the last one patient has |                        | much lower than expected after the |
|       |                 | completed 18 months of   |                        | last one patient has completed 12  |
|       |                 | follow–up.               |                        | months of follow–up                |

|       |                    | Before amendment           | After amendment             |                                        |
|-------|--------------------|----------------------------|-----------------------------|----------------------------------------|
| page  | item               | (Protocol Ver.1.0          | (Protocol Ver.2.0           | Reasons                                |
|       |                    | April 5, 2010)             | October 20, 2012)           |                                        |
| Cover | Cover              | Ver.1.0 approved date:     | Ver.2.0 approved date:      |                                        |
|       |                    | April 5, 2010              | October 20, 2012            | _                                      |
| P5    | 1.1 Study Design   | 684 subjects will be       | 424 subjects will be        | Considering the influence of duration  |
|       |                    | randomized in a 1:1        | randomized in a 1:1 fashion | of enrollment and follow-up on         |
|       |                    | fashion (342 in each arm)  | (212 in each arm)           | sample size, also too high drop-out    |
|       |                    |                            |                             | rate                                   |
| P6    | 1.3 Main           | 1) Female, aged >= 18      | 1) Female, aged >= 18       | Fewer patients and poorer              |
|       | Inclusion/         | years old and <= 75 years. | years old and <= 70 years.  | compliance                             |
|       | Exclusion          |                            |                             |                                        |
|       | Criteria□          |                            |                             |                                        |
| P6    | 1.3 Main           | 3) Pathologic stage        | 3) Pathologic stage         | Findings from retrospective studies    |
|       | Inclusion/         | $T_{1c-3}N_{0-2}M_0$       | $T_{1b-3}N_{0-3}M_0$        | showed the number of positive lymph    |
|       | Exclusion Criteria |                            |                             | nodes could not be used for            |
|       |                    |                            |                             | predicting the survival rate. Adjuvant |
|       |                    |                            |                             | chemotherapy was recommended to        |

|     |                    |                            |                               | patients with $T_{1b}$ disease by NCCN |
|-----|--------------------|----------------------------|-------------------------------|----------------------------------------|
|     |                    |                            |                               | guideline                              |
| P6  | 1.3 Main           | 1) Patients with T4,       | 1) Patients with bilateral    | according to the American Joint        |
|     | Inclusion/         | including inflammatory     | breast cancer, inflammatory   | Committee on Cancer 2010 staging       |
|     | Exclusion Criteria | carcinomas.                | carcinomas.                   | system                                 |
| P7  | 1.3 Main           | 2) Patients with N3.       | 2) Patients with positive     | Treatment for positive supraclavicular |
|     | Inclusion/         |                            | supraclavicular or internal   | or internal mammary lymph node         |
|     | Exclusion Criteria |                            | mammary lymph node.           | remains controversial                  |
| P14 | 4.1 Summary of     | Approximately 684          | Approximately 424 subjects    | Considering the influence of duration  |
|     | Design             | subjects with TNBC will be | with TNBC will be             | of enrollment and follow-up on         |
|     |                    | randomized in a 1:1        | randomized in a 1:1 fashion   | sample size, also too high drop-out    |
|     |                    | fashion (342 in each arm)  | (212 in each arm) to receive  | rate                                   |
|     |                    | to receive treatment       | treatment                     |                                        |
| P14 | 4.1 Summary of     | This study will be         | This study will be completed  | Slower enrollment than expected        |
|     | Design             | completed in               | in approximately 96 months    |                                        |
|     |                    | approximately 84 months    | including 60 months for       |                                        |
|     |                    | including 48 months for    | accrual and approximately     |                                        |
|     |                    | accrual and approximately  | 36 months follow-up           |                                        |
|     |                    | 36 months follow-up        | survival for the last subject |                                        |

|     |                 | survival for the last subject | enrolled.                   |           |
|-----|-----------------|-------------------------------|-----------------------------|-----------|
|     |                 | enrolled.                     |                             |           |
| P21 | 5.2 Inclusion   | 1) Female, aged >= 18         | 1) Female, aged >= 18       | See above |
|     | Criteria        | years old and <= 75 years.    | years old and <= 70 years.  |           |
| P21 | 5.2 Inclusion   | 3) Pathologic stage           | 3) Pathologic stage         | See above |
|     | Criteria        | $T_{1c-3}N_{0-2}M_0$          | $T_{1b-3}N_{0-3}M_0$        |           |
| P22 | 5.3 Exclusion   | 1) Patients with T4,          | 1) Patients with bilateral  | See above |
|     | Criteria        | including inflammatory        | breast cancer, inflammatory |           |
|     |                 | carcinomas.                   | carcinomas.                 |           |
| P22 | 5.3 Exclusion   | 2) Patients with N3.          | 2) Patients with positive   | See above |
|     | Criteria        |                               | supraclavicular or internal |           |
|     |                 |                               | mammary lymph node.         |           |
| P32 | 8.2 Sample Size | The estimated period of       | The estimated period of     | See above |
|     |                 | enrollment and follow-up      | enrollment and follow-up    |           |
|     |                 | will be 48 and 36 months,     | will be 60 and 36 months,   |           |
|     |                 | respectively. The design is   | respectively. The design is |           |
|     |                 | based on 2-sided log-rank     | based on 2-sided log-rank   |           |
|     |                 | test with alpha=0.05,         | test with alpha=0.05,       |           |
|     |                 | power=90%, and an             | power=80%, and an interim   |           |

| interim analysis when the   | analysis when the last one  |  |
|-----------------------------|-----------------------------|--|
| last one patient has        | patient has completed 18    |  |
| completed 12 months of      | months of follow-up. The    |  |
| follow-up. The dropout rate | dropout rate is assumed to  |  |
| is assumed to be 20%.       | be 9%. Approximately 424    |  |
| Approximately 684 patients  | patients (212 patients in   |  |
| (342 patients in each arm)  | each arm) will be enrolled. |  |
| will be enrolled.           |                             |  |

# STATISTICAL ANALYSIS PLAN

| TITLE: | Α   | MULTICE  | ENTER, | PHASE   | III |
|--------|-----|----------|--------|---------|-----|
|        | RAN | NDOMIZEI | D STU  | DY      | OF  |
|        | ME  | RONOMI   | C CA   | PECITAB | INE |
|        | MAI | NTENANG  | CE     | AF      | ΓER |
|        | STA | NDARD    | TREAT  | MENT    | IN  |
|        | PAT | IENTS    | WITH   | OPERA   | BLE |
|        | TRI | PLE-NEG  | ATIVE  | BRE     | AST |
|        |     | NCER     |        |         |     |

| PROTOCOL NUMBER:  | SYSUCC-EBC-CHEMO-001   |
|-------------------|------------------------|
| STUDY DRUG:       | Capecitabine           |
| PLAN PREPARED BY: | Ying Guo and Ji–Bin Li |

PLAN VERSION: 1.0

APPROVAL DATE: April 5, 2010

| 1840 |                                           |     |
|------|-------------------------------------------|-----|
| 1841 | CONTENTS                                  |     |
| 1842 |                                           |     |
| 1843 | 1. Background                             | 97  |
| 1844 | 2. Study Design                           | 97  |
| 1845 | 3. Randomization                          | 99  |
| 1846 | 4. Statistical Methods                    | 99  |
| 1847 | 4.1 Analysis Populations                  | 99  |
| 1848 | 4.1.1 Full Analysis Set (FAS) Population  | 99  |
| 1849 | 4.1.2 Per–Protocol Set (PPS) Population   | 100 |
| 1850 | 4.1.3 Safety Population                   | 100 |
| 1851 | 4.2 Efficacy Analysis                     | 100 |
| 1852 | 4.2.1 Analysis of the Primary Endpoint    | 100 |
| 1853 | 4.2.2 Analysis of the Secondary Endpoints | 102 |
| 1854 | 4.2.3 Subgroup Analysis                   | 103 |
| 1855 | 4.2.4 Exploratory Analysis                | 104 |
| 1856 | 4.3 Safety Analysis                       | 105 |
| 1857 | 5. References                             | 106 |
| 1858 |                                           |     |
| 1859 |                                           |     |

#### 1861 **1. BACKGROUND**

The SYSUCC–001 trial is a multicenter, phase III, randomized controlled study to compare the efficacy and safety of metronomic capecitabine maintenance for one year with observation after standard local and systemic treatment in patients with operable triple negative breast cancer (TNBC).

The primary objective of this study is to evaluate whether the 1867 addition of metronomic capecitabine maintenance to standard 1868 1869 alone treatment improves disease-free survival (DFS), compared with standard treatment. Secondary objectives include determining 1870 whether the addition of metronomic capecitabine maintenance to 1871 standard treatment could improve overall survival (OS), distant 1872 survival (DDFS), locoregional disease-free recurrence-free 1873 survival (LRFS) and safety. 1874

The purpose of this Statistical Analysis Plan (SAP) is to provide the details of the proposed analyses of the data collected during this tial.

1878

#### 1879 **2. STUDY DESIGN**

1880 The SYSUCC-001 trial is a multicenter, phase III, randomized 1881 controlled study. A total of 684 patients will be enrolled from

approximately 18 sites in China. Eligible patients will berandomized between the two study arms in a 1:1 ratio.

1884

The sample size of the study is primarily driven by the analysis of 1885 DFS. To detect a hazard ratio (HR) of 0.58 in DFS (an estimated 1886 improvement of 12% in the 5-year DFS from 68% in the control 1887 arm to 80% in the capecitabine maintenance arm), approximately 1888 148 DFS events will be required to achieve a statistical power of 90% 1889 at a 2-sided significance level of 5%. The estimated periods of 1890 enrollment and follow-up will be 48 and 36 months, respectively. 1891 After considering a dropout rate of 20%, approximately 684 patients 1892 (342 patients in each group) will be enrolled in the study [1-5]. 1893

1894

Interim Analyses: One interim analysis of DFS is planned on the 1895 basis of the results of the regular follow-up at 12 months after the 1896 completion of enrolment. This interim analysis consists of a 1897 comparison of the primary endpoint, the DFS, between groups; if 1898 significant differences are found, a secondary endpoint, OS, will be 1899 likewise compared between the groups. To maintain the primary 1900 errors in the whole study at a level of 5% (with two sided), the 1901 multiplicity in the primary endpoint analysis was adjusted using the 1902

Lan–DeMets alpha spending function with an O'Brien–Fleming boundary method. The p–value will be 0.003 for the interim DFS analyses, and 0.047 for final DFS analysis [1-5].

1906

### 1907 **3. RANDOMIZATION**

After verification of the inclusion and exclusion criteria, eligible 1908 patients will be randomized using the method of stratified permuted 1909 blocks to receive metronomic capecitabine maintenance treatment 1910 1911 or observation. Patients will be stratified according to lymph node status (negative vs. positive). A computerized number generator 1912 using Software SAS (version 8.01) generated a randomization table, 1913 the results of which were placed in sequentially numbered opaque 1914 envelopes and remained concealed until after enrollment. 1915

1916

- 1917 4. STATISTICAL METHODS
- 1918 **4.1 Analysis populations**

### 1919 **4.1.1 Full Analysis Set (FAS) Population**

The Full Analysis Set (FAS) is defined as all randomized patients excluding those who withdraw informed consent before protocol treatment, or who had no follow–up data after randomization. The primary analysis population for all efficacy endpoints will be the 1924 FAS population.

1925

### 1926 **4.1.2 Per–Protocol Set (PPS) Population**

The Per Protocol Set (PPS) is defined as all randomized patients who have completed the study without major protocol violations, such as patients who discontinue the study across the protocol treatment for reasons determined to be unrelated to breast cancer treatment, and patients who refuse any follow–up or visit, not including breast cancer recurrence or death.

1933

# 1934 **4.1.3 Safety Population**

<sup>1935</sup> The Safety Analyses Set (SAS) is defined as all randomized <sup>1936</sup> patients who initiate the protocol treatment.

1937

### 1938 **4.2 Efficacy Analysis**

The following sections outline the planned analysis of the primary and secondary efficacy endpoints of this study. All efficacy analysis will be performed based on the FAS population.

1942

### 1943 **4.2.1 Analysis of the Primary Endpoint**

1944 The primary endpoint is DFS, defined as the time from

- randomization to the first occurrence of the following events:
- 1946 1) Relapse of breast cancer in the ipsilateral chest wall and
   regional lymph nodes
- 1948 2) Distant metastases (histologically confirmed or clinically
   1949 diagnosed)
- 1950 3) Breast cancer related, non-breast cancer-related or unknown
   1951 deaths
- 1952 4) Contralateral breast cancer

Patients who have not had an event at the time of data analysis will
be censored at the last date they were known to be alive and
event–free.

The null hypothesis for the primary endpoint is that the survival distributions of DFS in the two treatment groups are the same. The alternative hypothesis is that the survival distributions of DFS in the treatment and the control arm are different:

1960  $H_0: S_{<capecitabine>} = S_{<observation>} vs. H_1: S_{<capecitabine>} \neq S_{<observation>}$ 

We will estimate survival curves in each treatment arm using the Kaplan–Meier estimator and the hazard ratio with 95%CI between treatment arms based on the proportional hazards model, with assumptions of proportional hazards confirmed based on the Schoenfeld residuals for the final dataset. We will use a two–sided

log-rank test at the final analysis (at a significance level of 0.047).

1967 Stratified analyses of the lymph node status will also be conducted.

1968

### 1969 **4.2.2 Analysis of the Secondary Endpoints**

1970 The Secondary Endpoints are defined as follows:

Overall Survival (OS) is defined as the time from randomization to
death caused by any reason. Patients who are alive (including lost
to follow–up) at the time of the analysis will be censored at the date
when they were last known to be alive.

Distant disease—free survival (DDFS) is defined as the time from randomization to the first occurrence of any of the following events: Distant metastases, death caused by any reason, and contralateral invasive breast cancer. Patients who have not had a distant recurrence event at the time of data analysis will be censored at the date when they were last known to be alive.

Locoregional recurrence–free survival (LRFS) is defined as the time from randomization to the first occurrence of any of the following events: ipsilateral breast or chest wall, regional lymph node, and death caused by any reason.

1985 The primary analyses for all secondary endpoints will be performed 1986 at the time of the primary analysis of the primary endpoint DFS. The

estimated Kaplan–Meier curves and the hazard ratio with 95% CI
will be calculated based on the proportional hazards model and the
endpoints will be compared using a two–sided log–rank test (at a
significance level of 0.05).

1991

### 1992 4.2.3 Subgroup Analysis

At the time of the primary analysis, exploratory analyses will be performed for DFS to determine whether the magnitude of the effectiveness of the addition of capecitabine maintenance might differ according to patient sub–populations.

Variables to be considered for defining subgroups of interest include the node status as well as other disease– or patient–related prognostic or predictive factors. We will conduct the subgroup analysis by estimating the hazard ratio with 95% CI and the test interaction, if applicable, among subgroups with two–sided p–values) for the following items:

- $\checkmark$  Age ( $\leq$ 40 / >40 and median and range)
- 2004 ✓ Tumor size at diagnosis (T1 /T2/T3)
- 2005 ✓ Histological grade (I/II/III)
- 2006 ✓ Nodal stage (N0 / N+)

2007 ✓ Stage (I / II / III)

2008 ✓ KI–67 (≤14% / >14%)
 2009 ✓ Lymphovascular invasion (positive / negative)
 2010 ✓ Neo-/adjuvant regimens (anthracycline–based/
 2011 taxane–based/ anthracycline– and taxane–based)

2012 The above background variables will be compared using statistical 2013 test (at a two–sided significance level of 0.05).

2014

2015 4.2.4 Exploratory Analysis

In the capecitabine arm, a tabulation of those patients who have completed the protocol as planned against those who did not complete the protocol as planned will be performed. Completion/ reduction/stop numbers and proportion of capecitabine are calculated at every 3–month visit, to show relative dose intensity (RDI) of capecitabine, which is defined as the actual cumulative dose compared to planned total dose.

To determine the relationship between the RDI of capecitabine and DFS, estimated Kaplan–Meier curves and the hazard ratio with 95% CI will be calculated based on the proportional hazards model and the comparison will be tested using a two–sided log–rank test (at a significance level of 0.05).

2028

### 2029 4.3 Safety Analyses

2030 Safety data will be summarized based on the Safety Population.

2031 Verbatim descriptions of treatment–emergent adverse events (AEs)

will be mapped to MedDRA thesaurus terms and graded according

- to NCI–CTCAE version 4.0. All AEs, including serious adverse
  events (SAEs), will be summarized by treatment arm and
  NCI–CTCAE grade. Comparisons between treatment groups will
  use the chi squared test (grade0–2/grade3–4) with a two–sided
  p–value (at a significance level of 0.05). The variables to be tested
- 2038 are:
- 2039 ✓ White blood cell count
- 2040 ✓ Neutrophil count
- 2041 ✓ Platelet count
- 2042 ✓ Hemoglobin
- 2043 ✓ AST
- 2044 ✓ ALT
- 2045 ✓ Total Bilirubin
- 2046 ✓ Creatinine
- 2047 ✓ Appetite loss
- 2048 ✓ Abdominal pain / Diarrhea
- 2049 ✓ Nausea

| 2050 | ✓ \ | /omiting |
|------|-----|----------|
|------|-----|----------|

2051 ✓ Stomatitis

2052 ✓ Fatigue

- 2053 ✓ Hand–foot syndrome (HFS)
- 2054

### 2055 **5. REFERENCES**

- 2056 1. Chow, S.C.; Shao, J.; Wang, H. 2003. Sample Size Calculations
  2057 in Clinical Research. Marcel Dekker. New York.
- 2058 2. Lan, K.K.G. and DeMets, D.L. 1983. 'Discrete sequential 2059 boundaries for clinical trials.' Biometrika, 70, pages 659-663.
- 2060 3. O'Brien, P.C. and Fleming, T.R. 1979. 'A multiple testing
- procedure for clinical trials.' Biometrics, 35, pages 549-556.
- 4. Pocock, S.J. 1977. 'Group sequential methods in the design and
  analysis of clinical trials.' Biometrika, 64, pages 191-199.
- 5. Reboussin, D.M., DeMets, D.L., Kim, K, and Lan, K.K.G. 1992.
- <sup>2065</sup> 'Programs for computing group sequential boundaries using the
- Lan-DeMets Method.' Technical Report 60, Department of
- Biostatistics, University of Wisconsin-Madison.

# STATISTICAL ANALYSIS PLAN

| TITLE: | Α   | MULTIC          | ENTER, | PHASE    | Ш    |
|--------|-----|-----------------|--------|----------|------|
|        | RA  | NDOMIZE         | D STU  | DY       | OF   |
|        | ME  | TRONOM          | IC C   | APECITAE | BINE |
|        | MA  | INTENAN         | CE     | AF       | TER  |
|        | ST/ | ANDARD          | TREA   | TMENT    | IN   |
|        | PA  | TIENTS          | WITH   | OPERA    | BLE  |
|        | TR  | TRIPLE-NEGATIVE |        | BREAST   |      |
|        | СА  | NCER            |        |          |      |

| PROTOCOL NUMBER:  | SYSUCC-EBC-CHEMO-001   |
|-------------------|------------------------|
| STUDY DRUG:       | Capecitabine           |
| PLAN PREPARED BY: | Ying Guo and Ji–Bin Li |

PLAN VERSION: 3.0

APPROVAL DATE: January 19, 2017

| 2074 |                                           |     |
|------|-------------------------------------------|-----|
| 2075 | CONTENTS                                  |     |
| 2076 |                                           |     |
| 2077 | 1. Background                             | 109 |
| 2078 | 2. Study Design                           | 109 |
| 2079 | 3. Randomization                          | 110 |
| 2080 | 4. Statistical Methods                    | 111 |
| 2081 | 4.1 Analysis Populations                  | 111 |
| 2082 | 4.1.1 Full Analysis Set (FAS) Population  | 111 |
| 2083 | 4.1.2 Per–Protocol Set (PPS) Population   | 111 |
| 2084 | 4.1.3 Safety Population                   | 112 |
| 2085 | 4.2 Efficacy Analysis                     | 112 |
| 2086 | 4.2.1 Analysis of the Primary Endpoint    | 112 |
| 2087 | 4.2.2 Analysis of the Secondary Endpoints | 113 |
| 2088 | 4.2.3 Subgroup Analysis                   | 115 |
| 2089 | 4.2.4 Exploratory Analysis                | 116 |
| 2090 | 4.3 Safety Analysis                       | 116 |
| 2091 | 5. References                             | 118 |
| 2092 |                                           |     |
| 2093 |                                           |     |
| 2094 |                                           |     |
| 2095 |                                           |     |

#### 2096 **1. <u>BACKGROUND</u>**

The SYSUCC–001 trial is a multicenter, phase III, randomized controlled study to compare the efficacy and safety of metronomic capecitabine maintenance for one year with observation after standard local and systemic treatment in patients with operable triple negative breast cancer (TNBC).

The primary objective of this study is to evaluate whether the 2102 addition of metronomic capecitabine maintenance to standard 2103 treatment improves disease-free survival (DFS), compared with 2104 Secondary standard treatment alone. objectives include 2105 determining whether the addition of metronomic capecitabine 2106 maintenance to standard treatment could improve overall survival 2107 (OS). distant disease-free survival (DDFS), locoregional 2108 recurrence-free survival (LRFS) and safety. 2109

The purpose of this Statistical Analysis Plan (SAP) is to provide the details of the proposed analyses of the data collected during this trial.

2113

#### 2114 2. <u>STUDY DESIGN</u>

The SYSUCC-001 trial is a multicenter, phase III, randomized controlled study. A total of 424 patients will be enrolled from

2117 approximately 13 sites in China. Eligible patients will be2118 randomized between the two study arms in a 1:1 ratio.

2119

The sample size of the study is primarily driven by the analysis of 2120 DFS. To detect a hazard ratio (HR) of 0.58 in DFS (an estimated 2121 improvement of 12% in the 5-year DFS from 68.0% in the control 2122 arm to 80.0% in the capecitabine maintenance arm), approximately 2123 109 DFS events will be required to achieve a statistical power of 80% 2124 at a 2-sided significance level of 5%. The estimated periods of 2125 enrollment and follow-up will be 60 and 36 months, respectively. 2126 After considering a dropout rate of 9%, approximately 424 patients 2127 (212 patients in each group) will be enrolled in the study [1, 2]. 2128 Interim Analyses: One interim analysis of DFS is planned on the 2129 basis of the results of the regular follow-up at 18 months after the 2130 completion of enrolment. So far, however, the number of events is 2131 2132 too much lower than expected. This interim analysis is cancelled and approved by SYSUCC Ethics Committee. The p-value for final 2133

DFS analysis will be 0.047 yet.

2135

#### 2136 3. RANDOMIZATION

2137 After verification of the inclusion and exclusion criteria, eligible

patients will be randomized using the method of stratified permuted
blocks to receive metronomic capecitabine maintenance treatment
or observation. Patients will be stratified according to lymph node
status (negative *vs.* positive). A computerized number generator
using Software SAS (version 8.01) generated a randomization table,
the result of which were placed in sequentially numbered opaque
envelopes and remained concealed until after enrollment.

2145

## 2146 4. STATISTICAL METHODS

#### 2147 **4.1 Analysis populations**

## 2148 4.1.1 Full Analysis Set (FAS) Population

The Full Analysis Set (FAS) is defined as all randomized patients excluding those who withdraw informed consent before protocol treatment, or who had no follow–up data after randomization. The primary analysis population for all efficacy endpoints will be the FAS population.

2154

### 2155 **4.1.2 Per–Protocol Set (PPS) Population**

The Per Protocol Set (PPS) is defined as all randomized patients who have completed the study without major protocol violations, such as patients who discontinue the study across the protocol

treatment for reasons determined to be unrelated to breast cancer
treatment, and patients who refuse any follow–up or visit, not
including breast cancer recurrence or death.

2162

#### 2163 4.1.3 Safety Population

The Safety Analyses Set (SAS) is defined as all randomized patients who initiate the protocol treatment.

2166

### 2167 **4.2 Efficacy Analysis**

The following sections outline the planned analysis of the primary and secondary efficacy endpoints of this study. All efficacy analysis will be performed based on the FAS population.

2171

## 2172 4.2.1 Analysis of the Primary Endpoint

2173 The primary endpoint is DFS, defined as the time from 2174 randomization to the first occurrence of the following events:

- 2175 5) Relapse of breast cancer in the ipsilateral chest wall and
- regional lymph nodes
- 2177 6) Distant metastases (histologically confirmed or clinically2178 diagnosed)
- 2179 7) Breast cancer related, non-breast cancer related or unknown

2180 deaths

2181 8) Contralateral breast cancer

2182

Patients who have not had an event at the time of data analysis will be censored at the last date they were known to be alive and event–free.

The null hypothesis for the primary endpoint is that the survival distributions of DFS in the two treatment groups are the same. The alternative hypothesis is that the survival distributions of DFS in the treatment and the control arm are different:

2190  $H_0: S_{<capecitabine>} = S_{<observation>} vs. H_1: S_{<capecitabine>} \neq S_{<observation>}$ 

We will estimate survival curves in each treatment arm using Kaplan–Meier estimator and the hazard ratio with 95%Cl between treatment arms based on the proportional hazards model, with assumptions of proportional hazards confirmed based on the Schoenfeld residuals in the final dataset. We will use a two–sided log–rank test for the final analysis (at a significance level of 0.047). Stratified analyses of the lymph node status will also be conducted.

2199 **4.2.2 Analysis of the Secondary Endpoints** 

2200 The Secondary Endpoints are defined as follows:

<u>Overall Survival (OS)</u> is defined as the time from randomization to
death caused by any reason. Patients who are alive (including lost
to follow–up) at the time of the analysis will be censored at the date
when they were last known to be alive.

<u>Distant disease-free survival (DDFS)</u> is defined as the time from randomization to the first occurrence of any of the following events: distant metastases, death caused by any reason, and contralateral invasive breast cancer. Patients who have not had a distant recurrence event at the time of data analysis will be censored at the date when they were last known to be alive.

<u>Locoregional recurrence–free survival (LRFS)</u> is defined as the time from randomization to the first occurrence of any of the following events: ipsilateral breast or chest wall, regional lymph node, and death caused by any reason.

The primary analyses for all secondary endpoints will be performed at the time of the primary analysis of the primary endpoint (DFS). The estimated Kaplan–Meier curves, and the hazard ratio with 95% CI, will be calculated based on the proportional hazards model, and the endpoints will be compared using a two–sided log–rank test (at a significance level of 0.05).

2221

#### 2222 4.2.3 Subgroup Analysis

At the time of the primary analysis, exploratory analyses will be performed for DFS to determine whether the magnitude of the effectiveness of the addition of capecitabine maintenance might differ according to patient sub–populations.

Variables to be considered for defining subgroups of interest include the node status as well as other disease– or patient–related prognostic or predictive factors. We will conduct the subgroup analysis by estimating the hazard ratio with 95%CI and test the interaction, if applicable, among subgroups with two–sided p–value for the following items:

 $\checkmark$  Age ( $\leq$ 40 / >40 and median and range)

- $\checkmark$  Tumor size at diagnosis (T1 / >=T2)
- 2235 ✓ Histological grade (I+II/III)
- 2236 ✓ Nodal stage (N0 / N+)

2237 ✓ Stage (I / II / III)

- 2238 ✓ Ki–67 (< 30% / ≥ 30%)
- 2239 ✓ Lymphovascular invasion (positive / negative)
- 2240 Veo-/adjuvant regimens (anthracycline- or taxane-based/

anthracycline– and taxane–based)

2242 The above background variables will be compared using statistical

test (two–sided significance level is 0.05).

2244

2245 **4.2.4 Exploratory Analysis** 

In the capecitabine arm, a tabulation of those patients who have completed the protocol as planned against those who did not complete the protocol as planned will be perform. Completion / reduction / stop numbers and proportion of capecitabine are calculated at every 3–months visit to show the relative dose intensity (RDI) of capecitabine, which is defined as the actual cumulative dose compared to planned total dose.

To determine the relationship between the RDI of capecitabine and

DFS, estimated Kaplan–Meier curves and the hazard ratio with 95% CI will be calculated based on the proportional hazards model and the comparison will be tested using a two–sided log–rank test (at a

significance level of 0.05).

2258

#### 2259 4.3 <u>Safety Analyses</u>

2260 Safety data will be summarized based on the Safety Population.

2261 Verbatim descriptions of treatment–emergent adverse events (AEs)

will be mapped to MedDRA thesaurus terms and graded according

to NCI-CTCAE version 4.0. All AEs, including serious adverse

| 2264 | events (SAEs), will be summarized by treatment arm and                |  |  |
|------|-----------------------------------------------------------------------|--|--|
| 2265 | NCI-CTCAE grade. Comparisons between treatment groups will            |  |  |
| 2266 | use the chi squared test (grade0-2/grade3-5(4)) with a two-sided      |  |  |
| 2267 | p-value (at a significance level of 0.05). The variables to be tested |  |  |
| 2268 | are:                                                                  |  |  |
| 2269 | ✓ White blood cell count                                              |  |  |
| 2270 | ✓ Neutrophil count                                                    |  |  |
| 2271 | ✓ Platelet count                                                      |  |  |
| 2272 | ✓ Hemoglobin                                                          |  |  |
| 2273 | ✓ AST                                                                 |  |  |
| 2274 | ✓ ALT                                                                 |  |  |
| 2275 | ✓ Total Bilirubin                                                     |  |  |
| 2276 | ✓ Creatinine                                                          |  |  |
| 2277 | ✓ Appetite loss                                                       |  |  |
| 2278 | <ul> <li>Abdominal pain / Diarrhea</li> </ul>                         |  |  |
| 2279 | ✓ Nausea                                                              |  |  |
| 2280 | ✓ Vomiting                                                            |  |  |
| 2281 | ✓ Stomatitis                                                          |  |  |
| 2282 | ✓ Fatigue                                                             |  |  |
| 2283 | ✓ Hand–foot syndrome (HFS)                                            |  |  |
| 2284 |                                                                       |  |  |
| 2285 | 117                                                                   |  |  |

## 2286 **5. REFERENCES**

- Lakatos, Edward. 1988. 'Sample Sizes Based on the Log-Rank
   Statistic in Complex Clinical Trials', Biometrics, Volume 44,
   March, pages 229-241.
- 2290 2. Lakatos, Edward. 2002. 'Designing Complex Group Sequential
- 2291 Survival Trials', Statistics in Medicine, Volume 21, pages
- <sup>2292</sup> 1969-1989.

2293

# SYSUCC-001 Statistical Analysis Plan Amendment List

| page     | item            | before amendment (ver. 2.0)             | after amendment (ver.3.0)                  |
|----------|-----------------|-----------------------------------------|--------------------------------------------|
| Cover    | Cover           | Version 2.0 approved date: November 30, | Version 3.0 approved date: January 19,     |
|          |                 | 2012                                    | 2017                                       |
| Page 107 | 2. STUDY DESIGN | (None)                                  | So far, however, the number of events is   |
|          |                 |                                         | too much lower than expected. This interim |
|          |                 |                                         | analysis is cancelled and approved by      |
|          |                 |                                         | SYSUCC Ethics Committee. The p-value       |
|          |                 |                                         | for final DFS analysis will be 0.047 yet.  |
| Page 112 | 4.2.3 Subgroup  | Tumor size at diagnosis (T1 /T2/T3)     | Tumor size at diagnosis (T1 / >=T2)        |
|          | Analysis        |                                         |                                            |
| Page 112 | 4.2.3 Subgroup  | Histological grade ( I / II /III)       | Histological grade ( I + II /III)          |
|          | Analysis        |                                         |                                            |
| Page 112 | 4.2.3 Subgroup  | KI–67 (≤14% / >14%)                     | KI–67 (<30% / ≥30%)                        |
|          | Analysis        |                                         |                                            |
| Page 112 | 4.2.3 Subgrou   | Neo-/adjuvant regimens                  | Neo-/adjuvant regimens (anthracycline- or  |
|          | Analysis        | (anthracycline-based/ taxane-based/     | taxane-based/ anthracycline- and           |
|          |                 | anthracycline- and taxane-based)        | taxane-based)                              |

| page    | item            | before amendment (ver. 1.0)                   | after amendment (ver.2.0)                     |
|---------|-----------------|-----------------------------------------------|-----------------------------------------------|
| Cover   | Cover           | Version 1.0 approved date: April 5, 2010      | Version 2.0 approved date: November 30,       |
|         |                 |                                               | 2012                                          |
| Page 96 | 2. STUDY DESIGN | A total of 684 patients will be enrolled from | A total of 424 patients will be enrolled from |
|         |                 | approximately 18 sites in China.              | approximately 13 sites in China.              |
| Page 96 | 2. STUDY DESIGN | Approximately 148 DFS events will be          | Approximately 109 DFS events will be          |
|         |                 | required to achieve 90% power at a            | required to achieve 80% power at a            |
|         |                 | 2-sided significance level of 5%. The         | 2-sided significance level of 5%. The         |
|         |                 | estimated period of enrollment and            | estimated period of enrollment and            |
|         |                 | follow-up will be 48 and 36 months,           | follow–up will be 60 and 36 months,           |
|         |                 | respectively. After considering 20% dropout   | respectively. After considering 9% dropout    |
|         |                 | rate                                          | rate                                          |
| Page 96 | 2. STUDY DESIGN | One interim analysis of DFS is planned on     | One interim analysis of DFS is planned on     |
|         |                 | the basis of the results of the regular       | the basis of the results of the regular       |
|         |                 | follow-up study 12 months after the           | follow–up study 18 months after the           |
|         |                 | completion of enrolment.                      | completion of enrolment.                      |