Design, Synthesis and Molecular Docking of Paracyclophanyl-Thiazole Hybrids as Novel CDK1 Inhibitors & Apoptosis-Inducing Anti-Melanoma Agents

Ashraf A Aly,^{1*} Stefan Bräse,^{2,3*} Alaa A. Hassan,¹ Nasr K. Mohamed,¹ Lamiaa E. Abd El-Haleem,^{2,3}

Martin Nieger,⁴ Nesrin M. Morsy,⁵ Mohammed B Alshammari⁶, Mahmoud A. A. Ibrahim¹, and Elshimaa M. N. Abdelhafez^{7*}

Figure S1. ¹H NMR spectrum of compound 3a

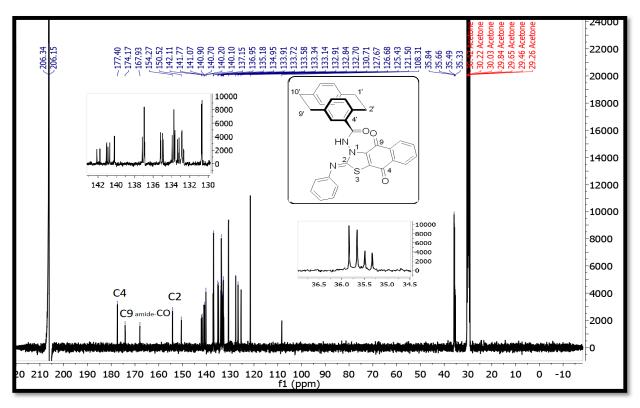


Figure S2. ¹³C NMR spectrum of compound 3a

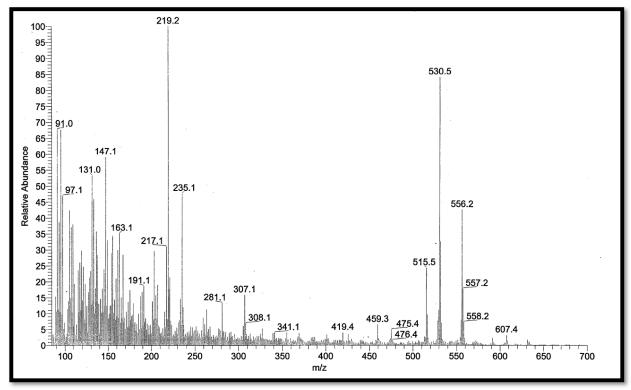


Figure S3. Mass spectrum of compound 3a

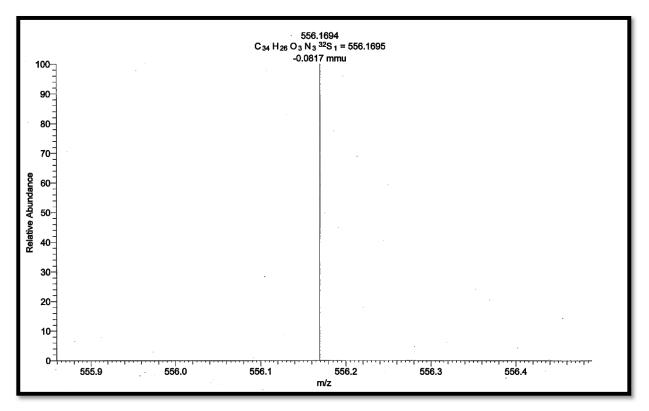


Figure S4. HRMS spectrum of compound 3a

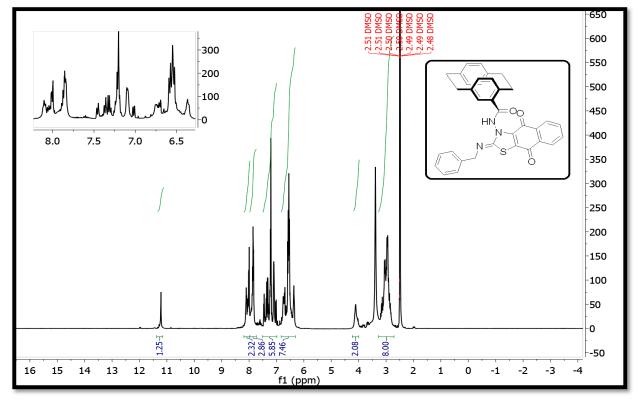


Figure S5. ¹H NMR spectrum of compound 3b

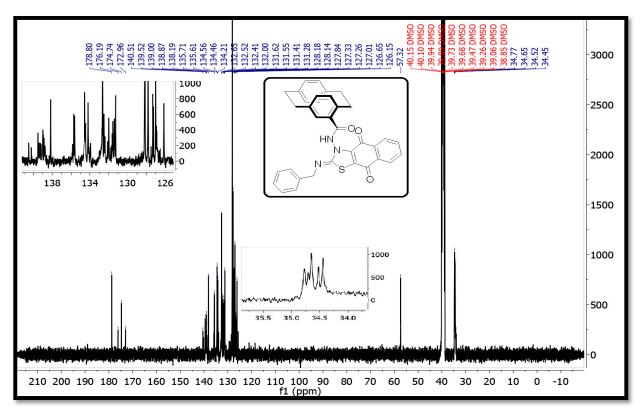


Figure S6. ¹³C NMR spectrum of compound 3b

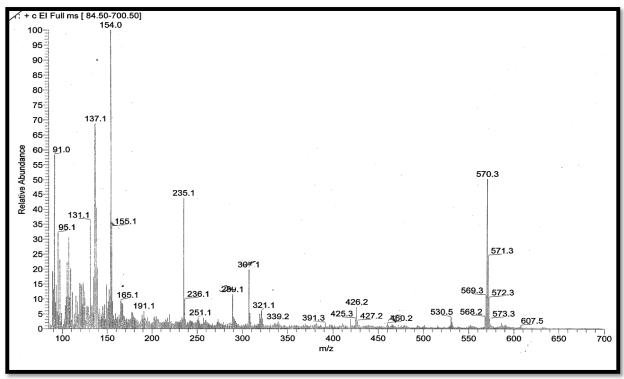


Figure S7. Mass spectrum of compound 3b

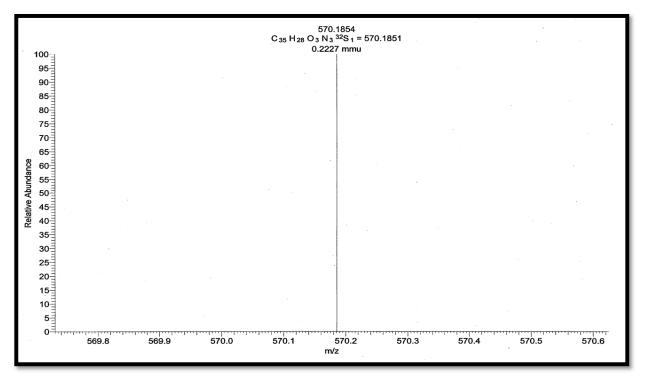


Figure S8. HRMS spectrum of compound 3b

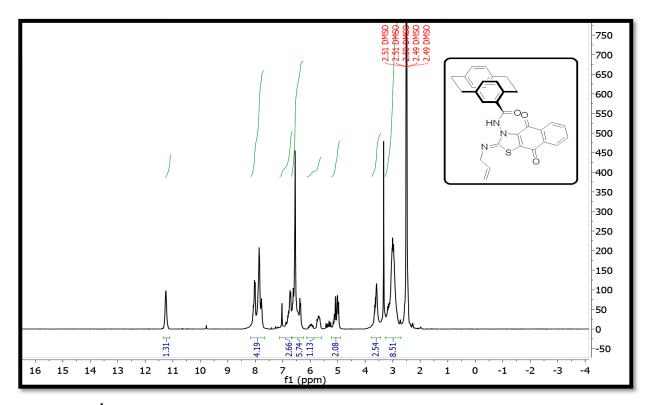


Figure S9. ¹H NMR spectrum of compound 3c

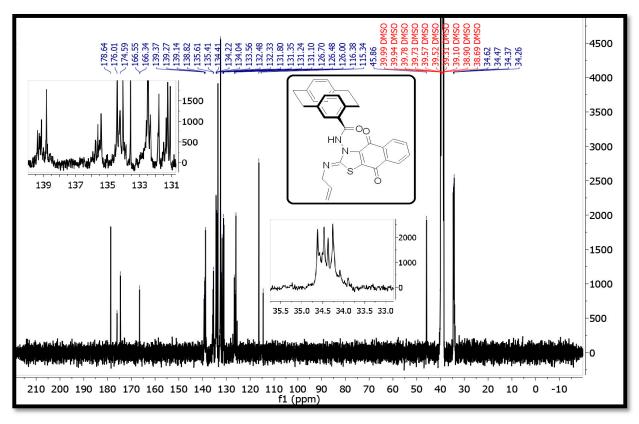


Figure S10. ¹³C NMR spectrum of compound 3c

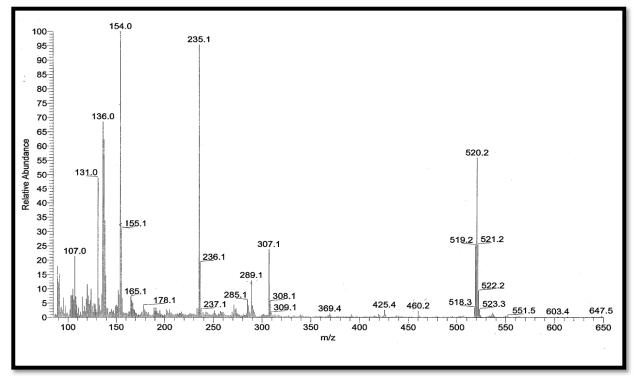


Figure S11. Mass spectrum of compound 3c

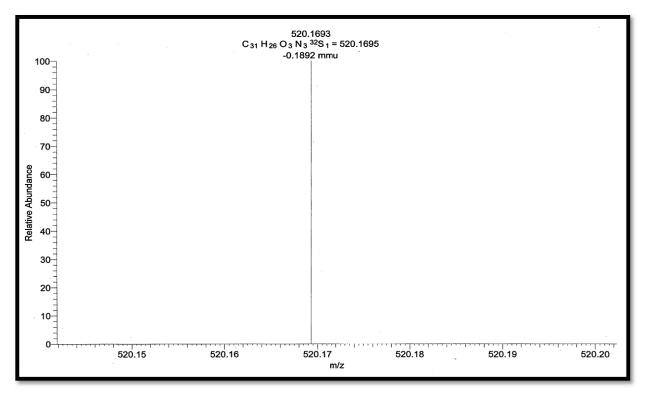


Figure S12. HRMS spectrum of compound 3c

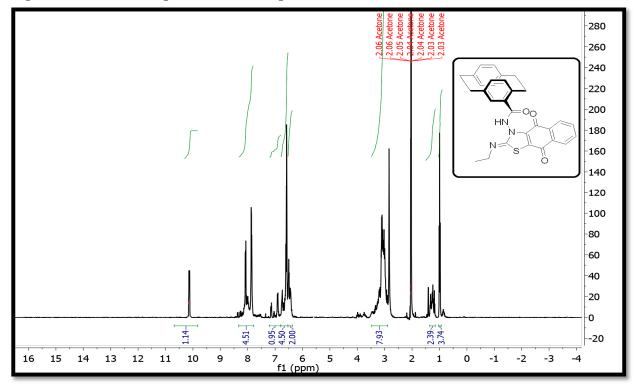


Figure S13. ¹H NMR spectrum of compound 3d

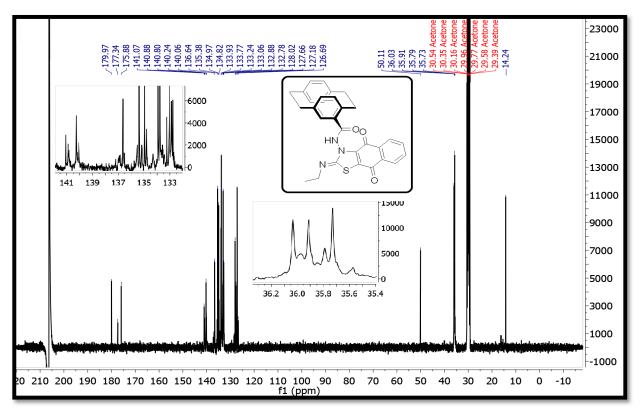


Figure S14. ¹³C NMR spectrum of compound 3d

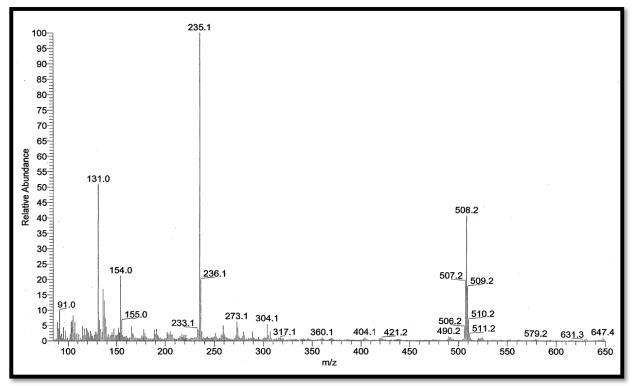


Figure S15. Mass spectrum of compound 3d

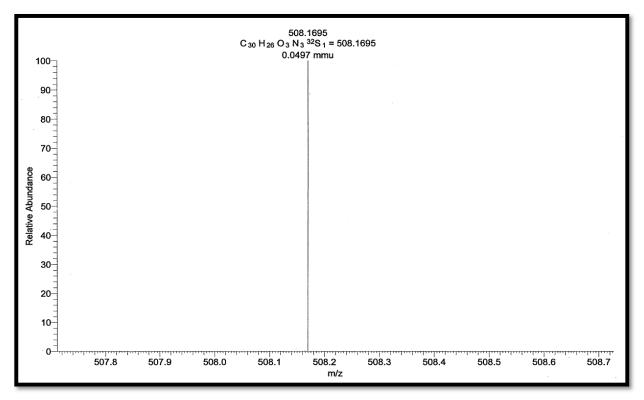


Figure S16. HRMS spectrum of compound 3d

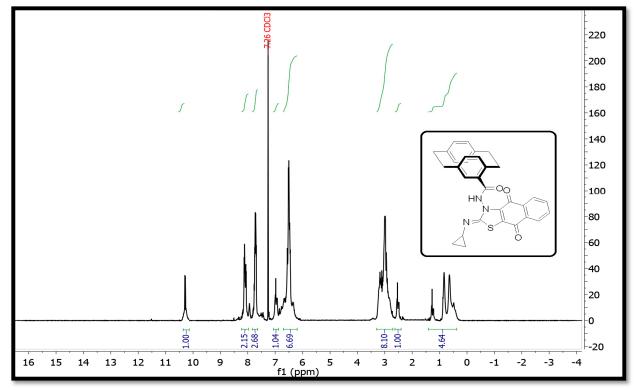


Figure S17. ¹H NMR spectrum of compound 3e

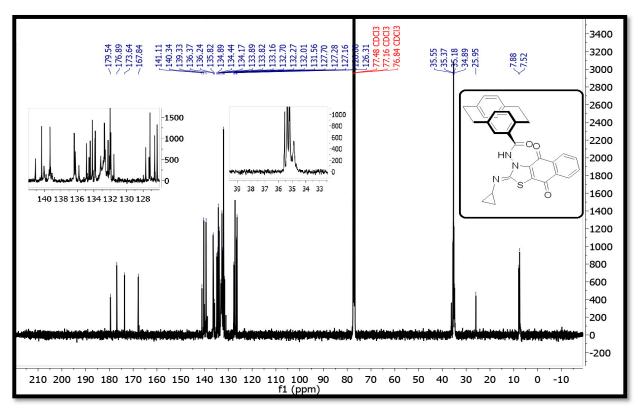


Figure S18. ¹³C NMR spectrum of compound 3e

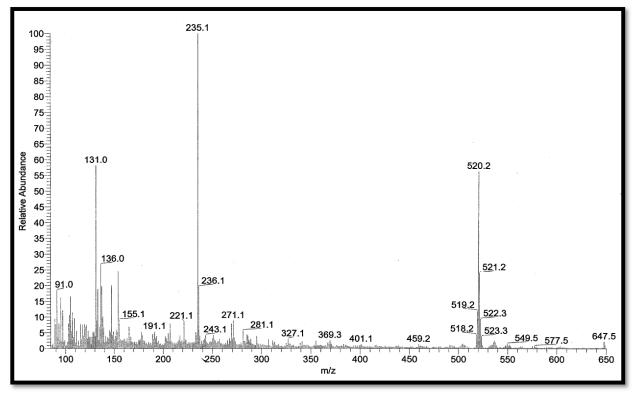


Figure S19. Mass spectrum of compound 3e

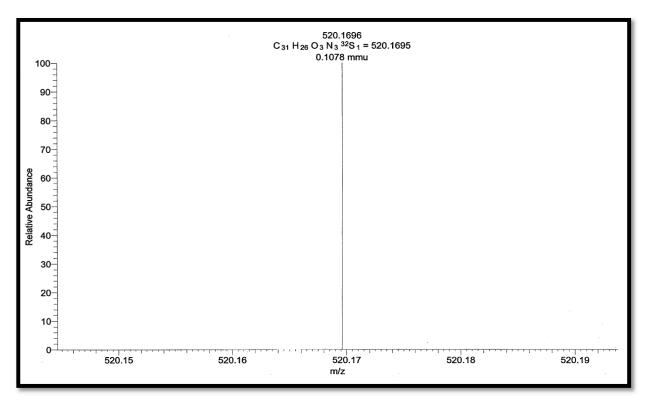


Figure S20. HRMS spectrum of compound 3e

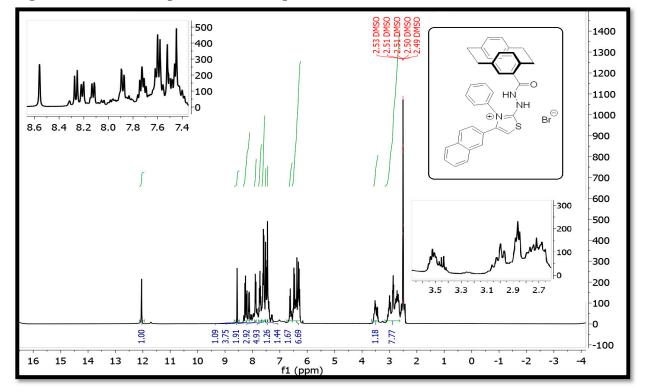


Figure S21. ¹H NMR spectrum of compound 8a

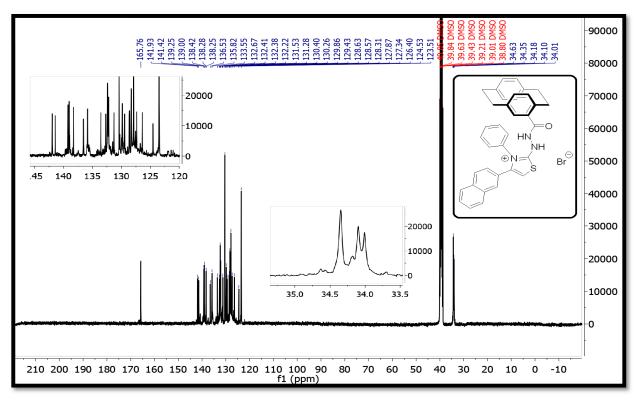


Figure S22. ¹³C NMR spectrum of compound 8a

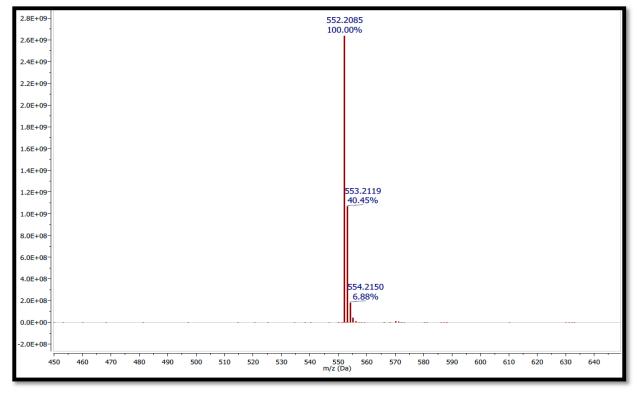


Figure S23. HRMS and Mass spectrum of compound 8a

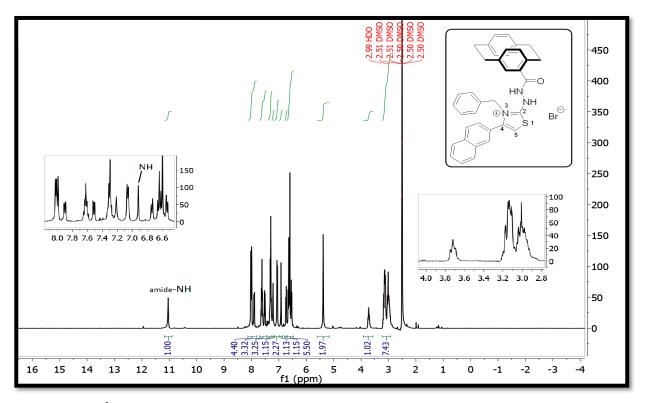


Figure S24. ¹H NMR spectrum of compound 8b

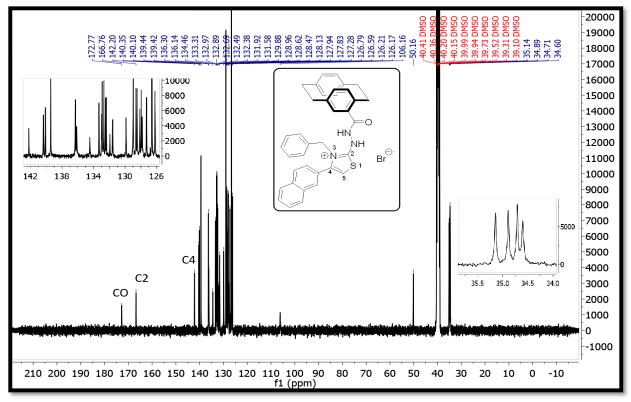


Figure S25. ¹³C NMR spectrum of compound 8b

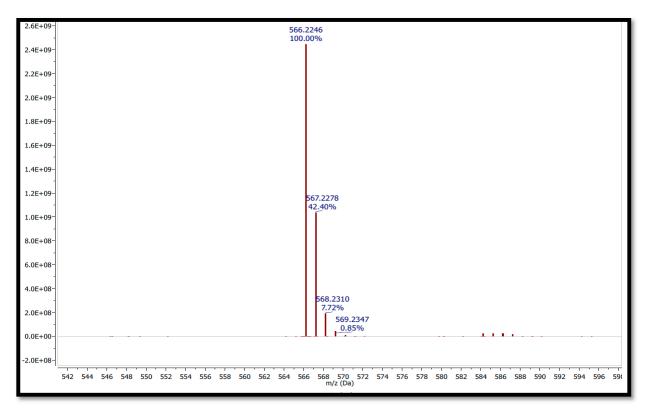


Figure S26. HRMS and Mass spectrum of compound 8b

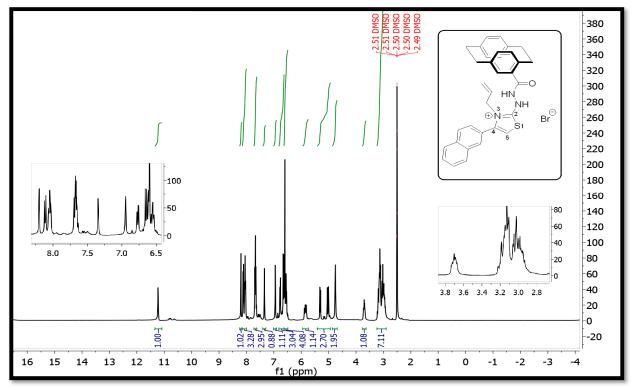


Figure S27. ¹H NMR spectrum of compound 8c

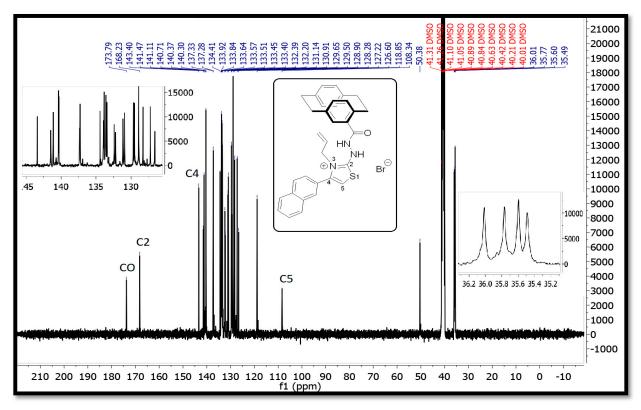


Figure S28. ¹³C NMR spectrum of compound 8c

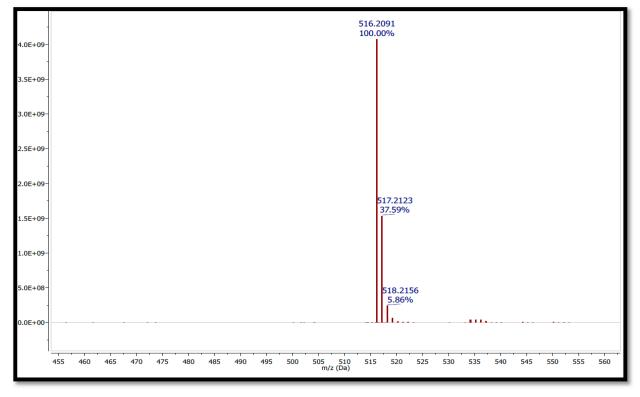


Figure S29. HRMS and Mass spectrum of compound 8c

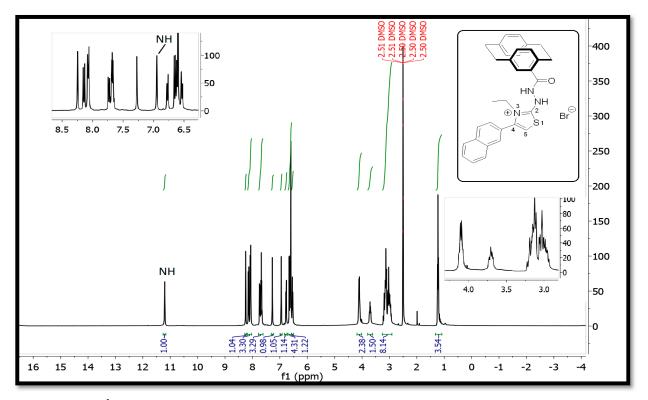


Figure S30. ¹H NMR spectrum of compound 8d

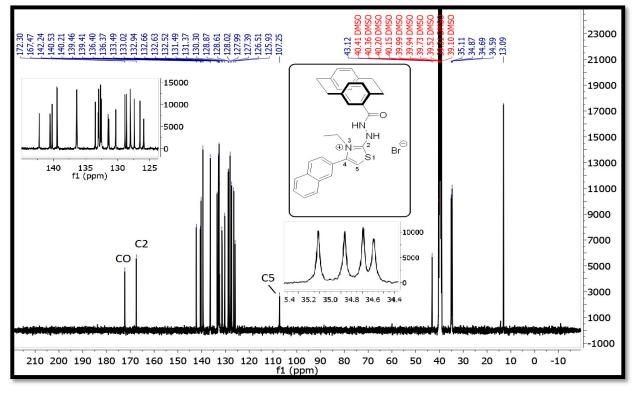


Figure S31. ¹³C NMR spectrum of compound 8d

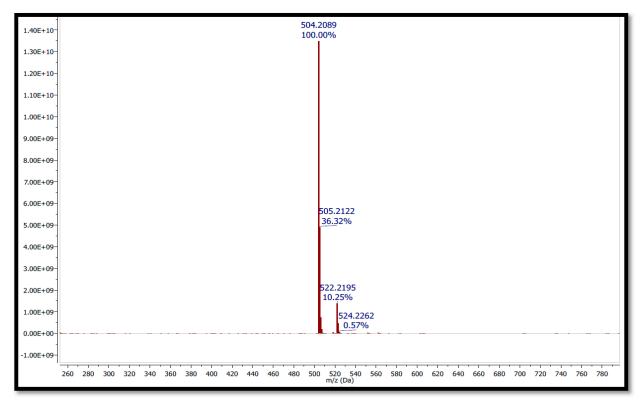


Figure S32. HRMS and Mass spectrum of compound 8d

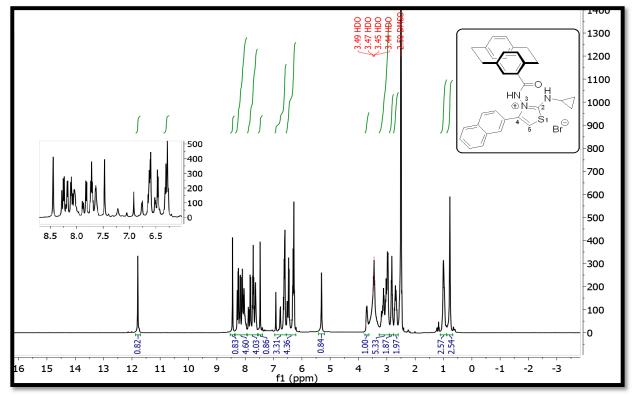


Figure S33. ¹H NMR spectrum of compound 9

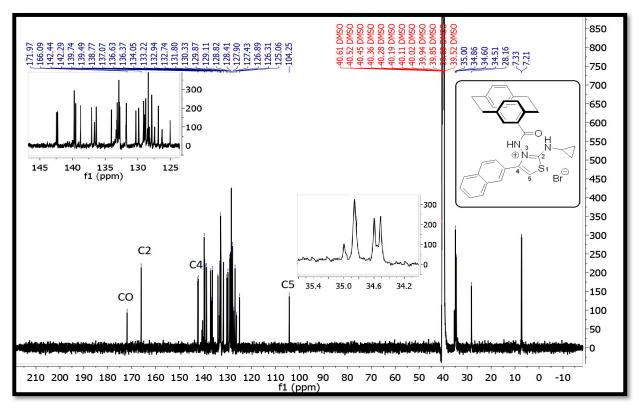


Figure S34. ¹³C NMR spectrum of compound 9

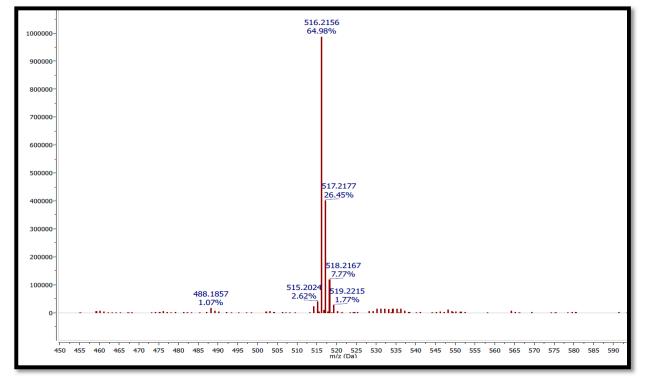


Figure S35. HRMS and Mass spectrum of compound 8a

2. Biology

I- Tables

Phase	Phase %	Phase %										
	3c	Dinacicilib	control									
%G0-G1	37.26	41.43	56.29									
%S	26.38	29.17	31.96									
%G2-M	36.36***	29.4***	11.75									
%Pre G1	36.41***	32.84***	1.61									

Table S1. DNA content % using propidium iodide flow cytometry.

Results Significantly different from control at ***p < 0.05.

Table S2: Predicted binding scores for compounds **3a-e**, **8a-d**, **9** and Dinacicilib in CDK1 active site (PDB code: 6GU6).

Compound	Docking Score (kca/mol)	Compound	Docking Score (kca/mol)
Dinacicilib	-10.6	8a	-8.8
3 a	-9.5	8b	-8.7
3b	-9.4	8c	-8.9
3c	-9.8	8d	-8.7
3d	-9.4	9	-8.6
3e	-9.3		

Table S3: Predicted binding scores for *p*-xylene analogs of compounds **3a-e** in CDK1 active site (PDB code: 6GU6).

Compound	Docking Score (kca/mol)
<i>p</i> -xylene 3a	-8.3
<i>p</i> -xylene 3b	-8.2
<i>p</i> -xylene 3 c	-8.7
<i>p</i> -xylene 3d	-8.6
<i>p</i> -xylene 3e	-8.1

II- Figure Ss

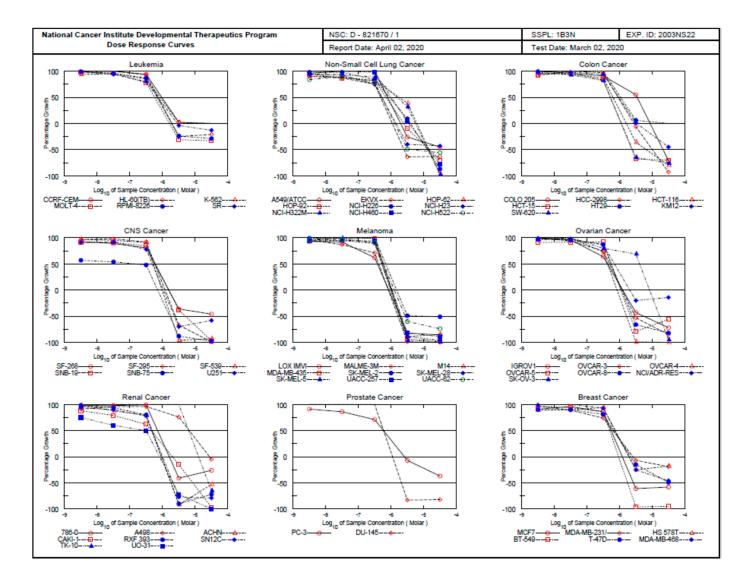


Figure S36. Dose Response Curves for all cell line for compound 3d

	National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results														
NSC : D - 82	Ехр	Experiment ID : 2003NS22							ype : 08	Units : M	Iolar				
Report Date :	April 02	, 2020			Tes	t Date	: March	02, 202	D			QNS :		MC :	
COMI : LE14	2				Stai	n Rea	gent : S	RB Dual	Pass P	Related	I	SSPL	: 1B3N		
	_						-	oentration	_			•		•	
Panel/Cell Line	Time Zero	Ctrl	-8.5	Mear -7.5	-6.5	-5.5	es -4.5	-8.5	-7.5	ercent G -6.5	-5.5	-4.5	GI50	TGI	LC50
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.510 0.825 0.235 0.763 0.711 0.391	2.658 3.183 2.239 3.141 2.867 1.744	2.684 3.154 2.127 3.098 2.841 1.730	2.733 3.177 2.138 3.043 2.789 1.665	2.525 3.012 1.935 2.613 2.591 1.476	0.551 0.622 0.279 0.525 0.537 0.374	0.513 0.650 0.238 0.514 0.507 0.342	101 99 94 98 99	103 100 95 96 94	94 93 85 78 87 80	2 -25 -31 -24	-21 -33 -29 -13	9.98E-7 7.70E-7 8.79E-7 5.99E-7 7.17E-7 7.57E-7	> 3.33E-5 2.05E-6 > 3.33E-5 1.72E-6 2.01E-6 2.95E-6	> 3.33E-6 > 3.33E-6 > 3.33E-6 > 3.33E-6 > 3.33E-5 > 3.33E-6
Non-Small Cell Lun A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H225 NCI-H220 NCI-H322M NCI-H450 NCI-H522	g Cancer 0.425 0.561 1.398 1.117 0.785 0.897 0.676 0.317 0.874	2.293 2.078 2.939 1.845 2.033 2.486 1.772 2.930 2.183	2.221 1.923 2.805 1.810 2.007 2.396 1.712 2.962 1.979	2.332 1.879 2.765 1.754 2.012 2.379 1.697 3.018 2.038	2.306 1.691 2.668 1.713 1.831 2.089 1.646 2.867 1.890	0.313 0.202 1.998 1.008 0.892 0.541 1.030 0.390 0.446	0.233 0.209 0.061 0.339 0.103 0.510 0.016 0.070 0.384	96 90 95 98 94 95 101 84	102 87 98 93 93 103 89	101 75 82 84 75 89 98 78	\$489°988°9	45 -66 -70 -87 -87 -88 -98 -88 -98 -86 -78 -56	8.35E-7 5.01E-7 1.85E-6 7.41E-7 9.36E-7 5.50E-7 1.61E-6 1.06E-6 5.51E-7	2.07E-6 1.15E-6 6.48E-6 2.60E-6 4.09E-6 1.50E-6 5.90E-6 3.60E-6 1.37E-6	> 3.33E-5 2.64E-6 1.53E-6 1.56E-6 1.37E-5 > 3.33E-5 1.43E-6 1.50E-6 4.64E-6
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.722 0.774 0.260 0.396 0.643 0.360	2.900 2.533 2.842 2.399 2.543 3.135 2.637	2.893 2.394 2.750 2.248 2.518 3.098 2.601	2.813 2.612 2.701 2.334 2.590 3.093 2.471	2.709 2.473 2.520 2.028 2.566 2.997 2.234	1.915 0.728 0.194 0.084 0.533 0.676 0.125	0.208 0.052 0.061 0.079 0.396 0.354 0.086	100 92 93 99 99 98	96 104 97 102 98 93	91 97 87 83 101 94 82	55 + 5 - 56 + 6 - 55 + 5	-71 -93 -80 -70 -45 -76	3.63E-6 9.48E-7 6.67E-7 5.49E-7 1.15E-6 9.99E-7 5.51E-7	9.06E-6 2.91E-6 1.70E-6 1.18E-6 3.18E-5 3.56E-6 1.20E-6	2 26E-5 1.06E-5 6.89E-6 2.54E-6 > 3.33E-5 > 3.33E-5 2.62E-6
CNS Cancer SF-268 SF-295 SNB-19 SNB-19 SNB-75 U251	0.756 0.953 0.702 0.901 1.913 0.417	2.524 3.229 2.401 2.530 2.894 2.043	2.399 3.163 2.354 2.381 2.471 1.893	2.329 3.177 2.309 2.391 2.439 1.916	2.190 3.058 2.255 2.293 2.380 1.678	0.487 0.314 0.029 0.558 0.223 0.125	0.412 0.012 0.048 0.029 0.031 0.176	93 97 97 91 57 91	89 95 91 54 92	81 92 91 85 48 78	36 -57 -38 -88 -70	-46 -99 -93 -97 -98 -58	6.15E-7 6.15E-7 5.54E-7 6.45E-7 1.32E-7 5.12E-7	1.65E-6 1.27E-6 1.02E-6 1.64E-6 7.46E-7 1.12E-6	> 3.33E-5 2.60E-6 1.89E-6 5.31E-6 1.74E-6 2.43E-6
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-28 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-62	0.342 0.733 0.498 0.572 1.118 0.802 0.878 1.032 1.131	2.445 1.265 2.251 2.542 2.596 2.118 3.175 2.464 2.967	2.302 1.245 2.136 2.447 2.577 2.159 3.113 2.379 2.885	2.267 1.197 2.160 2.595 2.619 2.235 3.150 2.394 2.917	1.655 1.110 2.066 2.526 2.633 2.296 2.966 2.378 2.807	0.063 0.008 0.055 0.034 0.571 0.092 0.034 0.190 0.448	0.049 -0.005 0.075 0.016 0.546 0.030 0.011 0.109 0.299	93 96 93 95 99 103 97 94 96	92 87 103 102 109 95 97	62 71 89 99 102 113 91 94 91	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-86 -100 -85 -97 -51 -96 -99 -89 -74	4.06E-7 4.42E-7 5.54E-7 5.98E-7 7.39E-7 6.87E-7 5.51E-7 5.93E-7 6.23E-7	9.04E-7 8.70E-7 1.05E-6 1.09E-6 1.58E-6 1.02E-6 1.14E-6 1.33E-6	2.01E-6 1.71E-6 2.01E-6 9.60E-6 2.15E-6 1.89E-6 2.20E-6 2.84E-6
Ovarlan Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-5 OVCAR-8 NCIADR-RES SK-OV-3	0.483 0.492 1.065 0.797 0.451 0.567 1.041	1.984 1.714 1.998 2.041 2.377 2.184 2.044	2.032 1.729 1.971 1.926 2.311 2.170 2.012	1.931 1.645 2.020 1.946 2.295 2.154 2.070	1.438 1.408 1.748 1.941 2.125 1.979 1.842	0.275 0.232 0.013 0.169 0.155 0.455 1.734	0.135 0.072 0.004 0.349 0.081 0.486 0.048	103 101 97 91 97 99 97	96 94 102 96 98 103	64 75 73 92 87 87 80	43999698	-72 -85 -100 -56 -82 -14 -95	4.46E-7 5.22E-7 4.54E-7 5.86E-7 5.81E-7 7.43E-7 4.35E-6	1.31E-6 1.28E-6 8.87E-7 1.15E-6 1.24E-6 2.17E-6 8.75E-6	5.78E-6 3.16E-6 1.73E-6 2.65E-6 2.63E-6 > 3.33E-6 1.76E-5
Renal Canoer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	1.016 1.819 0.368 0.530 0.962 0.763 1.162 0.618	3.077 2.610 1.804 1.911 1.803 2.720 1.919 1.662	1.787 2.605 1.893	3.046 2.576 1.632 1.620 1.755 2.516 2.112 1.248	1.639 2.293 2.435	0.095 0.178 2.380	0.266 0.157 0.404	98 91 98 98 98 94 97 75	98 96 88 79 94 90 126 60	99 96 79 62 80 78 168 50	-41 -92 -15 -90 -77 161 -72	-26 -53 -97 -72 -79 -65 -100	7.48E-7 6.93E-6 4.92E-7 4.80E-7 5.02E-7 5.06E-7 1.03E-5 3.34E-7	1.70E-6 2.90E-5 9.65E-7 2.14E-6 9.86E-7 1.07E-6 1.71E-5 8.60E-7	> 3.33E-5 > 3.33E-5 1.89E-6 8.98E-6 1.94E-6 2.24E-6 2.85E-5 2.21E-6
Prostate Cancer PC-3 DU-145	0.560 0.439	1.738 2.029		1.573 2.144				91 103	86 107	71 102	-7 -83	-37 -82	6.20E-7 6.37E-7	2.69E-6 1.19E-6	> 3.33E-5 2.22E-6
Breast Canoer MCA-MB-231/ATC HS 578T BT-549 T-47D MDA-MB-468	1.398 1.363 1.004	2.366 1.705 2.514 2.471 2.375 2.186	1.671 2.391 2.428 2.232	2.278 1.595 2.400 2.403 2.245 2.184	1.431 2.450 2.311 2.115	0.612 1.048 0.049 0.849	0.533 1.150 0.074 0.514	91 97 89 96 90 99	96 89 90 94 90 100	86 74 94 86 81 93	-61 -7 -25 -96 -15 -25	58 19 19 95 99 46	5.83E-7 6.52E-7 7.82E-7 5.22E-7 6.98E-7 7.66E-7	1.28E-6 2.69E-6 2.05E-6 9.83E-7 2.30E-6 2.04E-6	2.82E-6 > 3.33E-6 > 3.33E-6 1.85E-6 > 3.33E-6 > 3.33E-6 > 3.33E-6

Figure S37. Log 10 concentration of compound 3d

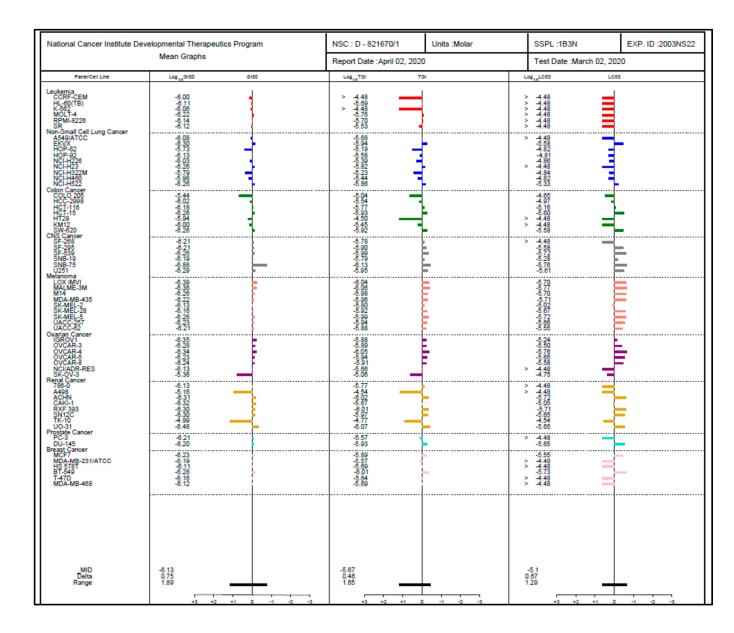


Figure S38. Log 10 concentration of compound 3d

Figure S39. Dose Response Curves for all cell line for compound 3e

	National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results														
NSC : D - 82	Experiment ID : 2003NS22							Test T	Test Type : 08		Iolar				
Report Date :	: April 02	, 2020			Tes	t Date	: March	02, 202	D			QNS :		MC :	
COMI : LE 14	46				Stai	n Rea	gent : S	RB Dual	Pass F	Related	i	SSPL	: 1B3N		
	Time			Marrie	Online		-	centration		ercent G	-				
Panel/Cell Line Leukemia	Zero	Ctrl	-8.0	-7.0	-6.0	-5.0	-4.0	-8.0	-7.0	-6.0	-5.0	-4.0	GI50	TGI	LC50
CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.510 0.825 0.235 0.763 0.711 0.391	2.691 3.183 2.184 3.137 2.827 1.715	2.630 3.125 2.183 3.161 2.751 1.751	2.639 3.148 2.210 3.175 2.749 1.686	2.283 2.871 1.773 2.632 2.295 1.241	0.590 0.642 0.315 0.731 0.587 0.383	0.602 0.618 0.273 0.749 0.610 0.405	97 98 100 101 96 103	98 99 101 102 96 98	81 87 79 79 75 64	4214 417 9	4 -25 -2 -14 1	2.53E-6 2.18E-6 2.43E-6 2.22E-6 1.86E-6 1.64E-6	 1.00E-4 6.26E-6 1.00E-4 8.89E-6 6.47E-6 	> 1.00E4 > 1.00E4 > 1.00E4 > 1.00E4 > 1.00E4 > 1.00E4 > 1.00E4
Non-Small Cell Lur AS49/ATCC EK/X HOP-92 HOP-92 NCI-H225 NCI-H225 NCI-H225 NCI-H225 NCI-H322M NCI-H450 NCI-H522	ng Cancer 0.425 0.561 1.398 1.117 0.785 0.897 0.676 0.317 0.874	2.366 2.124 3.018 1.906 2.010 2.667 1.848 2.879 2.268	2.391 1.997 2.921 1.841 1.955 2.579 1.854 2.947 2.141	1.837 2.826 1.775 1.946 2.508 1.771 2.919	2.329 1.596 2.776 1.680 1.710 1.981 1.655 2.775 1.874	0.310 0.664 1.877 1.206 0.604 0.583 0.445 0.533 0.557	0.303 0.211 0.052 0.449 0.074 0.540 -0.036 0.041 0.515	101 92 94 95 101 103 91	107 82 88 95 91 93 102 89	98 66 85 71 76 61 84 96 72	-27 7 30 11 -23 -35 -34 8 -35	242 56 57 400 7 400 7 7 400 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.42E-6 1.87E-6 4.28E-6 2.26E-6 1.81E-6 1.93E-6 3.35E-6 1.60E-6	6.07E-6 1.25E-5 1.72E-5 1.44E-5 5.83E-6 4.32E-6 5.13E-6 1.22E-5 4.69E-6	> 1.00E-4 6.60E-5 4.29E-6 7.28E-6 2.50E-6 > 1.00E-4
Colon Cancer COLO 205 HCC-2996 HCT-116 HCT-15 HT29 KM12 SW-620	0.722 0.774 0.260 0.396 0.643 0.360	2.950 2.528 2.858 2.347 2.555 3.093 2.619	3.030 2.373 2.862 2.327 2.534 3.023 2.511	2.931 2.489 2.658 2.380 2.646 3.070 2.403	2.898 2.364 2.286 1.865 2.560 2.856 2.397	0.882 0.625 0.249 0.069 0.477 0.857 0.174	0.271 -0.018 0.027 0.062 0.379 0.286 0.116	104 91 100 99 97 95	99 98 92 102 104 99 90	98 91 78 77 100 90 90	7 -19 -18 -74 -74 9 -52	-62 -100 -91 -76 -4 -56 -68	3.36E-6 2.34E-6 1.51E-6 3.32E-6 3.12E-6 1.92E-6	1.27E-5 6.67E-6 6.45E-6 3.24E-6 2.87E-5 1.37E-5 4.32E-6	6.62E-5 2.40E-5 2.73E-5 6.96E-6 > 1.00E-4 8.18E-5 9.71E-6
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.756 0.953 0.702 0.901 1.913 0.417	2.512 3.260 2.407 2.515 2.863 2.108	2.449 3.215 2.330 2.470 2.631 2.064	2.422 3.218 2.390 2.451 2.632 2.037	2.194 3.186 2.284 2.370 2.476 1.772	0.808 1.225 0.012 1.021 1.596 0.438	0.260 -0.043 0.001 -0.063 -0.020 0.308	96 98 95 97 76 97	95 98 99 96 76 96	82 97 93 91 59 80	3 12 -98 7 -17 1	-66 -100 -100 -100 -100 -26	2.54E-6 3.55E-6 1.67E-6 3.09E-6 1.32E-6 2.41E-6	1.10E-5 1.27E-5 3.06E-6 1.17E-5 6.04E-6 1.11E-5	5.91E-5 3.57E-5 5.58E-6 3.42E-5 2.51E-5 > 1.00E-4
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-28 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.342 0.733 0.498 0.572 1.118 0.802 0.878 1.032 1.131	2.434 1.338 2.275 2.578 2.690 2.155 3.159 2.529 3.034	2.259 1.331 2.142 2.566 2.693 2.218 3.136 2.463 2.942	2.297 1.369 2.656 2.624 2.299 3.110 2.514 2.942	1.374 0.928 1.724 2.508 2.564 2.237 2.640 2.338 2.675	0.108 -0.012 0.082 0.041 0.951 0.468 0.018 0.242 0.371	-0.037 -0.057 0.071 -0.045 0.546 -0.024 -0.046 0.128 0.186	92 99 93 99 100 105 99 96 95	93 105 90 104 96 111 98 99 95	49 32 69 96 92 106 77 87 81	-100 -843 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15	-100 -100 -86 -100 -51 -100 -88 -84	9.66E-7 5.70E-7 1.33E-6 1.76E-6 2.47E-6 2.40E-6 1.43E-6 1.69E-6 1.62E-6	2.62E-6 1.75E-6 2.83E-6 3.23E-6 7.25E-6 5.22E-6 2.76E-6 3.41E-6 3.52E-6	6.98E-6 4.19E-6 6.03E-6 9.29E-6 1.39E-6 5.32E-6 5.32E-6 6.88E-6 7.66E-6
Ovarian Canoer IGROV1 OVCAR-3 OVCAR-4 OVCAR-6 OVCAR-6 OVCAR-8 NCI/ADR-RES SK-OV-3	0.483 0.492 1.065 0.797 0.451 0.567 1.041	2.061 1.683 1.968 2.042 2.338 2.195 2.127	1.991 1.682 2.027 2.041 2.311 2.204 2.147	1.780 1.622 1.965 2.070 2.237 2.182 2.124	1.355 1.325 1.723 1.996 1.994 1.806 2.029	0.355 0.303 0.666 0.163 0.562 0.479 1.504	0.079 0.022 -0.044 0.352 0.066 0.495 0.143	96 100 107 100 99 101 102	82 95 100 102 99 100	55 70 73 96 82 76 91	-27 -38 -37 -80 -16 43	-84 -96 -100 -56 -85 -13 -86	1.16E-6 1.53E-6 1.61E-6 1.83E-6 2.62E-6 1.93E-6 7.03E-6	4.74E-6 4.42E-6 4.58E-6 3.53E-6 1.16E-5 6.77E-6 2.14E-5	2.58E-5 1.59E-5 6.79E-6 4.10E-5 > 1.00E-4 5.23E-5
Renal Canoer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	1.016 1.819 0.368 0.530 0.962 0.763 1.162 0.618	3.147 2.582 1.829 1.953 1.743 2.699 2.014 1.756	1.771 1.843 1.716 2.521 2.083	2.617 1.699 1.753	2.548 1.407 1.509 1.606 2.148 2.647	2.449 0.086 0.831 0.584 -0.005 1.998	-0.019 -0.029 -0.051 0.192	100 96 92 97 91 108 69	98 105 91 86 101 94 148 62	98 96 71 69 82 72 174 49		-51 -20 -91 -100 -100 -84 -100	2.75E-6 2.07E-5 1.39E-6 2.48E-6 1.85E-6 1.85E-6 1.33E-6 1.84E-5 8.50E-7	7.93E-6 6.34E-5 3.03E-6 1.49E-5 4.75E-6 2.61E-6 3.47E-5 2.77E-6	9.61E-5 > 1.00E-4 6.60E-6 3.87E-5 1.50E-5 5.11E-6 6.54E-5 7.85E-6
Prostate Cancer PC-3 DU-145	0.560 0.439	1.756 1.975	1.672 2.057	1.572 2.032	1.313 1.977	0.569	0.412	93 105	85 104	63 100	-87	-26 -82	1.62E-6 1.85E-6	1.07E-5 3.43E-6	> 1.00E-4 6.36E-6
Breast Cancer MCF7 MDA-MB-231/ATC HIS 578T BT-549 T-47D MDA-MB-468	1.398 1.363 1.004	2.302 1.660 2.565 2.576 2.401 2.247	1.639 2.379 2.515 2.306	2.204 1.568 2.430 2.385 2.317 2.288	1.241 2.386 2.342 2.105	0.658 1.065 0.092 1.090	0.497 1.210 0.015 0.672	97 98 84 95 93 102	95 91 88 84 94 103	71 58 85 81 79 95	-66 -24 -93 -15	-80 -25 -13 -99 -33 -36	1.42E-6 1.37E-6 2.09E-6 1.50E-6 2.49E-6 2.55E-6	3.29E-6 9.82E-6 6.03E-6 2.91E-6 1.44E-5 7.32E-6	7.62E-6 > 1.00E-4 > 1.00E-4 5.64E-6 > 1.00E-4 > 1.00E-4

Figure S40. Log 10 concentration of compound 3e

National Cancer Institute Deve	elopmental Therapeu	ics Program	NSC : D - 821674/1	Units :Molar	SSPL :1B3N	EXP. ID :2003NS22
	Mean Graphs		Report Date :April 02, 202	20	Test Date :March 02, 20	20
Panel/Cell Line	Log ₁₀ GI50	GI50	Log ₁₀ TGI T	GI	Log ₁₀ LC50 LC5	50
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	-5.60 -5.66 -5.61 -5.65 -5.73 -5.79		> -4.00 -5.20 > -4.00 -5.05 -5.19		> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00	
No. No. No. No. No. No. No. No.	-5.62 -5.73 -5.37 -5.65 -5.74 -5.88 -5.71 -5.48 -5.74 -5.80	-	-5.22 -4.90 -4.107 -4.174 -5.23 -5.23 -5.26 -5.29 -4.91 -5.33		> -4.00 -4.18 -4.37 -4.14 -4.10 -4.16 -4.16 -4.16 -4.29 -4.20 -4.20 -4.20	
NCI-H522 Colon Cancer COLO 2056 HCC-7396 HCC-7396 HCT-16 HT29 KM12 SW-620 CNS Cancer SF-268 S	-5.47 -5.63 -5.71 -5.82 -5.48 -5.51 -5.72	ł	-4.90 -5.18 -5.19 -4.54 -4.86 -5.36		-4.18 -4.62 -4.56 -5.16 > -4.00 -5.01	_
SNB-75 U251 Melanoma	-5.60 -5.45 -5.78 -5.51 -5.88 -5.62		-4.96 -4.89 -5.51 -4.93 -5.22 -4.96		4.23 4.45 5.25 4.47 4.60 > 4.00	—
MALME-3M M4.MB-335 MK-MBL-25 SK-MEL-29 SK-MEL-29 SK-MEL-29 UACC-297 U-4700 Cancer IOVCAR-3 OVCAR-3 OVCAR-3 OVCAR-8	-6.01 -6.24 -5.88 -5.75 -5.61 -5.62 -5.84 -5.77 -5.79		-5.58 -5.76 -5.55 -5.49 -5.14 -5.14 -5.56 -5.67 -5.45		-5.16 -5.32 -5.223 -4.08 -2.16 -5.12	
OVCAR-1 IGROOV OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCU/ADR-RES SK-0V-3 Renal Cancer 786-0	-5.94 -5.82 -5.79 -5.74 -5.58 -5.72 -5.72 -5.15		-532 -535 -534 -544 -544 -494 -5.17 -4.67			<u>-</u>
786-U A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 Prostate Cancer	-5.56 -4.68 -5.86 -5.61 -5.73 -5.87 -4.74 -6.07		-5.10 -4.20 -5.52 -4.83 -5.38 -5.38 -5.38 -5.58 -5.58 -4.97		-4.02 > -4.00 -5.18 -4.41 -4.82 -5.29 -4.18 -5.11	_
PC-3 DU-145	-5.79 -5.73		-5.46	-	> -4.00 -5.20	
Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	-5.85 -5.86 -5.68 -5.82 -5.60 -5.59	Ē	-5.48 -5.01 -5.22 -5.54 -4.84 -5.14		-5.12 > -4.00 -5.25 > -4.00 -5.25 > -4.00	_
MID	-5.67		-5.14		4.52	
Telta Range	-5.67 0.57 1.56 +3 +2	+1 0 -1 -2 -3	-0.14 0.62 1.76 +3 +2 +1	0 -1 -2 -3	-4.52 0.86 1.38 +3 +2 +1 0	-1 -2 -3

Figure S41. Log 10 concentration of compound 3e

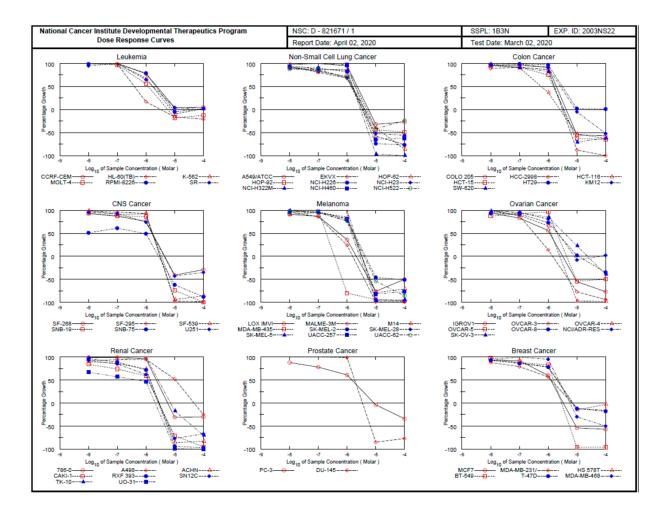


Figure S42. Dose Response Curves for all cell line for compound 3c

	National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results														
NSC : D - 821	1671/1		Ехр	Experiment ID : 2003NS22							Гуре : 08	Units : N	Iolar		
Report Date :	Report Date : April 02, 2020					t Date	: March	n 02, 2020	D			QNS	:	MC :	
COMI : LE 15	5				Stai	in Rea	gent : S	RB Dual	Pass	Related	i	SSPL	: 1B3N		
	Time			Maar	Optical			ncentration		ercent G	mult				
Panel/Cell Line Leukemia	Zero	Ctrl	-8.0	-7.0	-6.0	-5.0	-4.0	-8.0	-7.0	-6.0	-5.0	-4.0	GI50	TGI	LC50
CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.510 0.825 0.235 0.763 0.711 0.391	2.658 3.183 2.239 3.141 2.867 1.744	2.693 3.200 2.266 3.136 2.845 1.672	2.672 3.161 2.311 3.080 2.893 1.749	2.191 1.224 1.593 2.106 2.410 1.275	0.587 0.693 0.211 0.627 0.676 0.451	0.623 0.654 0.273 0.668 0.763 0.396	102 101 101 100 99 95	101 99 104 97 101 100	78 17 68 56 79 65	4 -16 -10 -18 -5 4	5 -21 -13 2	2.39E-6 3.95E-7 1.69E-6 1.22E-6 2.21E-6 1.78E-6	> 1.00E-4 3.26E-6 5.76E-6 > 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Nor-Small Cell Lun A549/ATCC EKVX HOP-52 HOP-92 NCI-H225 NCI-H225 NCI-H225 NCI-H220 NCI-H322 NCI-H460 NCI-H522	g Cancer 0.425 0.561 1.398 1.117 0.785 0.897 0.676 0.317 0.874	2.293 2.078 2.939 1.845 2.033 2.486 1.772 2.930 2.183	2.253 1.966 2.773 1.955 2.350 1.686 2.968 2.023	2.359 1.791 2.718 1.720 1.903 2.230 1.637 2.996 2.018	2.198 1.596 2.742 1.645 1.812 2.007 1.602 2.840 1.778	0.290 0.234 0.840 0.625 0.202 0.435 0.019 0.112 0.508	0.310 0.135 0.193 0.574 0.177 0.392 -0.002 0.121 0.666	98 93 93 94 91 92 101 88	104 81 86 83 90 84 88 103 87	95 68 87 72 82 70 85 97 69	328 44 47 52 54 44 74 52 55 54	-27 -76 -86 -49 -77 -56 -100 -62 -24	226E-6 1.39E-6 1.66E-6 1.61E-6 1.61E-6 1.65E-6 1.55E-6 1.94E-6 1.49E-6	5.61E-6 3.46E-6 4.85E-6 3.36E-6 3.76E-6 2.92E-6 3.97E-6 4.19E-6	> 1.00E-4 8.60E-6 1.65E-5 > 1.00E-4 6.99E-6 9.72E-6 5.50E-6 8.11E-6 > 1.00E-4
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.722 0.774 0.304 0.260 0.396 0.643 0.360	2.900 2.533 2.842 2.399 2.543 3.135 2.637	2.815 2.347 2.780 2.292 2.491 3.139 2.540	2.819 2.385 2.624 2.235 2.518 3.108 2.422	2.732 2.299 1.244 1.868 2.468 2.922 2.243	0.327 0.093 0.144 0.097 0.430 0.609 0.105	0.311 -0.001 0.114 0.090 0.412 0.309 0.138	96 89 98 95 98 100 96	96 92 91 92 99 99 91	92 87 37 75 97 91 83	-55 -88 -53 -63 2 -5 -71	-57 -100 -63 -65 -52 -62	1.94E-6 1.62E-6 5.77E-7 1.52E-6 3.09E-6 2.68E-6 1.63E-6	4.24E-6 3.14E-6 2.58E-6 3.50E-6 > 1.00E-4 8.80E-6 3.45E-6	9.28E-6 6.06E-6 9.31E-6 8.07E-6 > 1.00E-4 9.05E-5 7.30E-6
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.756 0.953 0.702 0.901 1.913 0.417	2.524 3.229 2.401 2.530 2.894 2.043	2.400 3.190 2.390 2.412 2.412 1.954	2.302 3.141 2.249 2.338 2.513 1.921	2.107 3.060 2.270 2.299 2.395 1.616	0.445 0.031 0.041 0.232 0.725 0.238	0.533 0.012 0.099 -0.014 0.232 0.272	93 98 99 93 51 95	87 96 91 88 61 93	76 93 92 86 49 74	41-9-94-74-62-43	-29 -99 -86 -100 -88 -35	1.68E-6 1.68E-6 1.69E-6 1.67E-6 8.43E-7 1.60E-6	4.48E-6 3.08E-6 3.12E-6 3.44E-6 2.76E-6 4.28E-6	1.00E-4 5.66E-6 5.79E-6 7.05E-6 7.79E-6 > 1.00E-4
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-5 UACC-257 UACC-62	0.342 0.733 0.498 0.572 1.118 0.802 0.878 1.032 1.131	2.445 1.265 2.251 2.542 2.596 2.118 3.175 2.464 2.967	2.262 1.243 2.097 2.535 2.574 2.161 3.157 2.403 2.918	2.165 1.189 2.165 2.592 2.537 2.205 3.055 2.420 2.869	1.102 0.863 1.989 0.112 2.311 2.171 2.620 2.191 2.560	0.082 0.006 0.104 0.034 0.600 0.049 0.031 0.190 0.525	0.171 0.008 0.142 0.015 0.553 0.029 0.045 0.236 0.157	91 96 91 100 98 103 99 96 97	87 95 103 96 107 95 97 95	36 24 85 -80 81 104 76 81 78	-76 -99 -946 -962 -845 -845 -845 -845 -845 -845 -845 -845	-50 -99 -71 -97 -51 -95 -95 -77 -86	5.32E-7 3.83E-7 1.63E-6 1.94E-7 1.74E-6 1.47E-6 1.47E-6 1.41E-6 1.55E-6 1.63E-6	2.10E-6 1.58E-6 3.30E-6 3.63E-7 4.32E-6 3.35E-6 2.75E-6 3.15E-6 3.91E-6	5.86E-6 4.00E-6 6.65E-6 6.82E-7 7.27E-5 6.00E-6 5.37E-6 6.39E-6 9.38E-6
Ovarlan Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-5 NCIADR-RES SK-OV-3	0.483 0.492 1.065 0.797 0.451 0.567 1.041	1.984 1.714 1.998 2.041 2.377 2.184 2.044	1.898 1.728 1.968 1.878 2.242 2.180 2.026	1.725 1.571 1.896 1.950 2.226 2.104 1.990	1.324 0.664 1.685 1.994 1.866 1.880 1.899	0.219 0.112 0.036 0.368 0.486 0.522 1.272	0.112 0.029 0.021 0.398 0.294 0.597 0.632	94 101 97 87 93 100 98	83 88 93 92 95 95	56 14 66 96 73 81 85	-55 -77 -97 -54 -8 23	-77 -94 -98 -50 -35 2 -39	1.13E-6 3.28E-7 1.26E-6 2.03E-6 2.13E-6 2.24E-6 3.70E-6	3.21E-6 1.43E-6 2.56E-6 4.37E-6 1.12E-5 2.34E-5	9.08E-6 5.03E-6 5.18E-6 9.42E-6 > 1.00E-4 > 1.00E-4 > 1.00E-4
Renai Canoer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	1.016 1.819 0.368 0.530 0.962 0.763 1.162 0.618	3.077 2.610 1.804 1.911 1.803 2.720 1.919 1.662	3.047 2.548 1.664 1.693 1.770 2.573 1.905 1.320	3.067 2.561 1.608 1.549 1.708 2.434 2.253 1.214	2.993 2.574 1.437 1.351 1.567 1.971 2.492 1.108	0.701 2.229 0.051 0.155 0.058 0.178 0.962 0.004	0.711 1.360 0.064 0.025 0.026 0.253 0.343 -0.010	99 90 84 93 98 67	99 94 86 74 89 85 144 57	96 95 74 59 72 62 176 47	-31 52 66 71 -94 77 79	-30 -25 -83 -95 -97 -67 -70 -100	2.30E-6 1.05E-5 1.42E-6 1.18E-6 1.35E-6 1.22E-6 4.48E-6 4.96E-7	5.70E-6 4.70E-5 2.91E-6 2.86E-6 2.71E-6 2.79E-6 8.14E-6 2.09E-6	> 1.00E-4 > 1.00E-4 5.96E-6 6.92E-6 5.43E-6 4.13E-5 4.60E-6
Prostate Cancer PC-3 DU-145	0.560 0.439	1.738 2.029		1.481 2.065				88 105	78 102	61 99	4 -85	-34 -77	1.49E-6 1.85E-6	8.81E-6 3.45E-6	> 1.00E-4 6.46E-6
Breast Canoer MCF7 MDA-MB-231/ATC HS 578T BT-549 T-47D MDA-MB-468	0.368 C 0.661 1.398 1.363 1.004 0.883	2.366 1.705 2.514 2.471 2.375 2.186	1.580 2.447 2.453 2.272	1.485 2.367 2.337	2.067	0.581 1.189 0.058 0.880	0.558 1.362 0.054 0.821	92 88 94 98 93 94	92 79 87 88 86 100	60 57 79 83 78 95	-54 -12 -15 -96 -12 -30	-57 -16 -3 -96 -18 -50	1.23E-6 1.27E-6 2.04E-6 1.53E-6 2.03E-6 2.28E-6	3.36E-6 6.69E-6 6.93E-6 2.91E-6 7.29E-6 5.72E-6	9.17E-6 > 1.00E-4 > 1.00E-4 5.54E-6 > 1.00E-4 > 1.00E-4

Figure S43. Log 10 concentration of compound 3c

National Cancer Institute Deve	elopmental Therapeutics Progr	am	NSC : D - 821671/1	Units :Molar	SSPL :1B3N	EXP. ID :2003NS22		
	Mean Graphs	ſ	Report Date :April 02, 2020)	Test Date :March 02, 2020			
Panel/Cell Line	Log ₁₀ GI50 G	50	Log _{in} TGI TG	91	Log LOSO LOSI	0		
Leukemia CCRF-CEM HL-60(TB) MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer	-5.82 -8.40 -5.77 -5.91 -5.66 -5.75	-	> -4.00 -5.49 -5.24 > -4.00	•	> 4.00 > 4.00 > 4.00 > 4.00 > 4.00 > 4.00			
A549/ATCC EKVX HOP-82 HOP-92 NCI-1226 NCI-1227 NCI-1227 NCI-1227 NCI-1227 NCI-1227 NCI-1227 NCI-1227 NCI-1227 NCI-127	-5.85 -5.71 -5.71 -5.79 -5.79 -5.79 -5.84 -5.81 -5.81 -5.81 -5.83		5256 5431 5431 5431 5442 553 540 538		> 4.00 4.507 4.507 4.400 -5.501 -5.500 -5.500 > 4.00			
Colon Cancer COLO-2598 HCC-2598 HCT-116 HCT-15 HT29 KM120 CNS Cancer	-5.71 -5.79 -6.24 -6.82 -5.51 -5.51 -5.57	-	-5.37 -5.50 -5.46 > -4.00 -5.06 -5.46		-5.03 -5.222 -5.09 > -4.00 -6.14			
SW-0210er CNSC 200eer SF-205 SF-205 SNB-19 SNB-75 U251 Melanoma	-5.77 -5.78 -5.77 -5.78 -5.78 -8.07 -5.80	-	-5.35 -5.51 -5.51 -5.54 -5.56 -5.56 -5.37		> 4.00 -5.25 -6.24 -6.16 -5.11 > 4.00			
LBOXINAVI MALME-3M MILA-MB-435 3CA-MEL-28 SK-MEL-28 SK-MEL-5 UACC-22 ACC-42	-8.27 -8.42 -8.78 -8.71 -5.76 -5.73 -5.81 -5.79	-	-008 -008 -008 -008 -008 -008 -008 -008		523 540 518 417 414 522 527 519 503	_		
UNCU-52 Varian Cancer IGROM OVCAR-4 OVCAR-5 OVCAR-6 OVCAR-8 NCIADR-RES SK-OV-3 Renal Cancer 766-0	-5.95 -6.48 -5.69 -5.67 -5.67 -5.65	-	-5.49 -5.85 -5.59 -5.36 -5.38 -4.95 -4.63		-5.04 -5.29 -5.03 > 4.00 > 4.00			
A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	-5.64 -4.98 -5.855 -5.93 -5.93 -5.92 -5.92 -5.35 -6.30		-5.24 4.33 -5.54 -5.57 -5.57 -5.55 -5.09 -5.68		> 4.00 > 4.00 -5.23 -5.16 -5.27 -5.19 -4.38 -5.34			
Prostate Cancer PC-3 DU-145	-5.83 -5.73		-5.06 -5.46	•	> -4.00 -5.19	_		
Breast Canoer MCA-MB-23 1/ATCC HS 578T BT-549 T-47D MDA-MB-468	-5.91 -5.90 -5.60 -5.62 -5.69 -5.64		-5.47 -5.17 -5.16 -5.54 -5.14 -5.14 -5.24		-5.04 > 4.00 -5.26 > 4.00 > 4.00	_		
MID Delta Range	-5.82 0.89 1.73		-5.33 1.11 2.44		4.7 1.47 2.17			

Figure S44. Log 10 concentration of compound 3c

III- Material and methods

1. NCI screening assay

As mentioned, the methodology of the NCI procedure for primary anticancer assay was detailed on their site (http://www.dtp.nci.nih.gov). But briefly, the protocol performed at sixty human tumor cell lines panel derived from different nine neoplastic diseases. NCI-60 testing is performed in two parts: first, a single concentration is tested in all 60 cell lines at a single dose of 10-5 molar or 15 μ g/mL in accordance with the protocol of the Drug Evaluation Branch, National Cancer Institute, Bethesda, USA. If the results obtained meet selection criteria, then the compound is tested again in all 60 cell lines in 5 x 10 folds of dilution with the top dose being 10-4 molar or 150 μ g/mL. Detailed methods are described in supplementary material related to this article.

2. MTT- Cytotoxicity assay method

The MTT method of monitoring *in vitro* cytotoxicity is well suited for use with multi well plates. For best results, cells in the log phase of growth should be employed and final cell number should not exceed 106 cells/cm². Each test should include a blank containing complete medium without cells.

- 1. Remove cultures from incubator into laminar flow hood or other sterile work area.
- Reconstitute each vial of MTT [M-5655] to be used with 3 ml of medium or balanced salt solution without phenol red and serum. Add reconstituted MTT in an amount equal to 10% of the culture medium volume.
- 3. Return cultures to incubator for 2-4 h depending on cell type and maximum cell density. (An incubation period of 2 h is generally adequate but may be lengthened for low cell densities or cells with lower metabolic activity.) Incubation times should be consistent when making comparisons.

- After the incubation period, remove cultures from incubator and dissolve the resulting formazan crystals by adding an amount of MTT Solubilization Solution [M-8910] equal to the original culture medium volume.
- 5. Gentle mixing in a gyratory shaker will enhance dissolution. Occasionally, especially in dense cultures, pipetting up and down [trituration] may be required to completely dissolve the MTT formazan crystals.
- 6. Spectrophotometrically measure absorbance at a wavelength of 570 nm. Measure the background absorbance of multi-well plates at 690 nm and subtract from the 450 nm measurement. Tests performed in multi-well plates can be read using the appropriate type of plate reader or the contents of individual wells may be transferred to appropriate size cuvets for spectrophotometric measurement.

3. CDK inhibitory assay

3.1. Assay Protocol for CDK1/cyclinB

All samples and controls should be tested in duplicate.

1) Thaw 5x Kinase assay buffer 1, ATP and 10x CDK substrate peptide 1.

(Optional: If desired, add DTT to 5x Kinase assay buffer 1 to make a 10 mM concentration, e.g. add 10 µl of 1 M DTT to 1 ml 5x Kinase assay buffer 1)

2)Prepare the master mixture (25 µl per well): N wells x (6 µl 5x Kinase assay buffer 1 + 1 µl ATP

 $(500 \ \mu\text{M}) + 5 \ \mu\text{l} \ 10x \ \text{CDK}$ substrate peptide $1 + 13 \ \mu\text{l}$ distilled water). Add 25 μl to every well.

3)Add 5 µl of Inhibitor solution of each well labeled as "Test Inhibitor". For the "Positive Control" and "Blank", add 5 µl of the same solution without inhibitor (Inhibitor buffer).

4) Prepare 3 ml of 1x Kinase assay buffer 1 by mixing 600 µl of 5x Kinase assay buffer 1 with

2400 μl water. 3 ml of 1x Kinase assay buffer 1 is sufficient for 100 reactions.

5) To the wells designated as "Blank", add 20 µl of 1x Kinase assay buffer 1.

6) Thaw CDK1/CyclinB1 enzyme on ice. Upon first thaw, briefly spin tube containing enzyme to recover full content of the tube. Calculate the amount of CDK1/CyclinB1 required for the assay and dilute enzyme to ~1.0 ng/μl with 1x Kinase assay buffer 1. Store remaining undiluted enzyme in aliquots at -80°C. Note: CDK1/CyclinB1 enzyme is sensitive to freeze/thaw cycles. Avoid multiple freeze/thaw cycles. Do not re-use thawed aliquots or diluted enzyme.

7) Initiate reaction by adding 20 μl of diluted CDK1/CyclinB1 enzyme to the wells designated
 "Positive Control" and "Test Inhibitor Control". Incubate at 30°C for 45 minutes.

8) Thaw Kinase-Glo Max reagent.

3.2. Assay Protocol for CDK2

All samples and controls should be tested in duplicate.

1) Thaw 5x Kinase assay buffer 1, ATP and 10x CDK substrate peptide 1. (Optional: If desired, add DTT to 5x Kinase assay buffer 1 to make a 10 mM concentration; e.g. add 10 µl of 1 M DTT to 1 ml 5x Kinase assay buffer 1)

2) Prepare the master mixture (25 μ l per well): N wells x (6 μ l 5x Kinase assay buffer 1 + 1 μ l ATP (500 μ M) + 5 μ l 10x CDK substrate peptide 1 + 13 μ l distilled water). Add 25 μ l to every well.

3) Add 5 μ l of Inhibitor solution of each well labeled as "Test Inhibitor". For the "Positive Control" and "Blank", add 5 μ l of the same solution without inhibitor (Inhibitor buffer).

4) Prepare 3 ml of 1x Kinase assay buffer 1 by mixing 600 μ l of 5x Kinase assay buffer 1 with 2400 μ l water. 3 ml of 1x Kinase assay buffer 1 is sufficient for 100 reactions.

5) To the wells designated as "Blank", add 20 µl of 1x Kinase assay buffer 1.

6) Thaw CDK2/CyclinA2 enzyme on ice. Upon first thaw, briefly spin tube containing enzyme to recover full content of the tube. Calculate the amount of CDK2/CyclinA2 required for the assay and dilute enzyme to ~2.5 ng/ μ l with 1x Kinase assay buffer 1. Store remaining undiluted enzyme in aliquots at -80°C.

Note: CDK2/CyclinA2 enzyme is sensitive to freeze/thaw cycles. Avoid multiple freeze/thaw cycles. Do not re-use thawed aliquots or diluted enzyme.

3.3. Assay Protocol for CDK3

1.Add 100 μ l 10 mM ATP to 1.25 ml 6 μ M substrate peptide. Dilute the mixture with dH20 to 2.5 ml to make 2X ATP/substrate cocktail ([ATP]=400 μ M, [substrate]=3 μ m).

2. Transfer enzyme from -80°C to ice. Allow enzyme to thaw on ice.

3. Microcentrifuge briefly at 4°C to bring liquid to the bottom of the vial. Return immediately to ice.

4. Add 1 ml 10X kinase buffer [1 ml 10X Kinase Buffer 250 mM Tris-HCl pH 7.5, 100 mM MgCl₂,

1 mM Na3VO4, 50 mM b-glycerophosphate, 20 mM dithiothreitol (DTT)] to 1.5 ml dH20 to make 2.5 ml 4X reaction buffer.

5. Dilute enzyme in 1.25 ml of 4X reaction buffer to make 4X reaction cocktail ([enzyme]=4.0 $ng/\mu l$ in 4X reaction cocktail).

6. Add 12.5 μ l of the 4X reaction cocktail to 12.5 μ l/well of prediluted compound of interest (usually around 10 μ M) and incubate for 5 minutes at room temperature.

7. Add 25 μl of 2X ATP/substrate cocktail to 25 μl/well preincubated reaction cocktail/compound.
 Final Assay Conditions for a 50 μl Reaction

25 mM Tris-HCl (pH7.5),10 mM MgCl2, 5 mM b-glycerophosphate, 0.1 mM Na3VO4, 200 μM ATP, 2 mM DTT, 1.5 μM peptide, 50 ng CDK3/CycE Kinase

8. Incubate reaction plate at room temperature for 30 minutes.

9. Add 50 µl/well Stop Buffer (50 mM EDTA, pH 8) to stop the reaction.

10. Transfer 25 μ l of each reaction to a 96-well streptavidin-coated plate containing 75 μ l dH2O/well and incubate at room temperature for 60 minutes.

11. Wash three times with 200 μ l/well PBS/T.

12. Dilute primary antibody, Phospho-Rb (Ser807/811) Antibody #9308, 1:1000 in PBS/T with

1% BSA. Add 100 µl/well primary antibody.

13. Incubate at 37°C for 120 minutes.

14. Wash three times with 200 μ l/well PBS/T.

15. Dilute Europium labeled anti-rabbit antibody 1:1000 in PBS/T with 1% BSA. Add 100 μl/well diluted antibody.

16. Incubate at room temperature for 30 minutes.

17. *Wash five times with 200 μ l/well PBS/T.

18. Add 100 µl/well DELFIA® Enhancement Solution.

19. Incubate at room temperature for 5 minutes.

20. Detect 615 nm fluorescence emission with appropriate Time-Resolved Plate Reader.

3.4. Assay Protocol for CDK4

All samples and controls should be tested in duplicate.

1) Thaw 5x Kinase assay buffer 1, ATP and 10x CDK4 substrate peptide. (Optional: If desired, add DTT to 5x Kinase assay buffer 1 to make a 10 mM concentration; e.g. add 10 µl of 1 M DTT to 1 ml 5x Kinase assay buffer 1)

2) Prepare the master mixture (25 μ l per well): N wells x (6 μ l 5x Kinase assay buffer 1 + 1 μ l ATP (500 μ M) + 5 μ l 10x CDK4 substrate peptide + 13 μ l distilled water). Add 25 μ l to every well.

3) Add 5 μ l of Inhibitor solution of each well labeled as "Test Inhibitor". For the "Positive Control" and "Blank", add 5 μ l of the same solution without inhibitor (Inhibitor buffer).

4) Prepare 3 ml of 1x Kinase assay buffer 1 by mixing 600 μl of 5x Kinase assay buffer 1 with 2400 μl water. 3 ml of 1x Kinase assay buffer 1 is sufficient for 100 reactions.

5) To the wells designated as "Blank", add 20 µl of 1x Kinase assay buffer 1.

6) Thaw CDK4/CyclinD3 enzyme on ice. Upon first thaw, briefly spin tube containing enzyme to recover full content of the tube. Calculate the amount of CDK4/CyclinD3 required for the assay and dilute enzyme to ~10 ng/µl with 1x Kinase assay buffer 1. Store remaining undiluted enzyme in aliquots at -80°C. Note: CDK4/CyclinD3 enzyme is sensitive to freeze/thaw cycles. Avoid multiple freeze/thaw cycles. Do not re-use thawed aliquots or diluted enzyme.

Positive

7) Initiate reaction by adding 20 μl of diluted CDK4/CyclinD3 enzyme to the wells designated
 "Positive Control" and "Test Inhibitor Control". Incubate at 30°C for 60 minutes.

8) Thaw Kinase-Glo® Max Luminescence Kinase Assay reagent.

9) After the 60 minutes reaction, add 50 μ l of Kinase-Glo® Max reagent to each well. Cover plate with aluminum foil and incubate the plate at room temperature for 10 ~ 15 minutes.

10) Measure luminescence using the microplate reader. "Blank" value is subtracted from all readings.

3.5. Assay Protocol for CDK5

1) Thaw 5x Kinase assay buffer 1, ATP and 10x CDK substrate peptide 1. (Optional: If desired, add DTT to 5x Kinase assay buffer 1 to make a 10 mM concentration; e.g. add 10 μl of 1 M DTT to 1 ml 5x Kinase assay buffer 1)

2) Prepare the master mixture (25 μ l per well): N wells x (6 μ l 5x Kinase assay buffer 1 + 1 μ l ATP (500 μ M) + 5 μ l 10x CDK substrate peptide 1 + 13 μ l distilled water). Add 25 μ l to every well.

3) Add 5 μ l of Inhibitor solution of each well labeled as "Test Inhibitor". For the "Positive Control" and "Blank", add 5 μ l of the same solution without inhibitor (Inhibitor buffer).

4) Prepare 3 ml of 1x Kinase assay buffer 1 by mixing 600 μ l of 5x Kinase assay buffer 1 with 2400 μ l water. 3 ml of 1x Kinase assay buffer 1 is sufficient for 100 reactions.

5) To the wells designated as "Blank", add 20 µl of 1x Kinase assay buffer 1.

6) Thaw CDK5/p25 enzyme on ice. Upon first thaw, briefly spin tube containing enzyme to recover full content of the tube. Calculate the amount of CDK5/p25 required for the assay and dilute enzyme to ~0.75 ng/µl with 1x Kinase assay buffer 1. Store remaining undiluted enzyme in aliquots at -80°C. Note: CDK5/p25 enzyme is sensitive to freeze/thaw cycles. Avoid multiple freeze/thaw cycles. Do not re-use thawed aliquots or diluted enzyme.

7) Initiate reaction by adding 20 µl of diluted CDK5/p25 enzyme to the wells designated "Positive Control" and "Test Inhibitor Control". Incubate at 30°C for 45 minutes.

8) Thaw Kinase-Glo Max reagent.

9) After the 45-minute reaction, add 50 μ l of Kinase-Glo Max reagent to each well. Cover plate with aluminum foil and incubate the plate at room temperature for 15 minutes.

10) Measure luminescence using the microplate reader. "Blank" value is subtracted from all readings.

3.6. Assay Protocol for CDK6

Dilute enzyme, substrate, ATP and inhibitors in Kinase Buffer.

- Add to the wells of 384 low volume plate:
- o 1 µl of inhibitor or (5% DMSO)
- o 2 μ l of enzyme (defined from table 1)
- o 2 µl of substrate/ATP mix
- Incubate at room temperature for 60 minutes.
- Add 5 µl of ADP-Glo™ Reagent
- Incubate at room temperature for 40 minutes.
- Add 10 µl of Kinase Detection Reagent
- Incubate at room temperature for 30 minutes.
- Record luminescence (Integration time 0.5-1second).

3.7. Assay Protocol for CDK7

1) Thaw 5x Kinase assay buffer 1, ATP and 10x CDK substrate peptide 2.

(Optional: If desired, add DTT to 5x Kinase assay buffer 1 to make a 10 mM concentration; e.g.

add 10 µl of 1 M DTT to 1 ml 5x Kinase assay buffer 1)

2) Prepare the master mixture (12.5 μ l per well): N wells x (3 μ l 5x Kinase assay buffer 1 + 0.5 μ l ATP (500 μ M) + 1.25 μ l CDK substrate peptide 2 (1 mg/ml) + 7.75 μ l distilled water). Add 12.5

μl to every well.

3) Add 2.5 μl of Inhibitor solution of each well labeled as "Test Inhibitor". For the "Positive Control" and "Blank", add 2.5 μl of 10% DMSO in water (Inhibitor buffer).

4) Prepare 3 ml of 1x Kinase assay buffer 1 by mixing 600 μl of 5x Kinase assay buffer 1 with 2400 μl water. 3 ml of 1x Kinase assay buffer 1 is sufficient for 100 reactions.

5) To the wells designated as "Blank", add 10 µl of 1x Kinase assay buffer 1.

6) Thaw CDK7/Cyclin H/MAT1 enzyme on ice. Upon first thaw, briefly spin tube containing enzyme to recover full content of the tube. Calculate the amount of CDK7/Cyclin H/MAT1 required for the assay and dilute enzyme to ~10 ng/ μ l with 1x Kinase assay buffer 1. Store remaining undiluted enzyme in aliquots at -80°C. Note: CDK7/Cyclin H/MAT1 enzyme is sensitive to freeze/thaw cycles.

Avoid multiple freeze/thaw cycles. Do not re-use thawed aliquots or diluted enzyme.

7) Initiate reaction by adding 10 μl of diluted CDK7/Cyclin H/MAT1 enzyme to the wells designated "Positive Control" and "Test Inhibitor Control". Incubate at 30°C for 60 minutes.

8) Thaw ADP-Glo reagent.

9) After the 60 minute reaction, add 25 μ l of ADP-Glo reagent to each well. Cover plate with aluminum foil and incubate the plate at room temperature for 45 minutes.

10) Thaw Kinase-Detection reagent

11) After the 45 minutes incubation, add 50 µl of Kinase Detection reagent to each well. Cover plate with aluminum foil and incubate the plate at room temperature for another 45 minutes.

12) Measure luminescence using the microplate reader. "Blank" value is subtracted from all readings.

3.8. Assay Protocol for CDK9

1)5x Kinase assay buffer 1, ATP and 5x CDK substrate peptide 2. (Optional: If desired, add DTT to 5x Kinase assay buffer 1 to make a 10 mM concentration; e.g. add 10 µl of 1 M DTT to 1 ml 5x Kinase assay buffer

2) Prepare the master mixture (25 μ l per well): N wells x (6 μ l 5x Kinase assay buffer 1 + 1 μ l ATP (500 μ M) + 10 μ l 5x CDK substrate peptide 2 + 8 μ l distilled water). Add 25 μ l to every well. 3) Add 5 μ l of Inhibitor solution of each well labeled as "Test Inhibitor". For the "Positive Control" and "Blank", add 5 μ l of the same solution without inhibitor (Inhibitor buffer).

4) Prepare 3 ml of 1x Kinase assay buffer 1 by mixing 600 μ l of 5x Kinase assay buffer 1 with 2400 μ l water. 3 ml of 1x Kinase assay buffer 1 is sufficient for 100 reactions.

5) To the wells designated as "Blank", add 20 µl of 1x Kinase assay buffer 1.

6) Thaw CDK9/CyclinT enzyme on ice. Upon first thaw, briefly spin tube containing enzyme to recover full content of the tube. Calculate the amount of CDK9/CyclinT required for the assay and dilute enzyme to \sim 5 ng/µl with 1x Kinase assay buffer 1. Store remaining undiluted enzyme in aliquots at -80°C. Note: CDK9/CyclinT enzyme is sensitive to freeze/thaw cycles. Avoid multiple freeze/thaw cycles. Do not re-use thawed aliquots or diluted enzyme.

7) Initiate reaction by adding 20 µl of diluted CDK9/CyclinT enzyme to the wells designated"Positive Control" and "Test Inhibitor Control". Incubate at 30°C for 45 minutes.

8) Thaw Kinase-Glo Max reagent.

9) After the 45-minute reaction, add 50 μ l of Kinase-Glo Max reagent to each well. Cover plate with aluminum foil and incubate the plate at room temperature for 15 minutes.

10) Measure luminescence using the microplate reader. "Blank" value is subtracted from all readings.

3.9. Inhibition of Phospho-CDK1 / CDC2 Cell-Based Phosphorylation in SK-MEL-5 cancer cell

The assay was performed according to the following protocol

1) Seed 200 μ l of 20,000 adherent cells in culture medium in each well of a 96-well plate. The plates included in the kit are sterile and treated for cell culture. For suspension cells and loosely attached

cells, coat the plates with 100 μ l of 10 μ g/ml Poly-L-Lysine (not included) to each well of a 96well plate for 30 minutes at 37°C prior to adding cells.

2) Incubate the cells for overnight at 37°C, 5% CO2.

3) Treat the cells as desired.

4) Remove the cell culture medium and rinse with 200 μ l of 1x TBS, twice.

5) Fix the cells by incubating with 100 µl of Fixing Solution for 20 minutes at room temperature. The 4% formaldehyde is used for adherent cells and 8% formaldehyde is used for suspension cells and loosely attached cells. During the incubation, the plates should be sealed with Parafilm. Note: Fixing Solution is volatile.Wear appropriate personal protection equipment (mask, gloves and glasses) when using this chemical.

6) Remove the Fixing Solution and wash the plate 3 times with 200 μ l 1x Wash Buffer for five minutes each time with gentle shaking on the orbital shaker. The plate can be stored at 4°C for a week.

Note: For all wash steps, tap the plate gently on absorbent papers to remove the solution completely.

7) Add 100 µl Quenching Buffer and incubate for 20 minutes at room temperature.

8) Wash the plate 3 times with 1x Wash Buffer for 5 minutes at a time, with gentle shaking on the shaker.

9) Add 200 µl of Blocking Buffer and incubate for 1 hour at room temperature.

10) Wash 3 times with 200 μ l of 1x Wash Buffer for 5 minutes at a time, with gentle shaking on the shaker.

11) Add 50 µl of 1x primary antibodies (Anti-CDC2 (Phospho-Tyr15) Antibody, Anti-CDC2 Antibody and/or Anti-GAPDH Antibody) to the corresponding wells, cover with Parafilm and incubate for 16 hours (overnight) at 4°C. If the target expression is known to be high, incubate for 2 hours at room temperature with gentle shaking on the shaker.

12) Wash 3 times with 200 μ l of 1x Wash Buffer for 5 minutes at a time, with gentle shaking on the shaker.

13) Add 50 µl of 1x secondary antibodies (HRP-Conjugated Anti- Rabbit IgG Antibody and/or HRP-Conjugated Anti-Mouse IgG Antibody) to corresponding wells and incubate for 1.5 hours at room temperature with gentle shaking on the shaker. Note: Add HRP-Conjugated Anti-Rabbit IgG Antibody to the wells incubated with Anti-CDC2 (Phospho-Tyr15) Antibody (rabbit, polyclonal) and/or Anti-CDC2 (rabbit, polyclonal) and add HRP-Conjugated Anti-Mouse IgG Antibody to the wells incubated with Anti-GAPDH Antibody (mouse, monoclonal).

14) Wash 3 times with 200 μ l of 1x Wash Buffer for 5 minutes at a time, with gentle shaking on the shaker.

15) Add 50 µl of Ready-to-Use Substrate to each well and incubate for 30 minutes at room temperature in the dark with gentle shaking on the shaker. Note: Ready-to-Use Substrate is a light-sensitive

reagent. Keep away from light.

16) Add 50 µl of Stop Solution to each well and read OD at 450 nm immediately using the microplate reader.

3.10. Caspase-3 activation assay

Caspase assay is performed according to the following procedures:

- 1. Allowing all reagents to reach room temperature before use. Gently mix all liquid reagents prior to use (Note: A standard curve must be run with each assay).
- Determine the number of 8-well strips needed for the assay. Insert these in the frame(s) for current use. (Re-bag extra strips and frame. Store these in the refrigerator for future use).
- Add 100 μL of the Standard Diluent Buffer to the zero standard wells. Well(s) reserved for chromogen blank should be left empty.
- Add 100 μL of standards and controls or diluted samples to the appropriate microtiter wells. The sample dilution chosen should be optimized for each experimental system. Tap gently on side of plate to mix.
- 5. Cover wells with plate cover and incubate for 2 hours at room temperature.
- Thoroughly aspirate or decant solution from wells and discard the liquid. Wash wells 4 times. See Directions for Washing.
- Pipette 100 μL of Caspase-3 (Active) Detection Antibody solution into each well except the chromogen blank(s). Tap gently on the side of the plate to mix.
- 8. Cover plate with plate cover and incubate for 1 h at room temperature.
- 9. Thoroughly aspirate or decant solution from wells and discard the liquid.
- 10. Wash wells 4 times. See Directions for Washing.

- Add 100 μL Anti-Rabbit IgG HRP Working Solution to each well except the chromogen blank(s). Prepare the working dilution as described in Preparing IgG HRP.
- 12. Cover wells with the plate cover and incubate for 30 minutes at room temperature.
- Thoroughly aspirate or decant solution from wells and discard the liquid. Wash wells 4 times. See Directions for Washing.
- 14. Add 100 μ L of Stabilized Chromogen to each well. The liquid in the wells will begin to turn blue.
- 15. Incubate for 30 min at room temperature and in the dark. Note: Do not cover the plate with aluminum foil or metalized mylar. The incubation time for chromogen substrate is often determined by the microtiter plate reader used. Many plate readers have the capacity to record a maximum optical density (O.D.) of 2.0. The O.D. values should be monitored and the substrate reaction stopped before the O.D. of the positive wells exceeds the limits of the instrument. The O.D. values at 450 nm can only be read after the Stop Solution has been added to each well. If using a reader that records only to 2.0 O.D., stopping the assay after 20 to 25 minutes is suggested.
- 16. Add 100 μ L of Stop Solution to each well. Tap side of plate gently to mix. The solution in the wells should change from blue to yellow.
- 17. Read the absorbance of each well at 450 nm having blanked the plate reader against a chromogen blank composed of 100 μL each of Stabilized Chromogen and Stop Solution. Read the plate within 2 hours after adding the Stop Solution.
- 18. Use a curve fitting software to generate the standard curve. A four-parameter algorithm provides the best standard curve fit.

19. Read the concentrations for unknown samples and controls from the standard curve. Multiply value(s) obtained for sample(s) by the appropriate dilution factor to correct for the dilution in step 3. Samples producing signals greater than that of the highest standard should be diluted in Standard Diluent Buffer and reanalyzed.

3.11. Protocol of Docking Studies

The automated docking simulation study is performed using Molecular Operating Environment (MOE®) version 2014.09, at Assiut University Faculty of Pharmacy, Chemical Computing Group Inc., and Montreal, Canada. The X-ray crystallographic structure of the target kinase (PDB: ID 4YC3) was obtained from Protein data bank. The target compounds were constructed into a 3D model using the builder interface of the MOE program. After checking their structures and the formal charges on atoms by 2D depiction, the following steps were carried out:

• The target compounds were subjected to a conformational search.

• All conformers were subjected to energy minimization, all the minimizations were performed with MOE until an RMSD gradient of 0.01 Kcal/mole and an RMS distance of 0.1 Å with MMFF94X force-field and the partial charges were automatically calculated.

The enzyme was prepared for docking studies by:

- Hydrogen atoms were added to the system with their standard geometry.
- The atoms connection and type were checked for any errors with automatic correction.
- Selection of the receptor and its atoms potential were fixed.

• The MOE® Alpha Site Finder was used for the active site search in the enzyme structure using all default items. Dummy atoms were created from the obtained alpha Spheres.