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Theoretical Methodology for Thermodynamic Stability Calculation

In  our  paper,  we  determine  the  thermodynamic  stability  of  Transition-Metal

Dichalcogenide (TMD) based oxide heterostructures (see Figs. S1(a) to S8(a)) by employing

the quasi-harmonic Debye model as implemented in the Gibbs2 code1–3.  In this section, we

briefly describe our theoretical methodology. Our motivation is to include the thermal effects

in the thermodynamic phase stability calculations with a minimal set of ab initio data, using

an intuitive yet completely general non-empirical model.

We  use  density  functional  theory  (DFT)  as  implemented  in  the  Vienna  ab  initio

simulation package (VASP)4 for structural relaxation of the heterostructures, as described in

the  manuscript.  After  obtaining  the  equilibrium  geometry,  we  select  a  grid  of  volumes

encompassing the equilibrium volume by changing the lattice parameter and find the total

energy of the solid (E) as a function of the molecular volume (V). With the static calculations,

we obtain the E(V) curve (see Figs. S1(b) to S8(b)). 

The Gibbs2 code1–3 is then used  to minimize the non-equilibrium Gibbs free energy

per mole5,

(1)

where,   is the optimized configuration vector that includes the geometric information of

the system,   is the total  energy of the system,   corresponds to the constant

hydrostatic pressure, and the last term,   is the vibrational Helmholtz free energy1. The

quasi-harmonic Debye model is used to express the vibrational contribution as5,6

   (2)

where  is the Debye integral defined as

(3)
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 is the Debye temperature,  is the number of atoms per formula unit and  is the Boltzmann

constant. 

We  use  the  quasi-harmonic  approximation  (QHA)  to  include  the  effects  of

anharmonicity only for realistic simulation of physical systems. In QHA,  depends only on

the volume. Hence, the static non-equilibrium Gibbs energy per mole is then minimized with

respect  to  the  volume  to  obtain  the  equation  of  state  (EOS)  and  the  chemical  potential,

equivalent to the molar Gibbs function (G) that governs the thermodynamic stability. We have

computed  G  at  room  temperature  (see  Fig.  1(e)  in  the  manuscript)  and  also  at  other

temperatures to explore the thermal effects in the stability of our heterostructure systems (see

Figs.  S1(c)  to  S8(c)).  To  reduce  the  minimization  process  of  ,  we  fit  an

approximate analytical function of volume. The fitting of the E(V) data gives us an analytical

form of the Debye temperature, which can be used to obtain the vibrational Helmholtz free

energy and consequently the non-equilibrium Gibbs function polynomial for any selection of

temperature and pressure. We have used the Birch-Murnaghan family of EOS to fit the  ab

initio E(V) data in our calculations.7–9

Our theoretical methodology, as implemented in the Gibbs2 code1–3,  is quite robust

and has been used earlier to study the thermodynamic properties of a wide variety of crystal

structures, especially two-dimensional materials like graphene10 and TMD based systems11,12.
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Fig. S1 (a) 4 x 5 super cell of 2D monolayer of WSe2 with triangular O substitution (NO = 2). (b) and (c) denote
the E(V) curve along with the fitted polynomial in the Birch-Murnaghan strain and the Gibbs free energy per
mole as a function of temperature and 0 GPa pressure of the WSe2 oxide heterostructure system, respectively.
The equilibrium lattice constant of the system is 24.92 Bohr radius. Note that, for a pristine WSe2 unit cell, the
equilibrium lattice constant is 6.24 Bohr (3.3 Å). Since, here we are considering a 4 x 5 super cell, the unit cell
lattice constant along the x-axis has to be multiplied by 4.
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Fig. S2 (a) 4 x 5 super cell of 2D monolayer of WSe2 with triangular O substitution (NO = 6). (b) and (c) denote
the E(V) curve along with the fitted polynomial in the Birch-Murnaghan strain and the Gibbs free energy per
mole as a function of temperature and 0 GPa pressure of the WSe2 oxide heterostructure system, respectively.
The equilibrium lattice constant of the system is 24.54 Bohr radius. 
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Fig. S3 (a) 4 x 5 super cell of 2D monolayer of WSe2 with triangular O substitution (NO = 12). (b) and (c) denote
the  E(V)  curve along with the fitted polynomial in the Birch-Murnaghan strain and the Gibbs free energy per
mole as a function of temperature and 0 GPa pressure of the WSe2 oxide heterostructure system, respectively.
The equilibrium lattice constant of the system is 23.99 Bohr radius. 
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Fig. S4 (a) 4 x 5 super cell of 2D monolayer of WSe2 with triangular O substitution (NO = 20). (b) and (c)
denote the E(V) curve along with the fitted polynomial in the Birch-Murnaghan strain and the Gibbs free
energy per mole as a function of temperature and 0 GPa pressure of the WSe2 oxide heterostructure system,
respectively. The equilibrium lattice constant of the system is 23.19 Bohr radius.
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Fig. S5 (a) 4 x 5 super cell of 2D monolayer of WSe2 with rectangular O substitution (NO = 8). (b) and (c)
denote the E(V) curve along with the fitted polynomial in the Birch-Murnaghan strain and the Gibbs free
energy per mole as a function of temperature and 0 GPa pressure of the WSe2 oxide heterostructure system,
respectively. The equilibrium lattice constant of the system is 24.38 Bohr radius.
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Fig. S6 (a) 4 x 5 super cell of 2D monolayer of WSe2 with rectangular O substitution (NO = 16). (b) and (c)
denote the E(V) curve along with the fitted polynomial in the Birch-Murnaghan strain and the Gibbs free
energy per mole as a function of temperature and 0 GPa pressure of the WSe2 oxide heterostructure system,
respectively. The equilibrium lattice constant of the system is 23.65 Bohr radius.
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Fig. S7 (a) 4 x 5 super cell of 2D monolayer of WSe2 with rectangular O substitution (NO = 24). (b) and (c)
denote the E(V) curve along with the fitted polynomial in the Birch-Murnaghan strain and the Gibbs free
energy per mole as a function of temperature and 0 GPa pressure of the WSe2 oxide heterostructure system,
respectively. The equilibrium lattice constant of the system is 22.94 Bohr radius.
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Fig. S8 (a) 4 x 5 super cell of 2D monolayer of WSe2 with rectangular O substitution (NO = 32). (b) and (c)
denote the E(V) curve along with the fitted polynomial in the Birch-Murnaghan strain and the Gibbs free
energy per mole as a function of temperature and 0 GPa pressure of the WSe2 oxide heterostructure system,
respectively. The equilibrium lattice constant of the system is 22.23 Bohr radius.
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 Fig. S9 (a) and (b) denote the band structure and the density of states (DOS) of 4 x 5 super cell of 2D monolayer
of WSe2 with triangular O substitution (NO  = 2), respectively (see Fig. S1(a)). The horizontal (vertical) dashed
lines show the location of the Fermi energy (high-symmetric points).
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Fig. S10 (a)  and (b)  denote the band structure  and the density  of  states  (DOS) of  4 x 5 super cell  of  2D
monolayer  of  WSe2 with  triangular  O  substitution  (NO  =  6),  respectively  (see  Fig.  S2(a)).  The  horizontal
(vertical) dashed lines show the location of the Fermi energy (high-symmetric points).
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Fig. S11 (a)  and (b)  denote the band structure  and the density  of  states  (DOS) of  4 x 5 super cell  of  2D
monolayer  of  WSe2 with  triangular  O substitution  (NO  = 12),  respectively  (see  Fig.  S3(a)).  The  horizontal
(vertical) dashed lines show the location of the Fermi energy (high-symmetric points).
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Fig. S12  (a)  and (b)  denote the band structure  and the density  of  states  (DOS) of  4 x 5 super cell  of  2D
monolayer  of  WSe2 with rectangular  O substitution  (NO  = 8),  respectively  (see  Fig.  S5(a)).  The horizontal
(vertical) dashed lines show the location of the Fermi energy (high-symmetric points).
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Fig. S13 (a)  and (b)  denote the band structure  and the density  of  states  (DOS) of  4 x 5 super cell  of  2D
monolayer of WSe2 with  rectangular  O substitution (NO  = 24),  respectively (see Fig.  S7(a)).  The horizontal
(vertical) dashed lines show the location of the Fermi energy (high-symmetric points).

S16

DOS (arb. units)
k

E
 -

 E
 (

e
V

)
F

(a) (b)

-2 

-1 

0 

1 

2

Γ MK ΓK/



Fig. S14  (a)  and (b)  denote the band structure  and the density  of  states  (DOS) of  4 x 5 super cell  of  2D
monolayer of  WSe2 with rectangular  O substitution (NO  = 32),  respectively (see Fig.  S8(a)).  The horizontal
(vertical) dashed lines show the location of the Fermi energy (high-symmetric points).
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Table S1 The stabilization energy (ES) and the Gibbs free energy (G) per oxygen atom substituted (NO) at
room temperature (298 K) and 0 GPa pressure of 4 x 5 super cell of 2D monolayer of WSe2 with step-by-
step replacement of Se with O atoms in a triangular or rectangular fashion, for the structures depicted in
Figs. S1(a) to Fig. S8(a).

Structure ES/NO (eV) G/NO (103 kJ/mol)

Triangular O
substitution

(NO = 2)

-197.514 -21.359

Triangular O
substitution

(NO = 6)

-67.97 -7.322

Triangular O
substitution

(NO = 12)

-35.629 -3.817

Triangular O
substitution

(NO = 20)

-22.743 -2.420

Rectangular O
substitution

(NO = 8)

-51.816 -5.570

Rectangular O
substitution

(NO = 16)

-27.555 -2.940

Rectangular O
substitution

(NO = 24)

-19.524 -2.069

Rectangular O
substitution

(NO = 32)

-15.561 -1.639
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