
A Appendix (On finding the probability distribution function for implementation of Ising

model)

p: The probability of getting infected.

q: The probability of not getting infected i.e. q = 1− p

Hence, according to binomial distribution,
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Assuming the susceptible to be infinite,R0 is a constant.
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Using: Stirling’s-approximation-formula i.e. S! =
√
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Then,
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B Appendix (Evolution of α w.r.t. time: An analytical approach)

Considering a process defined by the following parameters:

r1(t)=probability that a susceptible person becomes infected upon primary contact.

r2(t)=probability that the next interaction of the susceptible is with an infected person.

α(t)=overall probability that susceptible becomes infected.

N: total population under consideration

S: total number of susceptibles in the given population

In a homogeneous mixing of population , r2(t) = 1− S
N
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A random susceptible will come in contact with ’n’ individuals in a time interval ∆t with a fre-

quency λ.

So, the process is a poisson distribution with a rate of λ∆t.

The number of infected persons, ‘j’ out of these ‘n’ will have a binomial distribution (n,r2(t));

Finally,
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Introducing r1 = 1− r1′
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For z1 = r1′(t) , a z-transform would result in:
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For z2 = 1− r2r1′, a z-tranform would result in:

α = e−λ∆tr2r1′ (22)

where r1′ = 1− r1

Since time intervals are considerably small,consider

α = e−c∆t (23)

where c = −λr2r1′
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