
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

This manuscript presents a novel and worthwhile study of heterogeneity in osteosarcoma, using single 

cell RNA sequencing suggesting the presence of various cell types in osteosarcoma tumors. While the 

results are interesting several issues need to be addressed in order for the manuscript to be 

considered for publication. Specifically, critical methodological details are missing, and the data and 

results need to be re organized and presented in a way that conveys the most important biologic or 

clinical inferences from the data. Critical algorithms and methods are not explained in adequate detail 

and abbreviations are not spelled out. The contrast between the various cell types is not presented in 

a clear enough manner, or in a manner that relates to features of osteosarcoma biology or clinical 

behavior. Finally, some terms and vocabulary is not always clearly explained. 

Some specific issues and examples that need to be addressed. 

Perhaps a "summary figure" can be shown presenting all the subgroups and cell types and the 

methods used to identify them in one graph with their relative abundance as well as the main biologic 

themes represented and whether each subgroup corresponds to any specific biologic or clinical feature 

of the disease. Such a figure can be shown at the end of the Results, and may provide a more clear 

summary of the most important findings of the study. The currently presented detailed Figures, while 

containing potentially important information, do not contribute to a clear enough understanding of the 

main and more relevant findings of the study. 

Line 76-78: "We found that the TME....suppressivity than primary tumor tissue". This meaning of this 

sentence is unclear. 

Line 130: What is UMI? 

Line 135. The Seurat program needs to be referenced with appropriate literature. 

Details of how the Seurat algorithm and the t-SNE method were applied are necessary. If these details 

are too many to easily report, they should be listed in a Supplementary Methods file. Findings from 

these methods are often very sensitive to specific parameters and tuning. Without more details of how 

the algorithms were applied, it is difficult to assess the validity of all results. For example, how did the 

algorithms decide about the number of subgroups and objects in each analysis and how was it 

concluded that these subgroups are statistically robust? 

Line 142: t-SNE needs to be spelled out. 

How was copy number variation (CNV) estimated using RNAseq data? Were there genomic DNA 

sequencing data also obtained? 

Line 169. What is the Monocle 2 program and is there a citation for this? 

Line 255: The concept of trajectory analysis is unclear. What is "pseudo-time"? This analysis may also 

benefit from a dedicated graph showing how it is done and summarizing what it reveals. 

Abbreviations such as CAFs (and all its variants such as capCAFs, myCAFs, apCAFs) need to be spelled 

out not just in the Abstract, but also the first time they appear in the main manuscript. 

The TIGIT blockade section is confusing. What type of cells were used? The body of the manuscript 

reports that this was done on "OS cells", whereas Figure 7 legend states that it was done on "breast 

cancer cell lines" and the Figure text reports the U2OS cell line. 



What was the blood that one study subject donates (line 104) used for? In the Methods section, it is 

stated that it was used to explore the effect of anti-TIGIT blockage but the respective paragraph in the 

Results section does not include any reference to blood. 

The overall language (use of English) of the manuscript needs to be reviewed in detail and improved. 

Reviewer #2 (Remarks to the Author): 

The authors correctly claim that their study is the first to employ single-cell RNA-sequencing to study 

Osteosarcoma (OS). They furthermore claim to utilize this technology to explore the molecular 

mechanism of OS as well as the tumor microenvironment (TME). They then describe the clusters they 

found which are formed by the 110 745 single cell profiles as well as state that TIGIT is expressed in 

11 samples and is particularly overexpressed in T-reg cells. The then isolate CD3+ T cells and block 

TIGIT signaling in those cells which according to the authors yields improved cytotoxicity of Cytokine 

induced T cells. Their approach to use single cell resolution combined with trajectory inference 

methods to study OS cell heterogeneity is very interesting in particular since this study provides novel 

insight into the transcriptional cell types in OS and may indeed be of relevance as a reference for 

other studies. 

However, there are some shortcomings of the present study that need to be addressed. First of all, 

while the total number of single cell transcriptomes profiled appears reasonable, the representation of 

primary OS tumors (7) compared to recurrent OS tumors (2) and pulmonary metastasis (2) is much 

higher and it is absolutely crucial to include similar numbers of cells from each of the conditions to be 

able to perform reliable comparisons, in particular when aligning cells along a pseudo-time. The 

authors need to analyze at least the same number of patient samples for each condition (7). The 

authors comment on the inability to capture cancer stem cells due to their low number. An increased 

sample size will facilitate to confidently rule out that lack of stem cell capture is due to 

underrepresentation of samples or small sample size. 

Seven of the selected patients were under combined chemotherapy as well as surgical therapy. 

Cellular heterogeneity and underlying transcriptional signatures must therefore be seen in the light of 

this continuous drug treatment. It would be of great interest if the authors investigated further which 

cell populations are particularly affected by the drugs and how combinatorial drug treatment is 

encoded in the transcriptome of different cell populations. In addition, gene signatures related to 

sample type, isolation strategy and treatment might confound cell type calling- this needs to be 

discussed and addressed by the authors. Furthermore, the authors need to demonstrate the degree of 

correlation of each cell type between the different patient samples. 

The authors need to provide more detailed information in the methods how quality control was 

performed to exclude single cell libraries from further analysis. They nicely show representations of 

the main cell populations for each patient sample used. Since a fixed embedding is used for this 

visualization, it will be important to see a t-SNE or UMAP representation of all patient samples labeled 

by experiment/ patient ID/ experimental run to demonstrate the absence of batch-to-batch variation. 

They also need to state average sequencing depth, UMI and gene count per cell. 

In Figure 1A, the myeloid cell cluster is already split up in initial t-SNE representation suggesting 

either sub-clusters to myeloid cluster or entirely new populations. The authors need to 

computationally show that after initial clustering, there is not more biological diversity in the myeloid 

cluster and that this cluster does not contain more distant cell types. The authors state that the TP53 

pathway is markedly “disordered in subgroup 5” in Figure S2A- the use of the word “disordered” needs 

to be explained. 

Furthermore, the authors use GO terms to infer putative signaling or functionality onto the 

transcriptome data. However, the GO term analysis in Figure S2A does not provide a clear distinction 



between the different populations and is therefore not informative. E.g. metabolic and proliferative OS 

as well as bone-matrix remodeling and ossification OS greatly overlap. The separation of these 

populations by GO term analysis is not conclusive and needs to be substantiated. Cluster analysis as 

in Figure S2B allows to separate those cells however, only rather few genes actually contribute to this 

separation. 

The exploration of trajectories is very interesting, however, the referencing to individual genes in the 

actual figure needs to be made clearer as well as the figure themselves: Figure 2D needs to be 

subdivided and genes as well as GO terms which do not contribute to further analysis, should be 

remove to deconvolute the figure. 

Pseudo-time analysis of OC maturation nicely shows highest expression of CD74 and TOP2A in 

progenitor OCs. These cells subsequently serve as the origin for trajectory building. The authors need 

to provide more information about selecting seed cells plus gene signatures which serve as the origin 

of the trajectory. Furthermore, since trajectory building is not trivial and strongly depends on the 

trajectories to be build and can differ between available methodologies (bifurcating vs multifurcating 

trajectories), the author must test different available solutions and carefully evaluate the trajectory 

building outcome. Since many conclusions of this manuscript are founded on this type of analysis, it is 

absolutely crucial to ensure that the utilized algorithm reflects the underlying biological processes in 

the most conclusive way. 

In Figure 3E, the authors describe GO terms to describe biological process as they change following 

OC differentiation. As opposed to earlier analyses in this manuscript, the selected GO terms are either 

sharply present or absent at both endpoints of the trajectory. None of the GO terms show gradual 

acquisition or decline along differentiation axis. The authors need to provide relevant GO terms which 

gradually alter over time as it now appears to be the transition between two cell stages only. Figure 

S4 is not mentioned in the text. 

Next, the authors use Seurat to cluster myCAF and apCAF. Unfortunately, based on the clustering they 

present, not two but rather 7 distinct gene signatures can be identified (Figure 4C). The authors must 

clarify the discrepancy between the t-SNE distribution of two populations compared to the finer, but 

unfortunately ignored clustering by Seurat. The results of this part are as of now inconclusive. 

In figure 6 C, CD8+ T-cells and CD4-/ CD8- T-cells basically do not differ in gene expression. In the t-

SNE representation (6A) both cell populations might separate. Gene signatures need to be provided 

which actually delineate both cell populations. 

The cell-based assay to assess blocking of TIGIT signaling on cytotoxicity is presented as being 

statistically significant. However, in Figure 7B, none of the comparisons Control vs. TIGIT inhibition 

shows a significant effect on cytotoxicity. In addition, only two patient samples were used which is not 

conclusive. A larger number of patient and control samples needs to analyzed (e.g. 7 vs 7). 

While one key finding of the article is the elevated expression of TIGIT in T-reg cells in OS tumors, the 

confirmation of its significance, the functional validation, did not produce significant results. This must 

be substantiated. 

Finally, the overall English in the article text as well as figure legends and figures themselves needs to 

be improved. Furthermore, great care should be taken to avoid typing mistakes in the main text or 

figures (e.g. Fig S2A “Paekinsons Disease”). 

Overall, the present study contributes a novel single cell transcriptomics data set to the field, which 

indeed might be of interest to other researchers to be used as a reference. It is also the first study to 

employ this technology to study OS. The computational analyses of this data set however require 

substantial improvements as well as the experimental set up regarding sample size (see comments 

above), and a clearer, more detailed description in the methods section. Despite the usage of 

trajectory inference and GO term analysis, the present study falls short in conclusively describing the 

molecular signatures of all cell populations in all different samples as well as to perform a 

representative analysis across similar sample sizes per sample type. The possible effect of drugs from 

combined chemotherapy on transcriptional signatures but also cellular heterogeneity is not taken into 

account and is a weakness of this study. It is furthermore often unclear, whether identified cell 

populations can be further subdivided into different subclasses or cell states, which in turn might be 



relevant to describe the tumor microenvironment in a more refined fashion. Albeit performing single 

cell analysis in a novel patient tissue, the conclusions regarding cell populations but also the claimed 

clinical utility are rather weak. 



The following are our point by point responses to the comments of the reviewers. 

Reviewers' Comments: 

Reviewer #1 (Remarks to the Author):  

This manuscript presents a novel and worthwhile study of heterogeneity in 

osteosarcoma, using single cell RNA sequencing suggesting the presence of various 

cell types in osteosarcoma tumors. While the results are interesting several issues need 

to be addressed in order for the manuscript to be considered for publication. 

Specifically, critical methodological details are missing, and the data and results 

need to be re organized and presented in a way that conveys the most important 

biologic or clinical inferences from the data. Critical algorithms and methods are not 

explained in adequate detail and abbreviations are not spelled out. The contrast 

between the various cell types is not presented in a clear enough manner, or in a 

manner that relates to features of osteosarcoma biology or clinical behavior. 

Finally, some terms and vocabulary is not always clearly explained.  



ANSWER: 1A1: 

 

We thank the reviewer for these helpful comments. As suggested, in the revised 

manuscript we have provided the missing methodological details, and reorganized the 

results to bring out the message of the article eloquently. We have also performed an 

intensively updated analysis, described and discussed their results along with the 

detailed analysis code and the source data. The language was carefully edited, and 

abbreviations are spelled out. We will actively respond to any further comments.   

 

Some specific issues and examples that need to be addressed.  

 

Perhaps a "summary figure" can be shown presenting all the subgroups and cell types 

and the methods used to identify them in one graph with their relative abundance as 

well as the main biologic themes represented and whether each subgroup corresponds 

to any specific biologic or clinical feature of the disease. Such a figure can be shown at 

the end of the Results, and may provide a more clear summary of the most important 

findings of the study. The currently presented detailed Figures, while containing 

potentially important information, do not contribute to a clear enough understanding of 

the main and more relevant findings of the study.  

 

ANSWER: 1A2 

 

According to the reviewer’s suggestion, we have added a summary figure about the 

study design as Figure 1a. We have also provided more detailed information about the 

biological functions, distribution of the cellular clusters in individual patients, and 

other important information in the text and the figure in the revised manuscript. We 

have again generated a table and a figure (Suppl table 3, Suppl Figure 15) to summary 

the main clusters and the subclusters of the cells in OS tumors studied. We hope that 

the figures and tables will make our results clearer. 

 

 

Line 76-78: "We found that the TME....suppressivity than primary tumor tissue". This 

meaning of this sentence is unclear.  

 



ANSWER：1A3 

 

We apologize for the unclear statement in our manuscript and we have revised this and 

other sentences thoroughly to remove the ambiguity, following the suggestion.  

 

Line 130: What is UMI?  

 

ANSWER: 1A4 

 

The UMI is acronym for unique molecular index. The UMI counts represent the 

absolute number of observed transcripts (per gene, cell or sample) in the scRNA-seq 

data, which indicates the total sequenced molecules in the scRNA-seq. We have 

expanded the abbreviations in the revised manuscript. 

 

Line 135. The Seurat program needs to be referenced with appropriate literature.  

 

ANSWER: 1A5 

 

We apologize for the missing information, and we have now cited the Seurat program 

in our revised manuscript (version 3.1.5; http://satijalab.org/seurat/) in R software 

(version 3.6.1). 

 

Details of how the Seurat algorithm and the t-SNE method were applied are necessary. 

If these details are too many to easily report, they should be listed in a Supplementary 

Methods file. Findings from these methods are often very sensitive to specific 

parameters and tuning. Without more details of how the algorithms were applied, it is 

difficult to assess the validity of all results. For example, how did the algorithms decide 

about the number of subgroups and objects in each analysis and how was it concluded 

that these subgroups are statistically robust?  

 

ANSWER: 1A6 

 



The reviewer’s comments are highly appreciated. We agree with the reviewer that the 

results are usually sensitive to specific parameters and the tuning in the single cell 

sequencing analysis. We applied the detailed protocols by [Butler et al. Nature 

Biotechnology, 2018 Jun;36(5):411-420] for the Seurat, and by [Trapnell et al. Nature 

Biotechnology, 2014 Apr;32(4):381-386] for monocle v2.0 programs, in our current 

study. These two bioinformatics analysis pipelines are well accepted and commonly 

used in the analysis of the subgroups in single cell sequencing experiments and the 

trajectory analysis in highly profiling studies. We divided the cells into clusters based 

on the results coming from t-SNE algorithm-based studies.  

 

To validate the robustness of the subgroup, clusters and the identification of the 

clusters, we checked the gene expression profiling of specific markers among the 

subgroups, referring the well-accepted canonical markers (such as in Suppl Table 2). 

We then calculated the overall gene features for each clusters and subclusters (the top 

20 genes are listed in Suppl Table 3). Further we checked these genes for the functions 

with regarding the identification of the clusters and subclusters, with publicly available 

data and reports as references. We not only validated the identification, but also 

revealed a series of substantial new information, and some of the result were validated 

experimentally. Please see the results and the discussions throughout the revised 

manuscript.  

 

Meanwhile, we provided the original data and the code that we used in our analysis 

pipelines along with the manuscript. We also made these information publicly 

available, for the readers and the reviewers. We hope that these measures will take care 

of the reviewer’s concerns. 

 

 

Line 142: t-SNE needs to be spelled out.  

 

ANSWER: 1A7 

 

We apologize for the missing information. We have now provided the full spelling of 

each abbreviations at the first time when it is appeared, according to the reviewer’s 

suggestions. 



 

How was copy number variation (CNV) estimated using RNAseq data? Were there 

genomic DNA sequencing data also obtained?  

 

ANSWER: 1A8 

 

We apologize for the unclear statement in the manuscript. We inferred the copy number 

variation of single OS cells based on the scRNA-sequencing data with the inferCNV 

package by R package developed by the broad Institute 

[https://github.com/broadinstitute/inferCNV/wiki ]. This method has been widely used 

in recent years to obtain the CNV patterns of the scRNA-seq data, such as in 

glioblastoma, head and neck cancer, pancreatic cancer, melanoma and lung cancer 

[Tirosh, et al., Science. 2016 Apr 8;352(6282):189-96; Puram, et al., Cell. 2017 Dec 

14;171(7):1611-1624.e24;  Peng, et al., Cell Res. 2019 Sep;29(9):725-738; Durante, et 

al. Nat Commun. 2020 Jan 24;11(1):496]. A recent study published by Durante et al. 

has identified a good consistency between the scRNA-seq data and the single cell DNA 

sequencing method, suggesting that the values of scRNA-seq analysis can estimate the 

copy number variation[Durante, et al. Nat Commun. 2020 Jan 24;11(1):496]. In their 

study, the authors have also developed a sophisticated method named Uphyloplot2 

plotting algorithm to view and get the evolutionary tree of the cluster tumor cells for the 

uveal melanoma.  

 

In our current study, we performed the CNV analysis in the osteosarcoma cells 

following guidelines of Durante et al. [Durante, et al. Nat Commun. 2020 Jan 

24;11(1):496]. We noticed that there were distinct subclusters of tumor cells with gain 

or loss of different chromosome arms. Importantly, we noticed the osteoblastic and 

chondroblastic tumor cells in the same OS lesions possess the same pattern of canonical 

CNV events and non-canonical CNV status in the subclusters (Figure 3), suggesting 

that the two types of malignant cells share the same origin, and that osteoblastic tumor 

cells might have been derived from the trans-differentiation from the chondroblastic 

tumor cells (Figure 3). This result is the first report for malignant OS cells, but not 

surprising, referring the previous findings that the (normal, not malignant) 

chondrocytes could undergo a direct transdifferentiation process into the (normal) 



osteoblast during the endochondral ossification in healthy bone formation [Aghajanian 

P. Bone Res. 2018 Jun 14;6:19; Liu CF. Semin Cell Dev Biol. 2017 Feb;62:34-49] 

 

We acknowledged that the inferCNV method is still short of high resolution compared 

to the genomic DNA sequencing data due to low coverage of the genes, and that the 

single cell whole-genomic sequencing analysis are warranted to comprehensively 

detect the genomic mutations in the osteosarcoma patients, which is our ongoing 

project and we hope to get a solid picture for the genomic CNV pattern and evolution 

of the 2 malignant OS lineages, in the osteosarcoma patients in the near future. 

 

Line 169. What is the Monocle 2 program and is there a citation for this?  

 

ANSWER: 1A9 

 

We apologize for the missing information in our manuscript. Monocle 2 (version 2.14.0, 

embedded in as R package) is a commonly used unsupervised algorithm to infer the 

transcriptome dynamics with the single-cell RNA-Seq data. The monocle 2 has been 

widely used to recover single-cell gene expression kinetics from a wide array of cellular 

processes, such as differentiation, proliferation and oncogenic transformation [Nature 

Biotechnology volume 32, pages381–386(2014)].  We have now added the related 

information and the references in our revised manuscript.  

 

 

Line 255: The concept of trajectory analysis is unclear. What is "pseudo-time"? This 

analysis may also benefit from a dedicated graph showing how it is done and 

summarizing what it reveals.  

 

ANSWER: 1A10 

 

The pseudo-time is defined by the trajectory analysis to infer the development or 

differentiation status of the cells between two cell states or cell groups. During the 

biological transition of the cells, the gene expression pattern is reconstructed, with 

some genes getting silenced while the others are activated, which usually is a gradual 

or step by step process of linear or with branches when all cells are considered. 



However, it was usually hard to get the pure cells in the distinct status or differentiation 

time. In the single cell sequencing studies, it was hypothesized that the single cells we 

analyzed may have different transitional status, some of the cells may be at the end of 

the transition, some cells may be at the initiative phase, and some others may still be 

under the ongoing process.  The cells were aligned according to the gene expression 

patterns, so that the cells could reflect the trajectory of the transitional process involved, 

with gene expression pattern regulating the process. The cells were ranged according to 

the gene expression pattern, but not as per the real differentiation time of the cells. Thus, 

the status of the cells was named as the “pseudo-time”, which indicates the earlier or the 

later state in the transition.  The "pseudo-time" trajectory analysis can reflect the 

transitional patterns of the system, with the genes contributing to each part of the 

process.   

 

 

Abbreviations such as CAFs (and all its variants such as capCAFs, myCAFs, apCAFs) 

need to be spelled out not just in the Abstract, but also the first time they appear in the 

main manuscript.  

 

ANSWER: 1A11 

 

We have now added the expansions of the abbreviations in the revised manuscript to 

make it easier for the reader.  

 

The TIGIT blockade section is confusing. What type of cells were used? The body of 

the manuscript reports that this was done on "OS cells", whereas Figure 7 legend states 

that it was done on "breast cancer cell lines" and the Figure text reports the U2OS cell 

line.  

 

ANSWER: 1A12 

 

We apologize for this error.  It was a clerical error that was overlooked. The method 

was modified from the article [David Stahl et al. OncoImmunology. Volume 8(12), 

2019. e1674605], which studied breast cancer cell lines. In our experiment, we used 

definitely the OS cells. We did the experiment with the donated bloods from patients 



BC3 and BC16 for anti-TIGHT blockage. Now we modified the legend of Fig. 7(f) 

clearly: (f) Blockade of T cell immunoreceptor with Ig against TIGIT increases the 

specific lysis, tested with the CD3+ lymphocyte from the peripheral blood of the 2 

patients BC3 and BC16.  

 

What was the blood that one study subject donates (line 104) used for? In the Methods 

section, it is stated that it was used to explore the effect of anti-TIGIT blockage but the 

respective paragraph in the Results section does not include any reference to blood.  

 

ANSWER: 1A13 

 

 

We apologize for failing in giving the full details. In fact, we used the methods for 

blood isolation and for anti-TIGIT blockage in accordance with reference [Stamm H, 

et al., Oncoimmunology.2019 Oct 12;8(12):e1674605]. We did the experiment using 

the donated bloods for anti-TIGHT blockage using blood from patients BC3 and 

BC16. Now we modified the legend of Fig. 7(f) clearly: (f) Blockade of T cell 

immunoreceptor with Ig against TIGIT increases the specific lysis, tested with the 

CD3+ lymphocyte from the peripheral blood of 2 patients BC3 and BC16.  

 

Please also refer the ANSWER 2A12. 

 

The overall language (use of English) of the manuscript needs to be reviewed in detail 

and improved.  

 

 

ANSWER: 1A14 

 

According to the reviewer’s suggestion, we have revised the manuscript thoroughly, 

and hope that these measures meet the required standards. 

 

Reviewer #2 (Remarks to the Author):  



 

The authors correctly claim that their study is the first to employ single-cell 

RNA-sequencing to study Osteosarcoma (OS). They furthermore claim to utilize this 

technology to explore the molecular mechanism of OS as well as the tumor 

microenvironment (TME). They then describe the clusters they found which are 

formed by the 110 745 single cell profiles as well as state that TIGIT is expressed in 11 

samples and is particularly overexpressed in T-reg cells. The then isolate CD3+ T cells 

and block TIGIT signaling in those cells which according to the authors yields 

improved cytotoxicity of Cytokine induced T cells. Their approach to use single cell 

resolution combined with trajectory inference methods to study OS cell heterogeneity 

is very interesting in particular since this study provides novel insight into the 

transcriptional cell types in OS and may indeed be of relevance as a reference for other 

studies.  

 

ANSWER: 

 

We very appreciate the very informative comments from the reviewer, which gives us a 

chance to improve the manuscript. 

 

Q1. However, there are some shortcomings of the present study that need to be 

addressed. First of all, while the total number of single cell transcriptomes profiled 

appears reasonable, the representation of primary OS tumors (7) compared to recurrent 

OS tumors (2) and pulmonary metastasis (2) is much higher and it is absolutely crucial 

to include similar numbers of cells from each of the conditions to be able to perform 

reliable comparisons, in particular when aligning cells along a pseudo-time. The 

authors need to analyze at least the same number of patient samples for each condition 

(7). The authors comment on the inability to capture cancer stem cells due to their low 

number. An increased sample size will facilitate to confidently rule out that lack of stem 

cell capture is due to underrepresentation of samples or small sample size.  

 

ANSWER: 2A1 

 

We appreciate the suggestions from the reviewer. Indeed, the reviewer’s point is valid. 

The number of samples from different types of lesions (in situ or primary, lung 



metastatic and recurrent OS) were different, and the number of cells for lung 

metastatic OS and recurrent OS were less than that of the primary OS. And we believe 

that an increased sample size, as one of the possible alternative strategies, will help to 

confidently clarify the stem cell issue, which may be the next project to focus on (and 

we deleted any discussion on stem cell in this manuscript).  

 

We planned to collect same number of the 3 types of lesions, and to collect a few 

paired /matched lesions, ex.  primary OS lesion / metastatic OS lesion / recurrent OS 

lesion, from the same OS patients. However, in spite of lot of efforts (all were under 

the ethical regulation, and followed the international clinical standards for OS), it was 

very hard to collect samples for metastatic and recurrent OS, because these patients 

were much less likely to get operated according to the clinical philosophy. Meanwhile 

it is even harder to get paired / matched samples.  

 

In addition, the bone cancer biopsy collected through fine needle aspiration, which is 

the standard procedure for the primary diagnostics of OS, is insufficient for isolation 

of living cells that meet the requirements for high-throughput single-cell RNA 

sequencing. Actually, even if one gets a good amount of biopsy from operation 

(operation follows the chemotherapy, which is required by the international standard 

protocol, so the tumor cells are usually not in a good condition), it is with little 

success one can isolate the required quality and quantity of living cells for the 

sequencing.  

 

Therefore, this is the best panel of samples that are accessible, and probably this is the 

reason why there is no single cell sequencing report available for this disease by now. 

On the other hand, in the field of single cell RNA-sequencing, using replicate samples 

(2 independent samples) to represent a given status of a disease or biological process 

is not unusual (i.e. it is acceptable) in single cell sequencing researches, considering 

that thousands of cells are analyzed for each sample.   

 

Importantly, we mostly focused on the cellular transition mechanism between different 

subgroups of the osteoblastic and chondroblastic cells within the same samples (same 

lesions) from patients BC20 and BC22 (Fig. 3). Besides others, we also traced the 

cellular trajectory involved in the differentiation from the myeloid cells into the 



osteoclast cells in the revised manuscript (Figure 4). Furthermore, we identified the 

subclusters of the MSC cells that express the markers CXCL12, THY1, and CD10 

(MME), which could be the progenitor cells in the osteoblast or the chondrocyte cells.  

 

 

 

Nevertheless, in the manuscript, we also compared the differentially expressed genes 

and the related cell clusters between the lung metastatic OS cells to the primary 

osteoblastic OS cells, and the recurrence and the primary osteoblastic tumor cells 

(Figure 2).  The enriched GO terms and pathways were also determined, which are 

interesting. Because of the consistency of the results obtained for the 2 independent 

lesions of metastatic OS, and of recurrent OS lesions compared to the 7 primary 

lesions in the analysis result, we trust that the features obtained for these 3 types of 

lesions are representative. Also, in the revised version, we pointed out that some 

results may have certain influence by the heterogeneity between the individuals, and 

an independent investigation with panel of paired samples or more samples may be 

required to valid the results, like most other firstly reported results (see DISCUSSION 

in the revised manuscript, and see more in answer 2A2, 2A3).  

 

 

Seven of the selected patients were under combined chemotherapy as well as surgical 

therapy. Cellular heterogeneity and underlying transcriptional signatures must 

therefore be seen in the light of this continuous drug treatment. It would be of great 

interest if the authors investigated further which cell populations are particularly 



affected by the drugs and how combinatorial drug treatment is encoded in the 

transcriptome of different cell populations. In addition, gene signatures related to 

sample type, isolation strategy and treatment might confound cell type calling- this 

needs to be discussed and addressed by the authors. Furthermore, the authors need to 

demonstrate the degree of correlation of each cell type between the different patient 

samples.  

 

ANSWER: 2A2 

 

The reviewer is correct that all the patients had received the combined chemotherapy 

treatment prior to collection of the tumor tissue samples for scRNA-sequencing 

analysis (Figure 1), please refer the answer in 2A1.  

 

However, it is difficulty to collect the ideally expected samples, untreated OS lesions 

for the sequencing. Firstly, untreated samples were collected with fine needle before 

diagnosis of OS, and with this format of biopsy, it is impossible to get sufficient 

quality and quantity of cells for the high throughput scRNA-seq. Secondly, the OS 

patients were subjected to chemotherapy before operation, following the international 

standard. As we lack the untreated cells in each subgroup cells, it was impossible for us 

to determine the influences of the chemotherapeutic treatments on the subcluster cells 

in detail.  

 

We completely agree with the reviewer that addressing the specific cell clusters and 

genes that are responsible for drug resistance is an important task, and is potentially 

very useful to improve the treatment of this cancer. We will manage to investigate this 

issue, for example using patient-derived xenograft (PDX) mouse model, in vitro cells 

obtained from the fine needle biopsy, or any other strategies permitted by the clinical 

standard and ethical rule, which could be an independent project. 

Regarding a comparison of different combinations of chemotherapy, suggested by the 

reviewer, it may also applied when a sufficient number of cases for variants of 

treatments are collected.   

 

Nevertheless, we considered that the cell clusters and gene regulation message 

obtained from the patients should have the influence of the medicine. Therefore, we 



interpreted that the conclusions of this study should be regarded as the outcome of 

possible chemo-resistant selection onto these patients (Please see the DISCUSSION 

section). On the other hand, our samples all were collected from surgical operation, no 

comparison was applied.  

 

The relationship of specific cell types and their subcluster was particularly analyzed in 

the revised manuscript, particularly between different the types of lesions (samples), 

and between the two types of OS (osteoblastic OS and chondroblastic OS). Also, 

please see the answer “2A3” for the analysis, including the correlation of samples and 

clusters. 

 

The authors need to provide more detailed information in the methods how quality 

control was performed to exclude single cell libraries from further analysis. They nicely 

show representations of the main cell populations for each patient sample used. Since a 

fixed embedding is used for this visualization, it will be important to see a t-SNE or 

UMAP representation of all patient samples labeled by experiment/ patient ID/ 

experimental run to demonstrate the absence of batch-to-batch variation. They also 

need to state average sequencing depth, UMI and gene count per cell.  

 

ANSWER: 2A3 

 

The reviewer pointed out an important issue about the quality control, pre-processing of 

the cells and the batch effects of the scRNA-seq data analysis. In our current study, we 

followed standardized pipelines in the data processing, including the constructing the 

cell-gene matrix with the CellRanger pipelines provided by the 10x genomics and 

normalization, removal of potential doublets, and removal of those cells with relatively 

higher mitochondrial genes (>= 10%) and the low number of detected genes (< 300 per 

cell). We integrated the data from individual lesions with the Harmony algorithm, 

which were developed by Korsunsky. 

 et al. [Nat Methods. 2019 Dec;16(12):1289-1296]. We also checked the splitted t-SNE 

and UMAP results from individual patients and found a well concordance of the cell 

subgroups between individual lesions, with variants of rate of cells in different lesions, 

which are reasonable considering the inter-tumoral heterogeneity that is well 

documented for other cancers. This analysis is suggesting that the Harmony algorithm 



could remove the batch effects between the patients.  Therefore, the heterogeneity 

between individual lesions are clearly considered and it does not influence the 

conclusion. 

 

According to the reviewer’s suggestion, we have provided the average UMI, and the 

gene count per cell, and clustering result from individual patients in our revised 

manuscript (the RESULT section and Supplementary Figure 1). 

 

 

In Figure 1A, the myeloid cell cluster is already split up in initial t-SNE representation, 

suggesting either sub-clusters to myeloid cluster or entirely new populations. The 

authors need to computationally show that after initial clustering, there is not more 

biological diversity in the myeloid cluster and that this cluster does not contain more 

distant cell types. The authors state that the TP53 pathway is markedly “disordered in 

subgroup 5” in Figure S2A- the use of the word “disordered” needs to be explained.  

 

ANSWER: 2A4 

  

We agree with the reviewer that the myeloid showed an already split up clusters in the 

initial t-SNE figures. In the revised manuscript, we extended the previous studies and 

further explored the subgroups of the myeloid cells and identified 10 subgroup cells in 

the myeloid cells including the monocytes, macrophages, DC cells and also the 

neutrophil cells. We performed the GSVA analysis to infer the biological activities in 

the individual cell group, and we also performed the GSVA analysis for the activation 

of 3 clusters of TAMs according to the methods used by [Chung et al., Nat 

Commun. 2017 May 5;8:15081]. We again compared the DC activities in the three 

identified DC clusters, and we noticed that CCR7+ was associated the maturation state 

of the DC cells. Therefore, we confirmed with references from the publicly available 

data, canonical markers, and gene functional analysis that these current subclustering 

results are true and informative.  

 

Regarding whether or not there is more biological diversity, more distant cell types in 

these subclusters obtained, this is a kind of philosophic question. When there are data 

for more cells available, and someone is interested to address further subsets for a 



given subset/s, there will always be a space to study. We hope that the revised 

manuscript clarifies the cellular activities of the myeloid cells. 

 

Regarding the statement that the TP53 pathway is markedly “disordered in subgroup 5” 

in previous Figure S2A, we apologize for the unclear statements in our manuscript, and 

we have now removed this unclear description accordingly and believe that the revised 

manuscript makes the sentences clear. 

 

 

Furthermore, the authors use GO terms to infer putative signaling or functionality onto 

the transcriptome data. However, the GO term analysis in Figure S2A does not provide 

a clear distinction between the different populations and is therefore not informative. 

E.g. metabolic and proliferative OS as well as bone-matrix remodeling and ossification 

OS greatly overlap. The separation of these populations by GO term analysis is not 

conclusive and needs to be substantiated. Cluster analysis as in Figure S2B allows to 

separate those cells however, only rather few genes actually contribute to this 

separation.  

 

ANSWER: 2A5 

 

Very appreciate the comments from the reviewer, which lets us to re-analyze and 

doubly verify the results. According to the suggestions, we have re-performed the 

studies on the differentially expressed genes between osteoblastic tumor cell clusters 

and the chondroblastic OS tumor cell clusters using a modification of the competitive 

gene set enrichment analysis (GSEA) method developed by [Cillo et al., Immunity. 

2020 Jan 14;52(1):183-199.e9]. In brief, this method determined the mean gene 

expression levels in each cell cluster, and assessed the log fold-change for the gene 

expression levels in the given cluster and the mean expression levels of the same gene 

in all cells outside the given cluster as the test statistic. Gene sets used for analysis 

were derived from the MSigDB collections of 50 hallmark gene sets (H: hallmark 

gene sets), which summarized and represented specific well-defined biological states 

or processes. Therefore, we removed the previous Figure S2A and B, and replaced 

them with new figures (Figure 2 c, d, f, and g), to respond to the comments. 

 



 

We also compared the gene expression profiling from different types of lesions of 

osteoblastic OS cells (lung metastasis vs. primary and recurrent vs. primary; Figure 

2E) and between chondroblastic vs. osteoblastic cells (Figure 2H) using the 

non-parametric Wilcoxon rank sum test. The output differentially expressed genes of 

the cell groups were further analyzed with GO terms enrichment using the 

hypergeometric tests implemented in the clusterProfiler package of R, and the results 

were now shown as Supplementary Figure 6h, I and J, respectively. 

 

We have added the detailed methods in our revised manuscript, and we have updated 

the content in the figures along with the versed manuscript. We hope these 

bioinformatic analysis can classify the biological activities of the cells in each cluster. 

 

 

The exploration of trajectories is very interesting, however, the referencing to 

individual genes in the actual figure needs to be made clearer as well as the figure 

themselves: Figure 2D needs to be subdivided and genes as well as GO terms which do 

not contribute to further analysis, should be remove to deconvolute the figure.  

 

ANSWER: 2A6 

 

According to the comments from the reviewer, we have thoroughly revised the 

manuscript, and Figure 2D in previous manuscript version has now removed.  

 

In the revised manuscript, we performed the trajectory analysis to infer the cellular 

status transition for the trans-differentiation from the chondroblastic tumor cells into 

osteoblastic tumor cells (Supplementary 9) in patients BC20 and BC22. The genes 

differentially expressed along with the pseudo-time of cellular trajectory model were 

identified with the Monocle 2 algorithm [Saelens W. et al., Nature Biotechnology 

2019 May; 37(5): 547–554], and these genes were grouped into clusters according to 

their gene expression pattern based on the Monocle 2 algorithm.  

 

To provide an overview of the key biological functions of the genes in each cluster, 

the enriched GO terms for those genes in each cluster were analyzed with the 



hypergeometric tests implemented in the clusterProfiler package of R. We also 

performed the trajectory analysis of the cellular transition of the OC derived from the 

myeloid cells in the TME of OS using Monocle 2 algorithm (Figure 4e and f) 

similarly. We hope the revised manuscript will address the reviewer’s concern about 

the trajectory analysis results. 

 

 

Pseudo-time analysis of OC maturation nicely shows highest expression of CD74 and 

TOP2A in progenitor OCs. These cells subsequently serve as the origin for trajectory 

building. The authors need to provide more information about selecting seed cells plus 

gene signatures which serve as the origin of the trajectory.  

 

Furthermore, since trajectory building is not trivial and strongly depends on the 

trajectories to be build and can differ between available methodologies (bifurcating vs 

multifurcating trajectories), the author must test different available solutions and 

carefully evaluate the trajectory building outcome. Since many conclusions of this 

manuscript are founded on this type of analysis, it is absolutely crucial to ensure that the 

utilized algorithm reflects the underlying biological processes in the most conclusive 

way.  

 

ANSWER: 2A7 

 

Thank you for the insightful comments. It is true that the trajectory could be influenced 

by the methods that were used in the analysis. In the current study, we chose the 

monocle 2 algorithm to infer the trajectory analysis. A recent study reported in [Saelens 

W. et al., Nature Biotechnology 2019 May;37(5):547-554] has compared 45 trajectory 

inference approaches in 100 real and 229 synthetic datasets for cellular ordering, 

topology, scalability, and usability. They noticed that the performance of a method can 

vary between datasets. The monocle 2 applied an advanced nonlinear reconstruction 

algorithm called DDRTree, which can expose the branches more powerfully. In 

addition, the monocle 2 also provided branch expression analysis modeling (BEAM), a 

new test for analyzing specific branch points to identify branch dependent genes 

[Papalexi, et al. Nat Rev Immunol. 2018 Jan;18(1):35-45]. Furthermore, the Monocle 2 



has a good publication track record in many high impact journals; therefore, we applied 

the monocle 2 to infer the trajectory of the cells in the current study. 

 

It has been reported that the osteoclasts (OCs) were derived from the 

monocyte/macrophage lineage (covered in myeloid lineage) upon stimulation of two 

essential factors, the monocyte/macrophage colony stimulating factor (M-CSF) and 

receptor activation of NF-κB ligand (RANKL)  [Feng, et al. Bone Res. 2013 Mar 

29;1(1):11-26]. M-CSF binds to its receptor c-Fms and activates distinct signaling 

pathways that stimulate the proliferation and survival of OC precursors and their 

mature cells. RANKL, is the primary OC differentiation factor, and promotes OC 

differentiation mainly through controlling gene expression by activating its receptor, 

RANK. Basing on the message described above, the myeloid cells that expressed the 

myeloid cell markers including CD74 and CD14 could be set as the root stage of the 

trajectory for our trajectory analysis of the cellular differentiation of osteoclast. 

Interestingly, we found that these progenitor cells also have relatively higher 

expression levels of TOP2A and HMGB1, the markers of cellular proliferation, 

suggesting that these cells may be stimulated by the M-CSF and RANKL secreted by 

the osteoblasts in the OS tumor microenvironment [Akiyama, et al. Mol Cancer 

Ther. 2008 Nov;7(11):3461-9], and under the differentiation process into OCs.   

 

The OC cells have been suggested to be involved in the bone destruction and invasion 

in the osteosarcoma lesions, which may serve as novel therapeutic target for OS in 

future. So they are clinical important. In the current study, we in single cell level found 

that the CD74 levels were relatively high in the OC progenitor, and were low in the 

mature osteoclast cells, suggesting that the antigen processing activities of the cells 

were lost during the differentiation from OC progenitor) into mature OC cells. 

Combining with other analyses, our data suggests that the OC progenitor possess the 

function for antigen presentation, while mature OCs lose this function for antigen 

presentation while gain the function for bone destruction and invasion, which is 

associated with lung metastasis OS. Please see also the ANSWER 2A8. 

 

 

In Figure 3E, the authors describe GO terms to describe biological process as they 

change following OC differentiation. As opposed to earlier analyses in this manuscript, 



the selected GO terms are either sharply present or absent at both endpoints of the 

trajectory. None of the GO terms show gradual acquisition or decline along 

differentiation axis. The authors need to provide relevant GO terms which gradually 

alter over time as it now appears to be the transition between two cell stages only. 

Figure S4 is not mentioned in the text.  

 

ANSWER: 2A8 

 

In the revised manuscript, we added a series of new figures, including we also added 

the cell numbers and ratios in each cluster in the new Figure S5, which display the 

detail of the old Figure S4. Meanwhile, we removed the old Figure S4.  

 

In the trajectory analysis, we wanted to trace the biological pathways that varied with 

the differentiation process of OC from CD74+/CD14+ monocytes (belonging to a 

type of myeloid) to mature OC, presented in the previous Figure 3E. We detected the 

genes that varied with the trajectory pseudo-time with the Monocle 2 algorithm [Nature 

Biotechnology volume 37, pages547–554(2019)], which indicated different 

differentiation status of the cells in order, and classified the genes into subsets 

according to the gene expression patterns (increase or decrease along with the 

pseudo-time). The updated results were showed in the new Figure 4, and Figure S10.  

 

To provide an overview of the key biological functions of the genes in each cluster, 

we performed the gene functional GO enrichment analysis of the genes in subsets and 

provided the top enriched GO terms in the revised manuscript. We found that the 

down-regulated genes were associated with antigen processing and presentation, 

responses to interferon gamma treatment and the DNA replication and mitotic nuclear 

division (Figure 4e, cluster 3). In contrast, the genes contributed to bone resorption, 

osteoclast differentiation and hematopoietic stem cell differentiation were significantly 

increased along with the cellular differentiation to mature OC, which was inconsistent 

with our expectation (Figure 4e, cluster 1 and 2). Furthermore, we noticed that the 

critical transcription factors involved in OC differentiation including NFATC1, SPL1 

and FOSL2 were significantly increased (Figure 4f), while the genes related to DNA 

replication and genes related to monocyte activation including MAF, MEF2C and the 

differentiation related transcriptional factors including JUN, FOS etc. were 



significantly reduced (Figure 4f). These results provided a comprehensive view of the 

differentiation process of OC from monocytes.  

 

We also apologized for the unclear statement in our previous manuscript. In the 

updated Figure 4e, each line indicated the scaled expression level of individual genes 

that changed along with the pseudo-time of the cellular trajectory. These genes were 

clustered into 4 clusters based on their gene expression pattern according to the 

Monocle 2 algorithm. The GO terms of the genes in each cluster were analyzed with 

the hypergeometric tests implemented in the clusterProfiler package of R. As the 

genes were gradually increased or reduced along with the trajectory, we hypothesized 

that the GO terms show gradual acquisition or decline along differentiation axis. We 

hope these responses could address the reviewer’s concerns.  

 

Next, the authors use Seurat to cluster myCAF and apCAF. Unfortunately, based on the 

clustering they present, not two but rather 7 distinct gene signatures can be identified 

(Figure 4C). The authors must clarify the discrepancy between the t-SNE distribution 

of two populations compared to the finer, but unfortunately ignored clustering by 

Seurat. The results of this part are as of now inconclusive.  

 

ANSWER: 2A9 

 

Appreciate the comments. We have updated the analysis pipeline, and three subclusters 

of CAF were identified, as suggested by t-SNE clusters (now the early Figure 4C was 

removed, please see the replacement: the new Figure 5d, e and f). Please note that the 

subcluster 1 seems separated in the plot, but we must consider that this plot is a 2D plot 

while the actual relationship is captured in 3D. Specifically, the  COL14A1+ matrix 

fibroblast, the smooth muscle -like cells and the third type. The gene patterns of each 

CAF subcluster were also dissected (Supplementary Fig. 12f). Compared to the other 2 

clusters, the cluster 3 showed the feature of myofibroblast. Interestingly, the subcluster 

3 showed relatively high expression of osteoblast markers IBSP and SPP1, suggesting 

that this subcluster in the osteosarcoma lesions may play an osteoblast-like function. 

The functions of the distinct cell groups were shown in the revised manuscript.  

 



In figure 6 C, CD8+ T-cells and CD4-/ CD8- T-cells basically do not differ in gene 

expression. In the t-SNE representation (6A) both cell populations might separate. 

Gene signatures need to be provided which actually delineate both cell populations. 

 

ANSWER: 2A10 

 

We seriously considering the comments of the reviewer with the differentially 

expressed genes between CD8+T and CD4-/CD8-T cells, and re-checked the data with 

the methods said above. In the revised manuscript, we have updated the analysis 

according to our latest result and changed the previous Figure6 C to current Figure7 c 

for this issue. We found that the CD8+T cells and CD4-/CD8-T cells were clearly 

separated in clusters. We identified the genes that were differentially expressed 

between the 2 cell subclusters. We also performed the gene set variation enrichment 

analysis (GSVA) [Hänzelmann, et al. BMC Bioinformatics. 2013 Jan 16;14:7] to 

identify the enriched biological functions of the cells, in particular, the 

cytotoxic， exhausted， regulatory， naïve and co-stimulatory T cell functions. The 

results suggested that CD8+T cells were enriched with the cytotoxic activities and a 

small proportion of the cells were associated with the exhausted status, highlighting the 

tumor suppressive environment of the osteosarcoma tumor.  

 

Interestingly, we also found that T-reg cells have shown a significant enrichment of the 

exhausted activities. The T-reg cells were characterized with relatively higher IL2RA, 

FOXP3 than other cells, and the cells in the cluster also have relatively higher TIGIT 

and CTLA4 expression, suggesting that the T-regs have significant tumor-suppressor 

activities in the tumor microenvironment of osteosarcoma tissues. 

 

 

The cell-based assay to assess blocking of TIGIT signaling on cytotoxicity is presented 

as being statistically significant. However, in Figure 7B, none of the comparisons 

Control vs. TIGIT inhibition shows a significant effect on cytotoxicity. In addition, 

only two patient samples were used which is not conclusive. A larger number of patient 

and control samples needs to analyzed (e.g. 7 vs 7).  

 



ANSWER: 2A11 

 

Thanks for the reviewer’s helpful comments. We had changed the previous Figure7B 

to Figure7f now.   

 

Regarding the concern of the reviewer about the cellular cytotoxic activities of TIGIT 

blocking in tumor cells, so far, many clinical trials involving the immune check point 

inhibitors, such as Pembrolizumab, Nivolumab, showed promising treatment effect on 

OS, but less than 10% patients were benefited from this therapy. The results of 

SARC028 indicated that only 2 out of 40 (5%) patients with bone sarcoma had an 

objective response[Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma 

(SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial [Hussein , 

et al. Lancet Oncol. 2 017 Nov;18(11):1493-1501]. It has been a challenge to identify 

a better molecular target for OS therapy.  

 

In this study, we tried to test whether TIGIT blocking would inhibit the tumor 

suppressive activities of T-regs and whether it would reverse the cytotoxicity of the 

exhausted CD8+T. Basing on the concept of precision medicine, not all patients may 

be responsive to anti-TIGIT antibody, like the case in PD1-based therapy. Here based 

on the scRNA-seq analysis, we chose 2 patients who had more than 10% of TIGIT in 

CD3+ T cells for the test, and we expect that these type of patients would be the 

appropriate sub-set of patients for potential TIGIT therapy in the future.  

 

In the current study, the cytotoxicity was evaluated according to the article titled 

[Stamm H, et al., Oncoimmunology.2019 Oct 12;8(12):e1674605]. With the cells 

from the two patients showing relatively higher (than other patients) TIGIT expression 

of the immune cells based on scRNA-seq, our experiment showed that the TIGIT 

blocking significantly increased the T cytotoxicity activities in the cellular models. For 

the current study we could not add more patients due to aforementioned reasons. We 

highly appreciate the suggestion of the reviewer, and we will further validate the 

efficiency of anti-TIGIT assay, and explore this mechanism with patient cells and with 

humanization animal model in a systematic fashion in our future study. 

 



However, on this stage, the patient availability is limited because the incidence of OS 

was very low (ex. less than one-tenth of breast cancer), and due to the spread of novel 

coronavirus. A systematic investigation of the effect of TIGIT-blocking with a big 

panel of patients would be a different project.  

 

 

While one key finding of the article is the elevated expression of TIGIT in T-reg cells in 

OS tumors, the confirmation of its significance, the functional validation, did not 

produce significant results. This must be substantiated.  

 

ANSWER: 2A12 

 

We highly appreciate the reviewer’s comment.  Besides a series of other discoveries, 

we have identified that FOXP3+ T-reg cells showed high mRNA expression levels of 

TIGIT. We have further checked the public data available and confirmed this finding. 

As indicated in Figure 7, we identified a cell cluster with FOXP3 expression (the 

marker of T-reg cells), in which the TIGIT expression levels were relatively higher 

than the other cells. These data suggested that the T-reg cells have relatively higher 

TIGIT levels in osteosarcoma tumor cells, which may serve as a novel therapeutic 

target for osteosarcoma. We did a primary test and in principle proved the hypothesis. 

Due to the limitation of the coverage and the focus of this study, we did not determine 

the biological functions of the TIGIT+ T-reg cells in this study. We are going to 

extend the investigation further in an independent project for re-confirmation of its 

significance, validation of the functional relevance, and the potential application in the 

therapy of OS patients (including identification of the subgroup of patients eligible for 

the therapy). The comments from the reviewer greatly encourage us to systematically 

accomplish this mission at the earliest.   

 

Finally, the overall English in the article text as well as figure legends and figures 

themselves needs to be improved. Furthermore, great care should be taken to avoid 

typing mistakes in the main text or figures (e.g. Fig S2A “Paekinsons Disease”).  

 

ANSWER: 2A13 

 



We apologize for the spelling mistakes and grammar issues in the manuscript. We have 

further revised our manuscript thoroughly and hope it will meet the standards required.  

 

Overall, the present study contributes a novel single cell transcriptomics data set to the 

field, which indeed might be of interest to other researchers to be used as a reference. It 

is also the first study to employ this technology to study OS. The computational 

analyses of this data set however require substantial improvements as well as the 

experimental set up regarding sample size (see comments above), and a clearer, more 

detailed description in the methods section. Despite the usage of trajectory inference 

and GO term analysis, the present study falls short in conclusively describing the 

molecular signatures of all cell populations in all different samples as well as to 

perform a representative analysis across similar sample sizes per sample type. The 

possible effect of drugs from combined chemotherapy on transcriptional signatures but 

also cellular heterogeneity is not taken into account and is a weakness of this study. It is 

furthermore often unclear, whether identified cell populations can be further 

subdivided into different subclasses or cell states, which in turn might be relevant to 

describe the tumor microenvironment in a more refined fashion. Albeit performing 

single cell analysis in a novel patient tissue, the conclusions regarding cell populations 

but also the claimed clinical utility are rather weak.  

 

ANSWER: 2A14 

 

We thanks the reviewer for helping us improve the manuscript through his kind and 

informative comments. According to the suggestions, we have thoroughly revised the 

manuscript. We added more detailed information, such as method description, further 

deeper analysis, and result interpretation, in our revised manuscript. The GO analysis 

of the differentially expressed genes and gene set enrichment analysis (GSEA) were 

now performed to get the molecular signatures of the cell subgroups in the revised 

manuscript.  

 

We acknowledge the possible effects of the drugs on the gene expression profiling and 

the cellular heterogeneity and are largely unknown, which need to be evaluated with 

more studies. In our study, the scRNA-sequencing was performed on the patients who 

had previously received chemotherapeutic treatment, which is one of the weakness of 



our study; however, the current study has the following clinical treatment guidelines, 

and the findings in our current study may provide potential therapeutic targets for 

osteosarcoma patients, such as TIGIT blocking may prove to be an effective 

therapeutic method clinically.   

 

We agree with the reviewer that the sub-cluster cells could also be divided into more 

clusters which may provide a clearer picture of the TME in osteosarcoma; however, 

due to the limited cell numbers in the current study, we clustered the cells into 

canonical major cell subtypes based on the t-SNE algorithm.  

 

Furthermore, the detected gene numbers were also limited in the 10x genomics method. 

In the future, it would be of great clinical importance to evaluate the detailed status of 

the tumor immune microenvironment in osteosarcoma with the enrichment of the 

myeloid cells and T and NK cells with high coverage of genes using techniques such as 

the SMART-seq method. These would be our future prospects to pursue. 



Reviewer #1 (Remarks to the Author): 

The authors have generally answered and addressed the questions posed in the first review. I have 

some minor edits and clarifications to suggest. 

INTRODUCTION 

Page 4: 

They quote an Overall survival rate 25%. That is really not correct. It is only correct for metastatic 

OSA, not for all osteosarcomas and certainly not for localized osteosarcomas. They should correct this 

statement. Survival for all osteosarcomas (unselected) is above 50%. 

Also, Radiation treatment is not part of the standard or optimal treatment plan for osteosarcoma, 

which is treated with surgery and chemotherapy. Radiation is only used when surgery is absolutely 

impossible or for palliation. This should be corrected. 

RESULTS: 

Page 5: 

10, 897 cells: This must be a typo, this count does not agree with counts stated for the same result in 

other sentences. 

METHODS 

Page 27 

How many patients received PD-L1 therapy? 

The authors provide somewhat confusing information. One sentence states that it was one patient on 

a prior trial, and another sentence states that all patients received PD-L1 therapy. This should be 

clarified. 

Reviewer #2 (Remarks to the Author): 

ANSWER: 2A1 

… and we deleted any discussion on stem cell in this manuscript. 

The authors removed the statement about missing stem cells, which might be simply due to lack of 

under-sampling of cells from metastatic and recurrent OS. The authors also state that these samples 

are too difficult to obtain to process additional specimen as well as that the fine-needle aspiration of 

cancer biopsies does not provide cells of sufficient quality and quantity for high throughput analysis. 

Different platforms exist which enable processing small samples such as FACS sorting into PCR plates. 

Furthermore, confirming cell type annotations via an alternative method (e.g. plate-based Smart-seq) 

would further strengthen the methodology underlying this manuscript and might provide an even 

more refined cell atlas of a previously understudied tissue by single cell transcriptomics. 

Also, if the authors are concerned about sample quality upon biopsy, profiling nuclear RNA has proven 

to be very informative and to be less affected by sample isolation compared to cells. 

ANSWER: 2A2 

The authors state the lack of untreated controls for each subgroup which makes it impossible to infer 

treatment induced transcriptional alterations. Instead, if no control tissue is available at their 

institution nor from an international biobank, they could use the primary OB cells and state that they 

are used as an approximation due to the lack of the proper control. 

The authors should provide evidence for transcriptional signature changes upon treatment as this 

would add significant value to the manuscript. 

ANSWER: 2A3 

The authors provide the demanded answers in their reply as well as in the results section. The t-SNE 



plots of individual samples show the different cell types which are present in all samples. However, the 

UMI counts are particularly low for BC3 and BC2 and indicate that mRNA capturing/ amplification did 

not work as well for those two samples. Where these samples processed differently? Why did these 

two samples generate fewer UMIs and gene counts compared to the other samples? 

ANSWER: 2A4 

Good. The authors have further analysed this cluster and provided a definition for 10 subtypes within 

the myeloid cluster. 

ANSWER: 2A5 

The authors address the comments and re-analyse the data set for GO term enrichment. Now they 

show genes which distinctly mark the different clusters (2c) as well as distinct GO terms which show a 

distinct, cell type-specific pattern (2g). Unfortunately, in Fig 2d, the alphabetical ordering of GO terms 

makes it difficult to spot overall changes between the cell types. If possible, one could re-order the GO 

terms in 2c and 2g- similar to Fig. 2c. 

ANSWER: 2A6 

The authors addressed the comment by providing detailed description on how Seurat clustering and 

monocle 2 trajectory inference were performed. 

ANSWER: 2A7 

The authors did not test trajectory building using another algorithm, as suggested, and focused on 

monolce2. Their explanation is, that monocle2 is one of the most widely used software with a good 

track record. They reference Saelens 2019, which concludes that the choice of trajectory tool is 

dependent on the data set dimensions and trajectory topology. They state themselves that trajectory 

tool performance may depend on It would be interesting to see, whether another trajectory inference 

method would provide a similar picture of developmental trajectories in this particular case. Since 

central conclusions of this study are based on trajectory analyses, a scientific reasoning for the chosen 

method would appear natural. 

ANSWER: 2A8 

The genes which are strongest down regulated on Fig 4f are not the genes stated by the authors in 

the result section. They should comment on those genes (e.g. DBP, ID3,HES4, GLMP) and their 

biological relevance for the differentiation processes studied here. In the text, the authors state the 

following genes to be downregulated HMGB1, HMGB2, MEF2C, CREM and LITAF but it is unclear from 

the text to which figure they refer to. Gene LITAF for example is not in Fig 4f. Please comment and 

correct. 

ANSWER: 2A9 

OK. 

ANSWER: 2A10 

OK. 

ANSWER: 2A11 

In Fig 7f, graphs U2OS:BC16 and 143B:BC16 are exactly identical. Please explain. The authors need 

to clearly state in the results, that the two patients were selected based on high TIGT expression in 

CD3+ T cells. This is relevant to follow the rationale of testing for T cell cytotoxicity in their cellular 

model. 

Given that suitable samples are sparse, the explanation for using these two patients is relevant. 

However, it would be crucial to see patients’ cells performance in this assay with low TIGIT 

expression- based on the conclusion of the authors, the observed cytotoxicity should be less. This is a 

logic and necessary experimental confirmation of their hypothesis. 

ANSWER: 2A12 

See comment above to substantiate the conclusion that targeting TIGIT-high T-reg cells may present 

a novel therapeutic approach to OS, the authors should at least show a milder effect in their cellular 

assay in patient samples with lower fraction of TIGIT-high T-reg cells. 

ANSWER: 2A13 

OK. 

ANSWER: 2A14 

OK. 

OTHER COMMENTS: 



Typo line 100: total number of cells is too low, does not add with the following cell counts 

Line 150: typo --> BC17 instead of BC107 

Ordering of Fig 2d to be changed --> such as in “stair-case” like plot Fig 2c 

Chromosomal lesions: 1p gain, 1q gain, 2q gain, 17q gain, 201 and 21q gain --> were they observed 

in OS earlier? Not entirely clear from the reference CGH studies on line 203. 

Figure 3a: samples BC6 and BC10 have the same color code. Usage of unique colours for each sample 

necessary. 

The inference of genomic variation from mRNA data is interesting and informative. The authors should 

discuss clearly that the variation found here reflects aberrations present in the mRNA and that 

additional genomic variation might underlie the different cell populations and thereby explaining 

additional relationships. 

Low number of OS cells in ondroblastic OS lesions and the lung metastatic lesions --> could this be 

due to lack of capturing via single cell mRNA seq? Low sample quality? The authors should discuss 

this. 

Improve readability of legends in suppl. Fig 8. 

Suppl. Fig 10d: samples BC11, BC20 and BC22 do not contain mature OC cells- please state why this 

might be the case. 

Suppl Fig 11a/ 14b – proper scale bars necessary. 

Suppl Fig 11b – higher magnification necessary, cells are difficult to visualize, scale bar necessary. 

Suppl. Fig 15: distinguish between Osteoblast and proliferative osteoblast cells. Overall this figure is 

helpful but could be slightly re-organized to improve its function to provide an overview. 

In supplementary table 1, the cell numbers per patient are listed- the myoblast cluster from fig 1 is 

basically only comprised of cells from sample BC17- if this cell type is only present in this sample, it 

cannot really be used as a general subtype across all samples analysed!! This needs to be explained 

and corrected. In BC5 and BC22, there are 2 myoblast cells found in each sample. They are absent 

otherwise. This cell type cannot be used to compare all samples. Why is this cell type not present on 

the majority of the samples? This might be due to under-sampling, and introduction of sampling bias 

during sample preparation. 

While the sample size has not been increased, so that some of the original concerns regarding 

comparability of data sets from patients remain, the authors have removed statements (e.g. regarding 

the absence of an expected stem cell population) as well as provided in – depth explanations for the 

various different computational analyses performed. The authors nicely decipher the various different 

cell types present, making this manuscript a relevant contribution with regards to classifying this type 

of tissue. However, lack the cellular throughput and varying gene capturing depth (ca. 450 – 4500 

genes) may negatively impact the generation of a refined cell atlas resolving the majority of cell 

subtypes. Cluster analysis and cell type annotation use main/ canonical markers. More consistent gene 

capturing across all samples (e.g. >2000genes/ cell) may provide a more refined cell atlas. 

The lack of control/ untreated tissue and therefore the missing analysis of chemotherapy- induced 

transcriptional and genomic alterations is a weakness. Especially since the authors claim high clinical 

relevance for their findings. While the cell type, trajectory and inferred clonotype analyses are 

interesting (cell type annotations are limited by the cell number and varying gene capturing), the 

demonstration of clinically relevance could be stronger. 



The following are our point by point responses to the comments of the reviewers. 

 

 

REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have generally answered and addressed the questions posed in the first 

review. I have some minor edits and clarifications to suggest. 

 

INTRODUCTION 

 

2_1Q1 

Page 4: 

They quote an Overall survival rate 25%. That is really not correct. It is only correct for 

metastatic OSA, not for all osteosarcomas and certainly not for localized 

osteosarcomas. They should correct this statement. Survival for all osteosarcomas 

(unselected) is above 50%. 

 

Also, Radiation treatment is not part of the standard or optimal treatment plan for 

osteosarcoma, which is treated with surgery and chemotherapy. Radiation is only used 

when surgery is absolutely impossible or for palliation. This should be corrected. 

 

A1 

Response: We thank the reviewer for the valuable comments. We agree with the 

reviewer that the 5-year overall survival is less than 25% for osteosarcoma patients 

with metastatic osteosarcoma and about 60-68% for all patients [J Clin Oncol 2002; 

20(3): 776–790; Eur J Surg Oncol 2015; 41(3): 407–412.; Cancer. 2006 Mar 

1;106(5):1154-61], and that radiation is recommended for the treatment of patients 

with unresectable tumors, who had surgery but show positive margins, or as palliative 



intervention, according to the National Comprehensive Cancer Network (NCCN) 

guidelines (version 1.2020; see below). In all cases that we collected, the patients were 

all treated with chemotherapy plus surgical therapy, but no radiation therapy. We have 

further revised these statements in the revised version of the manuscript (Line 70). 

  

 

 

 

Letter Figure 1. The NCCN guidelines (V1.2020) for the treatment of osteosarcoma. Radiation 

treatment is recommended for patients with unresectable tumors and those with poor responses to 

chemotherapy.  
 
RESULTS 
 
2_1Q2: 



Page 5: 

10, 897 cells: This must be a typo, this count does not agree with counts stated for the 

same result in other sentences. 

 

A2: 

Response: The total single cell number was 100,987 cells in the present study. We 

apologize for this typo and we have revised this information in the new version of the 

manuscript (Line 100). On the other hand, in spite that this number referred the total 

cell number, we described other cell numbers in different categories of cells, ex. 

different type of cells, and different subcluster of cells. 

 

METHOD 

 

2_1Q3: 

Page 27 

How many patients received PD-L1 therapy? 

The authors provide somewhat confusing information. One sentence states that it was 

one patient on a prior trial, and another sentence states that all patients received PD-L1 

therapy. This should be clarified. 

 

A3: 

We apologize for the unclear statement in our manuscript. The fact is that we enrolled 

one patient (BC17) from a registered clinical trial, for our scRNA-seq study; except 

this patient, all other cases that we studied were not from this clinical trial. Now we 

restated it as: “In addition to other patients enrolled for our study, we recruited one 

patient (BC17) from the clinical trial NCT03676985, in which all patients had 

undergone neoadjuvant chemotherapy, surgery, and adjuvant chemotherapy, and they 

all had received anti-PDL-1 therapy for one year until the disease progressed.” (Line 

628 to 632). 



 

 

 

Reviewer #2 (Remarks to the Author): 

 

2_2Q1 

ANSWER: 2A1 

… and we deleted any discussion on stem cell in this manuscript. 

The authors removed the statement about missing stem cells, which might be simply 

due to lack of under-sampling of cells from metastatic and recurrent OS. The authors 

also state that these samples are too difficult to obtain to process additional specimen as 

well as that the fine-needle aspiration of cancer biopsies does not provide cells of 

sufficient quality and quantity for high throughput analysis. 

 

Different platforms exist which enable processing small samples such as FACS sorting 

into PCR plates. Furthermore, confirming cell type annotations via an alternative 

method (e.g. plate-based Smart-seq) would further strengthen the methodology 

underlying this manuscript and might provide an even more refined cell atlas of a 

previously understudied tissue by single cell transcriptomics. 

 

Also, if the authors are concerned about sample quality upon biopsy, profiling nuclear 

RNA has proven to be very informative and to be less affected by sample isolation 

compared to cells. 

 

2_2A1: 

Response: We thank the reviewer for these valuable comments, which allow us to 

re-consider our experiment design, and any additional experiment that may be added. 



  

The plate-based SMART-Seq method provides deeper information about the 

transcriptomic profiling of single cells, which includes alternative splicing and 

possibly single nucleotide mutation message for transcripts besides difference of 

expression, and may provide more refined cell atlas of osteosarcoma. Compared with 

the droplet scRNA-seq method, such as 10× Genomics technology, the plate-based 

SMART-seq method is usually of much lower throughput and is associated with much 

higher costs. The current study (this manuscript) aimed to depict the cellular 

heterogeneity atlas in osteosarcoma tissues, therefore we must use a much higher 

throughput method on a large number of cells, with an affordable cost.  

 

Nevertheless, SMART-Seq method is particular useful for a more intensive study on a 

much more focused cell type (types), for different purpose, such as transcript mutation 

and splicing analysis in the regulation of the OS. In the near future when there is a 

chance, we would like to provide deeper transcriptomics profiling of the FACS sorted 

osteosarcoma tumor cells, immune cells, or stromal cells etc., with SMART-seq in 

together with other high throughput scRNA-seq methods, following the reviewer’s 

valuable suggestions.  

 

We also thank the reviewer for the valuable suggestions of single cell nuclear RNA 

sequencing (snRNA-seq) method, which may be helpful to overcome the cell damage 

caused during the sample preparation protocol. This approach may represent another 

helpful platform to depict the transcriptomic landscape of osteosarcoma. We expect to 

setup the snRNA-seq platform in our lab, which could provide comparable 

transcriptomics profiling data of osteosarcoma in the near future when only partially 

damaged samples are available while cell nuclei are intact.  

 

2_2Q2 



ANSWER: 2A2 

The authors state the lack of untreated controls for each subgroup which makes it 

impossible to infer treatment induced transcriptional alterations. Instead, if no control 

tissue is available at their institution nor from an international biobank, they could use 

the primary OB cells and state that they are used as an approximation due to the lack of 

the proper control. 

 

The authors should provide evidence for transcriptional signature changes upon 

treatment as this would add significant value to the manuscript. 

 

2_2A2: 

We agree with the reviewer that systematically evaluated the transcriptomics change 

upon the treatment may provide deep insight into the cellular responses of 

osteosarcoma cells to the systematic chemotherapy in clinic. We tried to gain the 

untreated osteosarcoma tissues for each patient; however, the neoadjuvant 

chemotherapy is a standard treatment for OS and the biopsy before any treatment would 

possibly promote the malignant cell into circulation, which would increase the risk of 

metastasis. With ethical concern, we are obligated to minimize the risks in clinic 

practice and we could only insert a biopsy needle to grab a tiny bit of tissue for 

pathological diagnosis, in which however the cell number and quality (when 

dissociated) are not sufficient for a high throughput scRNA-seq analysis.  

 

We also searched the GEO database for transcriptomics data of osteoblasts and 

chondrocytes, but we did not find any scRNA-seq dataset of human available. In deed 

we found RNA-seq data on human normal bone biopsies (GSE accession number: 

GSE141595), normal osteoblast cell lines (GSE89179), osteosarcoma cell lines 

(GSE118488 comprising 13 cell lines), and osteosarcoma tissues (GSE140131 and 

GSE124768); however, they were performed with the conventional bulk RNA-seq 

methods on heterogenous cell types, or on cell lines. The current study was performed 



using the scRNA-seq method based on the 10× Genomics platform, which possesses 

lower coverage of the transcriptomics for a large number of single cells. Because these 

datasets were different in nature, and were with too many variables, the result would 

be very likely biased or misleading if we compared the RNA-seq data from the 

scRNA-seq and the conventional bulk RNA-seq with different natures of samples.  

 

Although drug resistance is not the purpose in this manuscript, we are interested in the 

topic. In the future, when we have chance we will study the cellular and molecular 

responses to chemotherapy, radiation, or the immunotherapy using organoid models, 

patient-derived-xenograft (PDX) models, and other animal models based on the 

scRNA-seq methods as pointed out by the reviewer. 

2_2Q3 

ANSWER: 2A3 

The authors provide the demanded answers in their reply as well as in the results section. 

The t-SNE plots of individual samples show the different cell types which are present in 

all samples. However, the UMI counts are particularly low for BC3 and BC2 and 

indicate that mRNA capturing/ amplification did not work as well for those two 

samples. Where these samples processed differently? Why did these two samples 

generate fewer UMIs and gene counts compared to the other samples? 

 

2_2A3: 

Response: We agree with the reviewer. In our study, the UMI counts of BC2 and BC3 

are relatively lower than those of other samples, which could be due to the relatively 

lower sequencing depth in our initial experiments. We followed the general 

recommendation of the 10×Genomics platform for BC2 and BC3, and because the 

UMIs were low, we sequenced it at a higher depth and obtained better sequencing 

results for the resting 9 samples. 



 

We agree with the reviewer that caution should be taken when assessing these two 

samples. In our bioinformatics analysis pipeline, we have performed several steps to 

avoid the bias that may derive from BC2 and BC3 samples. First, in the integration step, 

we applied the Harmony algorithm to account for the batch effect. As shown in 

Supplementary Figure 3 (the sample stratified t-SNE plot of the cellular clusters) and 

Supplementary Figure 4 (the sample stratified UMAP plot of the cellular clusters), we 

noticed a good concordance of the cellular components for each patient, suggesting that 

the samples BC2 and BC3 have sufficient data in the integrated cellular annotation. 

Second, the gene expression counts have been normalized and scaled during the t-SNE, 

UMAP, and the trajectory analysis (with Monocle 2) in the scRNA-seq analysis 

pipelines, which reduced the bias of sequencing depth of the samples. These results 

indicated that the relatively lower UMI of BC2 and BC3 had minimal influence on the 

conclusions in our study. 

 

2_2Q4 

ANSWER: 2A4 

Good. The authors have further analysed this cluster and provided a definition for 10 

subtypes within the myeloid cluster. 

 

2_2A4: 

Response: We thank the reviewer for the positive comment.  

 

2_2Q5 



ANSWER: 2A5 

The authors address the comments and re-analyse the data set for GO term enrichment. 

Now they show genes which distinctly mark the different clusters (2c) as well as 

distinct GO terms which show a distinct, cell type-specific pattern (2g). Unfortunately, 

in Fig 2d, the alphabetical ordering of GO terms makes it difficult to spot overall 

changes between the cell types. If possible, one could re-order the GO terms in 2c and 

2g- similar to Fig. 2c. 

 

2_2A5: 

Response: Thanks to the reviewer’s valuable suggestions. We have now performed the 

row clustering analysis in Figure 2d and Figure 2g to make the figure clearer. 

 

2_2Q6 

ANSWER: 2A6 

The authors addressed the comment by providing detailed description on how Seurat 

clustering and monocle 2 trajectory inference were performed. 

 

2_2A6: 

Response: We appreciate the reviewer for the comment. 

 

2_2Q7 

ANSWER: 2A7 

The authors did not test trajectory building using another algorithm, as suggested, and 

focused on monolce2. Their explanation is, that monocle2 is one of the most widely 



used software with a good track record. They reference Saelens 2019, which concludes 

that the choice of trajectory tool is dependent on the data set dimensions and trajectory 

topology. They state themselves that trajectory tool performance may depend on It 

would be interesting to see, whether another trajectory inference method would provide 

a similar picture of developmental trajectories in this particular case. Since central 

conclusions of this study are based on trajectory analyses, a scientific reasoning for the 

chosen method would appear natural. 

 

2_2A7: 

Response: We understand that the reviewer showed concerns regarding the trajectory 

analysis method used in our study. Up to date, multiple analysis tools have been 

developed to infer the cellular trajectory. As pointed by Saelens et al. [Nature 

Biotechnology 37, 547–554(2019)], the choice of the analysis method should depend 

mainly on the dataset dimensions and trajectory topology. In the current study, we 

applied the Monocle 2 algorithm to infer the cellular trajectory during osteoclast 

maturation and the transdifferentiation of malignant chondroblasts into osteoblast cells 

in osteosarcoma tissues. As noted, Monocle 2 is one of the most widely used software 

with a good track record. It fits the simple linear (such as the osteoclast maturation in 

our study), bifurcation (such as the chondroblast transdifferentiation in patients BC20 

and BC22), and the multifurcation trajectory types [Nature Biotechnology 37, 

547–554(2019)]. Nevertheless, following the reviewer’s suggestion, we re-analyzed 

the trajectory data with other tools to check the robustness of the results inferred by 

Monocle 2. 

 

For osteoclast maturation, we noticed a linear trajectory topology using Monocle 2, 

which was confirmed by the SCORPIUS algorithm (See Letter Figure 2 below). The 

SCORPIUS algorithm is an unsupervised approach for inferring linear developmental 

chronologies from single-cell RNA sequencing data [Preprint at bioRxiv 

https://doi.org/10.1101/079509 (2016); Nature Immunology 16 (7): 718–26]. With 



SCROPIUS, we validated the linear transition of osteoclast from the OC progenitor 

cells and OC immature cells into mature osteoclast in osteosarcoma tissues (Letter 

Figure 2A). Along the pseudotime, the top differentially expressed genes are presented 

in Letter Figure 2B (the top 50 genes are shown). Among them, the genes related to 

myeloid progenitor cells, including CD74, CD14, HLA-DPB1, and HLA-DPA1, were 

significantly downregulated along the pseudotime, while genes related to mature 

osteoclast and osteoclast differentiation, such as ACP5, CTSK, CTSB, and SPP1, 

among other, were significantly upregulated. Furthermore, we also noticed that cell 

proliferating markers, including HMGB1, TYMS, and MKI67, were significantly 

downregulated along the trajectory. These results were in agreement with our Monocle 

2 inferred results (Figure 4 in the main manuscript). 

 

Letter Figure 2. Analysis of single osteoclasts during the cellular differentiation by the SCORPIUS 

algorithm. (A) Trajectory plot. (B) Expression profile of the top 50 differently expressed genes 

along the pseudotime trajectory of osteoclast maturation. These genes were grouped into five 

clusters based on their expression pattern.  

 

For the cellular transdifferentiation of malignant chondroblasts, we noticed the 

bifurcation trajectory in patients BC20 and BC22, as suggested by the Monocle 2 

algorithm. Using the slingshot algorithm [BMC Genomics. 2018 Jun 19;19(1):477], 

another popular trajectory analysis tool that fits the bifurcation trajectory, we 



reanalyzed the cellular trajectory of chondroblast osteosarcoma cells (Letter Figure 3 at 

below). For each cell fate branch, we also determined the genes that significantly 

changed along the pseudotime using the general additive model (GAM), as suggested 

by the slingshot guidelines. The 100 most significantly expressed genes are shown 

(Letter Figure 3B and 3C). In BC20, we also noticed a bifurcation trajectory of the 

tumor cells, with one branch indicating a transdifferentiation into osteoblastic cells 

from chondroblastic cells (cell fate 1), while the other branch consisted of 

chondroblastic cells (cell fate 2). In cell fate 1 branch, we noticed that the top 

differentially expressed genes were biomarkers of chondroblastic cells, including 

COL9A1, ACAN, and COL11A1 (Letter Figure 3B, left panel), and an increment on 

osteoblastic cell biomarkers including COL1A1, SPP1, COL3A1 etc. (data not shown) 

along with the trajectory pseudotime. In the cell fate 2 branch, genes related to 

osteosarcoma growth and progression, such as PLOD1, MMP2, and STMN1 (Letter 

Figure 3B, right panel), were significantly upregulated along with the cellular trajectory, 

suggesting the malignant progression of the chondroblastic cells within osteosarcoma 

tissues. For BC22 (Letter Figure 3A, right panel), we noticed a bifurcation trajectory of 

the chondroblastic cells into two distinct osteoblastic cells, which consisted of 

osteoblasts 1, 2, 3, and 4 (cell fate 1; Letter Figure 3C), and the osteoblasts 5 and 6 (cell 

fate 2; Letter Figure 3C). Along the pseudotime trajectory, we noticed the 

downregulation of chondroblastic biomarker genes including COL3A1, SOX9, 

COL9A1, WWP2, and SNORC, in both branches, and an increased expression of 

obsteoblast biomarkers including COL1A1, COL1A2, COL3A1, and PTN. These 

results were in agreement with the Monocle 2 trajectory analysis (Supplementary 

Figure 9 in the main manuscript). In our slingshot analysis, we determined the genes 

that were differentially expressed along the pseudotime trajectory in either branch of 

BC20 and BC22 (Letter Figure 3B and 3C); however, the differences in expression of 

these genes between the branches were not determined with slingshot method. 

Monocle 2 uses the BEAM (branched expression analysis modeling) algorithm to 

identify those genes with branch-dependent expression patterns, which can help 

identify the mechanism by which the fate decision is made. 



 

Taken together, we prefer to present the trajectory analysis results obtained by Monocle 

2 for osteoclast maturation and chondroblast transdifferentiation analysis in our main 

manuscript. We have provided the bioinformatics scripts of slingshot and SCORPIUS 

on github (https://github.com/ChenPeizhan/osteosarcoma.git) together with the other 

scripts generated in the current study for reference. We hope this will meet the 

reviewer’s requirements. 

  



 



Letter Figure 3. Analysis of the malignant cells in BC20 and BC22 patients by the slingshot 

algorithm. (A) Cellular trajectory. The dot color indicates the cellular subgroup identified by the 

t-SNE analysis. (B) Heatmap of the top 100 genes that were differentially expressed along the 

pseudotime in each cell fate branch in BC20. (C) Heatmap of the top 100 genes that were 

differentially expressed along the pseudotime in each cell fate branch in BC22. 

  

2_2Q8 

ANSWER: 2A8 

The genes which are strongest down regulated on Fig 4f are not the genes stated by the 

authors in the result section. They should comment on those genes (e.g. DBP, 

ID3,HES4, GLMP) and their biological relevance for the differentiation processes 

studied here. In the text, the authors state the following genes to be downregulated 

HMGB1, HMGB2, MEF2C, CREM and LITAF but it is unclear from the text to which 

figure they refer to. Gene LITAF for example is not in Fig 4f. Please comment and 

correct. 

 

2_2A8: 

Response: We apologize for the unclear statement in our manuscript. We have now 

added the relevant figures along with the supporting text in the revised version of the 

manuscript to indicated the genes significantly changed along with the osteoclast 

maturation including HMGB1 (line 33 in gene cluster 2 of Figure 4f), HMGB2 (line 14 

in gene cluster 2 of Figure 4f), MEF2C (line 59 in gene cluster 2 of Figure 4f), CREM 

(line 27 in gene cluster 2 of Figure 4f) and LITAF (Figure 4f; Line 751). LITAF is 

ranked as the second to last of the cluster 2 in Figure 4f, which showed significantly 

downregulated genes along the pseudotime of the trajectory.  

We have stated the genes that showed strongest down- or up-regulation in our revised 

manuscript and their molecular relevance to the osteoclast differentiation. The reviewer 

suggests to comment the molecular mechanisms of those significantly downregulated 



genes such as DBP, ID3, HES4, and GLMP in the osteoclast differentiation. Some of 

them have been reported to be associated with the osteoclast differentiation, but others 

have not been associated with this process. For example, ID1 and ID3 (inhibitors of 

DNA binding 1 and 3, respectively) were reported to be negative regulators of 

osteoclast differentiation [Life Sci, 2015 Dec 15;143:1-7], whereas DBP could be 

converted into a potent macrophage-activating factor DBP-MAF, which may promote 

osteoclast activation and bone resorption [Biochem Biophys Res Commun, 1998 Aug 

28;249(3):668-71]. However, to date, the roles of HES4 and GLMP in the osteoclast 

maturation have not been reported. Basing on our trajectory analysis, multiple novel 

transcription factors whose expression was significantly changed along the pseudotime 

were identified, which may regulate the osteoclast maturation in the osteosarcoma 

tumor microenvironment. These genes could serve as potential therapeutic targets for 

osteosarcoma treatment and provide deeper insights into the osteoclast maturation 

process within osteosarcoma tissues. However, more studies are warranted to elucidate 

their underlying mechanisms and contribution for osteosarcoma progression. We have 

now revised these in our manuscript according to the reviewer’s suggestions (Line 287 

to 292). 

 

ANSWER: 2A9 

OK. 

 

ANSWER: 2A10 

OK. 

 

2_2Q9 

ANSWER: 2A11 

In Fig 7f, graphs U2OS:BC16 and 143B:BC16 are exactly identical. Please explain. 

The authors need to clearly state in the results, that the two patients were selected based 



on high TIGT expression in CD3+ T cells. This is relevant to follow the rationale of 

testing for T cell cytotoxicity in their cellular model. 

Given that suitable samples are sparse, the explanation for using these two patients is 

relevant. However, it would be crucial to see patients’ cells performance in this assay 

with low TIGIT expression- based on the conclusion of the authors, the observed 

cytotoxicity should be less. This is a logic and necessary experimental confirmation of 

their hypothesis. 

 

2_2A9: 

Response: We apologize for the mistakes in the figure preparation of the right two 

panels on Figure 7, and we have now revised it based on the original data. As the 

reviewer pointed out, we only performed cellular cytotoxicity analysis based on the 

patients BC3 and BC16, who had relatively high TIGIT+ CD3+ T cells infiltration, to 

evaluate the impact of TIGIT blockage on the T cell cytotoxicity on osteosarcoma cells. 

Following the reviewer’s suggestion, we have evaluated the effect of TIGIT blockage 

on T cell-mediated cytotoxicity in patients (BC5 and BC6) with low tumor-infiltrating 

TIGIT+ CD3+ T cells (Figure4). In such cases, only margin effect of T cell-mediated 

cytotoxicity was observed, suggesting that TIGIT blockage may augment the T 

cell-mediated cytotoxicity in osteosarcoma patients with relatively higher 

TIGIT-expressing T cells (Figure 4). We have now added these results in our 

manuscript as Figure 7f (line 453 to 460). 

 



Letter Figure 4．The T cell mediated cytotoxicity activities of CD3+T cells from peripheral blood 

cells in patients with low TIGIT+ CD3+T cells infiltration on osteosarcoma cell lines U2OS and 

143B with TIGIT blockage.  

 

2_2Q10 

ANSWER: 2A12 

See comment above to substantiate the conclusion that targeting TIGIT-high T-reg 

cells may present a novel therapeutic approach to OS, the authors should at least show a 

milder effect in their cellular assay in patient samples with lower fraction of 

TIGIT-high T-reg cells. 

 

2_2A10: 

Response: The reviewer showed concerns about the T cell-mediated cellular 

cytotoxicity activities upon TIGIT blockage in osteosarcoma patients. As we responded 

in 2A9, we performed cellular cytotoxicity analysis to evaluate the impact of TIGIT 

blockage on T cell cytotoxicity on osteosarcoma cells based on samples collected from 

the patients BC3 and BC16, who had high tumor-infiltrating TIGIT+CD3+ T cells 

infiltration. Significantly enhanced T cell-mediated cytotoxicity was noticed in these 

two patients. Following the reviewer’s suggestion, we also evaluated the impact of 

TIGIT blockage on T cell cytotoxicity in patients BC5 and BC6 with low 

tumor-infiltrating TIGIT+CD3+ T cells infiltration (See Letter Figure 4 above). In this 

case, only margin effect cellular cytotoxicity was observed, which suggests that TIGIT 



blockage may augment the T cell-mediated cytotoxicity in osteosarcoma patients with 

high tumor-infiltrating TIGIT+ CD3+ T cells. 

 

We have now included this new information in our manuscript (Line 628 to 642). 

Meanwhile we acknowledged that a good space is available to extend this study, and 

the new study requires additional subjects and a systematic design. 

 

ANSWER: 2A13 

OK. 

 

ANSWER: 2A14 

OK. 

 

2_2Q11 

OTHER COMMENTS: 

Typo line 100: total number of cells is too low, does not add with the following cell 

counts 

 

2_2A11 

Response: The total cell number of our current study was 100,987. We apologize for 

the typing mistakes and we have further revised the manuscript (Line 100).  

 

2_2Q12 

Line 150: typo --> BC17 instead of BC107 

 

2_2A12: 



Response: We apologize for the typing mistakes and we have further revised the 

manuscript accordingly. 

 

2_2Q13 

Ordering of Fig 2d to be changed --> such as in “stair-case” like plot Fig 2c 

 

2_2A13: 

Response: Following the reviewer’s suggestions, we applied the row clustering 

analysis presented for the GSEA results to the hallmark gene sets in Figure 2d and 

Figure 2g. 

 

2_2Q14 

Chromosomal lesions: 1p gain, 1q gain, 2q gain, 17q gain, 201 and 21q gain --> were 

they observed in OS earlier? Not entirely clear from the reference CGH studies on line 

203. 

 

2_2A14: 

Response: In the current study, we used the inferCNV algorithm (inferCNV of the 

Trinity CTAT Project (https://github.com/broadinstitute/inferCNV) to infer the copy 

number variation (CNV) of the 11 osteosarcoma patients (Figure 3 and Supplementary 

Figure 8). With this approach we identified several frequent canonical CNV events in 

these patients, including the 1p gain, 1q gain, 2q gain, 17q gain, 19p gain, and 21q gain, 

as pointed out by the reviewer. To date, there are several whole-genome sequencing 

(WGS) and comparative genomic hybridization (CGH) studies [Genes Chromosomes 

Cancer. 2005 Feb;42(2):158-63 (ref19); Mol Cancer Res. 2008 Jun;6(6):937-46; Cell 

Rep. 2014 April 10; 7(1): 104–112; Cancer Discov. 2019 Jan;9(1):46-63] have 

evaluated the CNVs in the osteosarcoma tissues. In the study performed by Atiye et al. 



[Genes Chromosomes Cancer. 2005 Feb;42(2):158-63 (ref19)] reported the 1p34-36, 

1q21, 17q25, 8q24, 19q13, and 21q22 gain in osteosarcoma tissues, which are partially 

overlapped with our current study. 

 

As pointed out by Sayles et al. [Cancer Discov. 2019 Jan;9(1):46-63], osteosarcoma is 

characterized by significant somatic copy-number alteration (SCNA) and structural 

variation (SV) with few recurrent point mutations in protein-coding genes, with the 

exception of the tumor suppressors RB1 and TP53. The SCNAs and structural 

rearrangements are highly heterogeneous across osteosarcoma cases, which were 

further confirmed in our inferCNV analysis by identifying distinct canonical CNVs in 

individual patients. Based on the inferCNV data, we also performed clonality analysis 

of single tumor cells from individual patients, revealing high intratumoral 

heterogeneity of the osteosarcoma patients. We have further discussed these results and 

added more references to support this in our revised manuscript (Line 222-228 and line 

504-515). 

 

2_2Q15 

Figure 3a: samples BC6 and BC10 have the same color code. Usage of unique colours 

for each sample necessary. 

 

2_2A15: 

Response: The reviewer’s suggestion is highly appreciated! Following the reviewer’s 

suggestion, we have revised the barcode indicating the sample ID in the Figure 3a. 

 

2_2Q16 



The inference of genomic variation from mRNA data is interesting and informative. 

The authors should discuss clearly that the variation found here reflects aberrations 

present in the mRNA and that additional genomic variation might underlie the different 

cell populations and thereby explaining additional relationships. 

 

2_2A16: 

Response: We agree with the reviewer that as the CNV events identified in the current 

study were derived from the single cell mRNA expression data, which however 

actually reflected the somatic copy-number alteration (SCNA) at the genomic level.  

 

Indeed, a significant part of the CNVs identified from the inferCNV were reported in 

previous whole-genome sequencing (WGS) and comparative genomic hybridization 

(CGH) studies [Genes Chromosomes Cancer. 2005 Feb;42(2):158-63 (ref19); Mol 

Cancer Res. 2008 Jun;6(6):937-46; Cell Rep. 2014 April 10; 7(1): 104–112; Cancer 

Discov. 2019 Jan;9(1):46-63]. This inferCNV result (when a genomic region is 

monoploid or delected or duplicated) is not based on one individual mRNA, but based 

on a series of mRNAs coded by a series of corresponding genes located in a continuous 

genomic region. Only when a genomic region is alternated in CNV, the multiple 

mRNAs (usually are with different functions, and associated to different pathways or 

GOs) coded by the region will consistently changed accordingly. Therefore the CNV 

calling is not determinated by the changes of some of the mRNAs in this regions, but 

all mRNAs in the region. Previous studies have validated the CNV data inferred from 

the scRNA-seq with the single cell DNA sequencing (scDNA-seq) method, and a good 

concordance was reported between the two methods [such as: Nat Commun. 2020 Jan 

24;11(1):496].  

 

Based on the inferCNV results, we analyzed the clonality profile of single 

osteosarcoma cells (Figure 3 and Supplementary Figure 8), which was found to be 

significantly heterogeneous between cells with certain patterns across the cells. In 



addition, the clonality analysis results revealed the previously unappreciated 

complexity of both canonical and non-canonical CNVs in osteosarcoma (Figure 3a and 

Figure 3b). As expected, the canonical CNVs dominated the chromosomal landscape. 

Nevertheless, there are still multiple subclonal canonical and noncanonical CNVs 

across osteosarcoma patients, which may underlie the subclonal cell populations in the 

tumor cellular evolution (Figure 3a and 3b). We hope these will meet the reviewer’s 

requirements (Line 222-228). 

2_2Q17 

Low number of OS cells in ondroblastic OS lesions and the lung metastatic lesions --> 

could this be due to lack of capturing via single cell mRNA seq? Low sample quality? 

The authors should discuss this. 

 

2_2A17: 

Response: We agree with the reviewer that relatively few osteoblast tumor cells were 

identified in the chondroblastic OS lesions and lung metastasis lesions (Figure 1e and 

Supplementary Figure 3 and Figure 4). As the study revealed in the manuscript that the 

malignant osteoblasts in the chondroblast osteosarcoma were derived from the 

malignant chondroblast, there were both malignant osteoblastic and chondroblastic 

cells in the chondroblastic lesions (BC20 and BC22). Therefore, it is not unreasonable 

that lower OS cell numbers were detected in these two patients. We do not think it is 

due to any technical bias, because the 10x sequencing system is well validated 

worldwide in the field, neither due to low quality of sample because we have 

performed QC test and we did not find any sign showing that it is a bad sample.  

 

On the other hand, in the lung metastasis lesion of the BC17 patient, we noticed that 

stromal fibroblast was enriched to a relatively higher number in the lung metastasis 

lesion than other samples. 



 

2_2Q18 

Improve readability of legends in suppl. Fig 8. 

 

2_2A18: 

Response: We apologize for the unclear statement on the figure legends and we have 

further revised it for Supplementary Figure 8. The scaled CNV scores were annotated 

by hierarchical clustering to indicate the 22 chromosomes according to the inferCNV 

analysis. The bar shows the scaled CNV score of the individual gene region on single 

cells. We have now added the information in the figure legend according to reviewer’s 

suggestion (Supplementary Figure 8). 

 

2_2Q19 

Suppl. Fig 10d: samples BC11, BC20 and BC22 do not contain mature OC cells- please 

state why this might be the case. 

 

2_2A19: 

Response: We agree with the reviewer that no mature OC (osteoclast) was detected in 

BC11, BC20, and BC22 in the osteosarcoma tissues (Supplementary Figure 10) as 

annotated in the scRNA-seq analysis. Although OC progenitor and immature cells were 

observed in these two patients, the cellular proportion of osteoclast was relatively low 

in these patients (Figure 1e). BC11 was a recurrent osteoblastic osteosarcoma patient, 

whereas BC20 (recurrent tumor) and BC22 (primary tumor) were both chondroblastic 

osteosarcoma. We have reason to believe that this information reflect that the 

heterogeneous tumor microenvironment modulates the cellular differentiation of the 



osteoclast from myeloid cells, in particular in chondroblast osteosarcoma (BC20 and 

BC22).  

 

It is well known that osteoblast cells can stimulate the osteoclast differentiation and 

activation through the RANKL/RANK signaling pathway [Endocrinology. 2001 

Dec;142(12):5050-5], suggesting that the osteoclast maturation can be stimulated by 

the RANKL expressed by malignant osteoblast cells in osteosarcoma tissue. Compared 

to osteoblastic cells, the chondroblast cells were found to have lower RANKL 

expression, and few osteoclasts were noticed in the chondroblastic-riched resting zone 

and hypertrophic zone compared to the osteoblastic cells riched calcification zone in 

human growth plate [BMC Dev Biol. 2014 Aug 28;14:36]. Thus, the tumor 

microenvironment of chondroblast osteosarcoma may hinder the OC mature by the 

chondroblasts in patients BC20 and BC22.  

 

Furthermore, chemotherapeutics may also influence the osteoclast maturation in 

osteosarcoma tissues. For example, the chemotherapeutic agent gemcitabine used in the 

treatment of osteosarcoma patients was found to reduce the number of myeloid-derived 

osteoclast progenitor cells [J Immunol. 2007;179:977–983; Cancer Res 2013 Jan 

15;73(2):672-82; Cancer Res. 2013 Aug 1; 73(15): 4606–4610]. In agreement with 

these reports, three patients in our study (BC10, BC11, and BC17) who received 

gemcitabine treatment showed relatively low levels of mature osteoclasts. Altogether, it 

is reasonable to hypothesize that the tumor microenvironment and the chemotherapy 

treatment may modulate the osteoclast maturation in osteosarcoma tissues; however, 

further studies are warranted. We have discussed these aspects in our revised version of 

the manuscript and in hope these will meet the reviewer’s requirement (Line 531 to 

552). 

 



2_2Q20 

Suppl Fig 11a/ 14b – proper scale bars necessary. 

 

2_2A20: 

Response: We thank the reviewer for the helpful comment. We have now added the 

scale bar in Supplementary Figure 11a and Supplementary Figure 14b according with 

the reviewer’s suggestion. 

 

2_2Q21 

Suppl Fig 11b – higher magnification necessary, cells are difficult to visualize, scale 

bar necessary. 

 

2_2A21: 

Response: We have included the scale bar in the new Supplementary Figure 11b and 

also provided an immunofluorescent image of higher magnification (×100 

magnification of the optic microscope) in the edited version of the manuscript. 

 

2_2Q22 

Suppl. Fig 15: distinguish between Osteoblast and proliferative osteoblast cells. 

Overall this figure is helpful but could be slightly re-organized to improve its function 

to provide an overview. 

 

2_2A22: 



Response: We thank the reviewer for these helpful comments. We have modified 

Supplementary Figure 15 in light of the reviewer’s suggestion. We hope it now meets 

the reviewer’s expectations. 

 

2_2Q23 

In supplementary table 1, the cell numbers per patient are listed- the myoblast cluster 

from fig 1 is basically only comprised of cells from sample BC17- if this cell type is 

only present in this sample, it cannot really be used as a general subtype across all 

samples analysed!! This needs to be explained and corrected. In BC5 and BC22, there 

are 2 myoblast cells found in each sample. They are absent otherwise. This cell type 

cannot be used to compare all samples. Why is this cell type not present on the majority 

of the samples? This might be due to under-sampling, and introduction of sampling bias 

during sample preparation. 

 

2_2A23 

Response: We agree with the reviewer that the myoblast cell number is relatively small 

in the osteosarcoma tissues, with 108 cells were annotated as the myoblast in BC17 

(3.24%), 2 in BC5 and 2 in BC22 (Figure 1e and Supplementary Figure 3 and 4), and no 

myoblast cell was noticed in the other samples. These cells were annotated as the 

myoblast as they showed relatively high expression of MYLPF and MYL1 (Cells. 2020 

Apr 22;9(4):1045;  Elife. 2016 Sep 23;5:e17985.). As we know, the osteosarcoma is a 

highly heterogeneous disease between patients, which may be developed from different 

bone sites in human body; the composition and ratio of cell types could be varied 

between samples as well as patients. As we aimed to depict an intact cellular atlas of the 

osteosarcoma tissues and we detected these cells in 3 patients (at least one patient BC17, 

if BC5 and BC22 are not considered), we did not exclude these cells in our 

bioinformatics pipelines, but faithfully reflected the truth and gave our interpretation.  

 

Reconsidering the reviewer’s comments, we suggest that the rarely detected myoblasts 

may due to heterogeneity of the OS tissues (including metastatic OS), under-sampling, 



but less likely any contamination in sampling. Taking all together, the myoblasts may 

not be regarded as a typical subcluster of cells in OS, but we could not exclude the 

possibility that myoblasts may be a part of OS cells in some samples. Also, because the 

ratio of myoblasts is low (it is 3.24% in BC17), any comparison of cell subclusters 

across sample will not cause a significant distortion with or without counting of 

myoblasts. Finally, following the reviewer’s suggestion, we turned down the 

statements of myoblast cells in the revised manuscript, and hope it will meet the 

reviewer’s requirements. (Line 132 to 138).   

 

 

2_2Q24 

While the sample size has not been increased, so that some of the original concerns 

regarding comparability of data sets from patients remain, the authors have removed 

statements (e.g. regarding the absence of an expected stem cell population) as well as 

provided in – depth explanations for the various different computational analyses 

performed. The authors nicely decipher the various different cell types present, making 

this manuscript a relevant contribution with regards to classifying this type of tissue. 

However, lack the cellular throughput and varying gene capturing depth (ca. 450 – 

4500 genes) may negatively impact the generation of a refined cell atlas resolving the 

majority of cell subtypes. Cluster analysis and cell type annotation use main/ canonical 

markers. More consistent gene capturing across all samples (e.g. >2000genes/ cell) 

may provide a more refined cell atlas. 

 

2_2A24 

 

Response: We agree with the reviewer that the gene coverage derived from the 10× 

Genomics platform is usually lower, which may restrict our analysis to identify novel 

cellular clusters and to generate a more refined cellular atlas of osteosarcoma. Indeed in 

the recent two years this range of gene number (mean detected gene number range from 

704 to 4,543 for current study) is well acceptable in cell clustering analysis in many 



decent publications. Along with the reduced sequencing cost and the improvement of 

the single cell capturing methods (such as the SMART-seq method), researchers may 

perform single cell transcriptomics with deeper coverage of the genes in the near future, 

which may provide a more refined cell atlas of osteosarcoma or for different purpose if 

they wish. 

 

2_2Q25 

The lack of control/ untreated tissue and therefore the missing analysis of 

chemotherapy- induced transcriptional and genomic alterations is a weakness. 

Especially since the authors claim high clinical relevance for their findings. While the 

cell type, trajectory and inferred clonotype analyses are interesting (cell type 

annotations are limited by the cell number and varying gene capturing), the 

demonstration of clinically relevance could be stronger. 

 

2_2A25 

Response: Again we thank the reviewer for the suggestive comments. We 

acknowledged that with untreated tissue and chemotherapy-induced transcriptional and 

genomic alterations, this study would be even stronger. However, the available data 

firmly support the current research purpose and conclusion, and the additional mission 

may be obtained possibly in an independent project, in which we will specifically 

design it such that the obstacles in sample preparation and clinical ethic requirement 

are resolved. We would like to perform more studies to evaluate the cellular 

transcriptomics upon chemotherapy with the organoid models or in patient-derived 

xenograft (PDX) models in our future research, as we mentioned in response 2_2A2. 

 
Thanks a lot for all the great suggestions to improve our work. 



Reviewer #2 (Remarks to the Author): 

The authors have generally answered and addressed the questions posed in the previous 

Review and have improved both text and figures. Below are some minor comments. 

2_2A5: 

Figures 2 c and 2g are now much clearer and allow the reader to grasp the plots easier. 

2_2A7: 

The authors nicely demonstrate the robustness of their trajectory analyses by using a alternative 

approaches. They should state in the results and/or methods section that different trajectory inference 

methods were used to confirm their results. Good! 

2_2A8: 

The authors satisfactorily answered the comments. 

2_2A9: 

The authors corrected the erroneous figure 7f and corrected the graphs U2OS:BC16 and 143B:BC16. 

They also performed cytotoxicity analysis on TIGIT low expressing samples. No further comments. 

2_2Q15 

the authors changed the color coding which is good; samples BC20+21 have almost the identical 

color. If possible, change one of them to more readable colour. Otherwise OK. 

2_2Q21 

Suppl Fig 11b: are the images labelled correctly? 400 and 630X? or rather 40 and 63X? 

2_2Q22 

OK. 

2_2Q23 

It is good that the authors state openly that the myoblast cells are mainly present in BC17 and that 

they provide possible explanations why this might be the case: heterogeneity and possibly sampling 

bias. Good. 

2_2Q24 

OK. 



 
Reviewer #2 (Remarks to the Author):  
 
The authors have generally answered and addressed the questions posed in the previous  
Review and have improved both text and figures. Below are some minor comments.  
 
 
2_2A5:  
 
Q. Figures 2 c and 2g are now much clearer and allow the reader to grasp the plots easier.  
 
A. We thank the reviewer for the encouraging comments.  
 
2_2A7:  
 
Q. The authors nicely demonstrate the robustness of their trajectory analyses by using a 
alternative approaches. They should state in the results and/or methods section that 
different trajectory inference methods were used to confirm their results. Good!  
 
A. We thank the reviewer for the positive comments. According to editor`s advice we added 
this part as Supplementary Fig. 10 and Supplementary Fig. 12 in the revised manuscript. 
 
2_2A8:  
 
Q. The authors satisfactorily answered the comments.  
 
A. We thank the reviewer for the positive comments. 
 
2_2A9:  
 
Q. The authors corrected the erroneous figure 7f and corrected the graphs U2OS:BC16 
and 143B:BC16. They also performed cytotoxicity analysis on TIGIT low expressing 
samples. No further comments.  
 
A. We thank the reviewer for the positive comments. 
 
2_2Q15  
Q. the authors changed the color coding which is good; samples BC20+21 have almost 
the identical color. If possible, change one of them to more readable colour. Otherwise OK.  
 
A. We thank the reviewer for the positive comments, and we have further revised the Figure 
3 accordingly.  
 
2_2Q21  



Q. Suppl Fig 11b: are the images labelled correctly? 400 and 630X? or rather 40 and 63X?  
A. We thank the reviewer for pointing out the error. We have checked the data and 
confirmed the original magnification of the images. The magnification of the images is 400´ 
and 630´, respectively.    
 
 
2_2Q22  
Q. OK.  
 
A. We thank the reviewer for the positive comments. 
 
2_2Q23  
Q. It is good that the authors state openly that the myoblast cells are mainly present in 
BC17 and that they provide possible explanations why this might be the case: 
heterogeneity and possibly sampling bias. Good.  
 
A. We thank the reviewer for the positive comments, which allow us further clarifying the 
issue. 
 
2_2Q24  
Q. OK. 
 
A. We thank the reviewer for the positive comments. 
 
Here we would like to express our sincerely thanks to the reviewers’ comments and 
suggestions that help us to improve our work. 
 


