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Abstract—We show results from additional experiments on
single-channel and parallel MRI recovery. Later we discuss the
application of our proposed schemes for diffusion MRI recovery
and compare those with the state-of-the-art methods.

I. SINGLE-CHANNEL SIGNAL RECOVERY

The proposed approaches for single-channel recovery are
compared against the state-of-the-art in Table S1. The methods
were tested on single-channel knee (coronal and sagittal view),
and brain data mentioned in Section IV-A in the main paper.
The mean SNR, PSNR and SSIM values with corresponding
standard deviations were calculated for 2560 (10 subjects)
brain, and 420 (3 subjects) knee (sagittal and coronal) slices,
respectively. The coronal knee and brain were 4x under-
sampled while the sagittal knee was 6x under-sampled. The
proposed k-space network K-DSLR outperforms K-UNET (k-
space UNET) and I-UNET (image-space UNET). K-DSLR
performance is comparable to calibration-less approach GI-
RAF that motivates the proposed scheme. The addition of
spatial domain prior in H-DSLR improves performance sig-
nificantly over GIRAF.

We compare reconstruction quality of single-channel coro-
nal and sagittal knee slices in Fig. S2 and Fig. S3, respectively.
The K-DSLR and H-DSLR reconstructions are that of a
K = 10 iteration model. We observe that K-DSLR results are
comparable to model-based GIRAF. By contrast, our proposed
model-based schemes outperform direct inversion approaches,
K-UNET, and I-UNET. Note that our proposed schemes have
much smaller number of trainable parameters compared to the
UNETs. The multiple iterations of the proposed alternating
strategy improves overall performance. An addition of spatial
domain prior in H-DSLR visibly improves reconstruction
quality, and SNR. The yellow arrows in the zoomed cartilage
region point out differences in the preservation of minute
structures. K-UNET and I-UNET seem to be missing lot of
details as pointed out by the arrows. Although GIRAF and K-
DSLR reconstructions miss few details, the H-DSLR scheme
preserves all of those. The H-DSLR reconstructions are better
in terms of SNR than other methods considered here.
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Fig. S1. Illustration of linear and non-linear annihilation operators on
piecewise constant images. The images and their gradients are shown in (a)
and (b) respectively. The SOS-R is the sum of squares function on linear
annihilation operator R from SLR schemes that kills edges or high gradient
regions as shown in (c). The non-linear extension of SOS-R is SOS-Nk

and its outputs are shown in (d) which closely match to (c). The non-linear
operation is generalizable across variety of brain slices shown here.

We show results of hypothesis test (described in Section
V-B in the main paper) on single-channel brain slices with
different anatomies in Fig. S1. The proposed k-space network
learns non-linear annihilation relations that can kill edges or
high gradient regions in piecewise constant images. The results
in Fig. S1 show that the non-linear block Nk can linearly
approximate the annihilation relations which closely match
with those learnt by the SLR schemes. Specifically, the SOS-
Nk outputs of the perturbations for each case in Fig. S1.(d) are
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(a) Fully sampled (b) GIRAF
18.26 / 25.14 / 0.841

(c) K-UNET
17.65 / 24.57 / 0.828

(d) K-DSLR
18.75 / 25.81 / 0.853

(e) I-UNET
17.33 / 24.19 / 0.831

(f) H-DSLR
19.37 / 26.59 / 0.859

Fig. S2. Reconstruction results of 6-fold accelerated single-channel knee data with coronal view. SNR (dB)/ PSNR (dB)/ SSIM values are reported for each
case. The top row displays reconstructions (magnitude images) while the bottom row displays corresponding error maps. The yellow arrows point out the
differences in the zoomed coronal view of cartilage region. The proposed schemes outperform state-of-the-art schemes and preserve complex structures better
as pointed out by arrows.
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(a) Fully sampled (b) GIRAF
19.02/ 28.09 / 0.880

(c) K-UNET
18.81 / 27.74 / 0.875

(d) K-DSLR
19.33 / 28.41 / 0.884

(e) I-UNET
18.51 / 27.39 / 0.871

(f) H-DSLR
22.58 / 31.63 / 0.924

Fig. S3. Reconstruction results of 4-fold accelerated single-channel knee data with sagittal view. SNR (dB)/ PSNR (dB)/ SSIM values are reported for each
case. The top row displays reconstructions (magnitude images) while the bottom row displays corresponding error maps. The yellow arrows point out the
differences in the zoomed sagittal view of cartilage region. The proposed schemes recover finer details better compared to others.

similar to SOS-R outputs in Fig. S1.(c) from SLR schemes.
Thus, the non-linear annihilation block Nk is generalizable
over a variety of brain anatomy slices.

II. PARALLEL MRI RECOVERY

We study robustness of the proposed H-DSLR scheme to
acceleration factors for variety of slices from the test subjects.
In Fig. S4, we show reconstructions of multi-channel brain
dataset for 4x, 6x and 10x accelerations over several anatomies
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Signal-to-Noise Ratio (SNR)
Organ Knee Coronal Knee Sagittal Brain (CCP)

Acceleration 6x 4x 4x
Methods SNR SNR SNR
GIRAF 18.14 ± 1.58 19.01 ± 1.64 22.02 ± 1.36

K-UNET 17.76 ± 1.29 18.78 ± 1.54 19.78 ± 1.47
K-DSLR 18.69 ± 1.08 19.16 ± 1.11 21.18 ± 1.01
I-UNET 17.29 ± 1.77 18.53 ± 1.83 19.43 ± 1.59
H-DSLR 19.31 ± 1.02 22.48 ± 1.26 25.39 ± 0.84

Peak Signal-to-Noise Ratio (PSNR)
Organ Knee Coronal Knee Sagittal Brain (CCP)

Acceleration 6x 4x 4x
Methods SNR SNR SNR
GIRAF 25.01 ± 1.55 27.96 ± 1.59 29.11 ± 1.41

K-UNET 24.55 ± 1.34 27.75 ± 1.52 26.68 ± 1.43
K-DSLR 25.64 ± 1.02 28.22 ± 1.03 28.27 ± 0.97
I-UNET 24.34 ± 1.79 27.49 ± 1.87 26.47 ± 1.63
H-DSLR 26.46 ± 0.98 31.54 ± 1.18 32.53 ± 0.87

Structural Similarity (SSIM)
Organ Knee Coronal Knee Sagittal Brain (CCP)

Acceleration 6x 4x 4x
Methods SSIM SSIM SSIM
GIRAF 0.841 ± 0.031 0.877 ± 0.040 0.915 ± 0.023

K-UNET 0.830 ± 0.029 0.872 ± 0.032 0.842 ± 0.019
K-DSLR 0.849 ± 0.019 0.878 ± 0.025 0.902 ± 0.017
I-UNET 0.834 ± 0.028 0.873 ± 0.026 0.838 ± 0.026
H-DSLR 0.852 ± 0.011 0.921 ± 0.013 0.929 ± 0.009

TABLE S1
QUANTITATIVE COMPARISON OF SLR, DEEP-SLR AND UNET

RECONSTRUCTIONS IN THE CONTEXT OF SINGLE-CHANNEL RECOVERY.
THE BOLD-FACED METHODS ARE THE PROPOSED ONES.

of a test subject. We train a K = 10 iteration H-DSLR network
end-to-end with 10x under-sampled brain slices and test it
on 4x, 6x, 10x slices from subjects unseen by the network.
The dataset is the one mentioned in Section IV-A from the
main paper. These reconstructions are appreciable over a range
of slices including the corner ones. The brain structure is
preserved in all the cases; 4x and 6x reconstructions have
sharper edges compared to 10x. The minute structures in the
cerebellum region are better preserved in 4x compared to
the other two which is due to lower acceleration. The 10x
reconstruction loses few details in the cerebellum region but
preserves most of the gray and white matter; 6x preserves
all of them but appears slightly blurred compared to 4x. The
proposed scheme could generalize appreciably over a variety
of unseen brain slices at different acceleration factors.

We perform a similar study for multi-channel knee dataset
described in Section IV-A in the main paper. In Fig. S5, we
display 3x and 4x reconstructions from different anatomies of
a test subject. Similar to brain, we train a K = 10 iteration H-
DSLR network with 4x under-sampled knee slices and test it
on 3x, 4x slices from unseen subjects. The reconstructions
appear significantly de-aliased for all cases. The cartilage
region has several minute details which are slightly better
preserved for the 3x case. Overall, the proposed scheme could
de-alias variety of slices including the corner ones for different
acceleration factors which shows its generalizability.

The plot in Fig. S6 shows the effect of increasing iterations
K of our proposed scheme for parallel MRI cases. We
observe a similar trend for 6x under-sampled brain and 4x
under-sampled knee respectively. The average SNR on test
data improves as we increase the iterations. Thus, unrolling
the optimization blocks for several iterations is beneficial.
Since, the performance saturated after 10th iteration, we chose
K = 10 for parallel MRI experiments. We also observed
K = 10 iteration model to be optimal for single-channel
experiments.

We show the intermediate results of H-DSLR algorithm as
a function of iterations in Fig. S7. We note that for both
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(a) Fully sampled (b) 4x recon (c) 6x recon (d) 10x recon

Fig. S4. Proposed H-DSLR reconstructions of 12-channel brain data for 4x,
6x and 10x accelerations. The displayed images are sum-of-squares recon-
structions. H-DSLR is robust to acceleration factors for different anatomies
of brain.

knee and brain test data, aliasing reduces as a function of
iterations upto K = 10. The reduction in aliasing with more
iterations justifies the benefit of unrolling the proposed scheme
for more iterations. The amount of reduction in aliasing with
iterations is more initially and saturates afterwards around 9-
10 iterations. Thus, visible aliasing is reduced with increase
in iterations which provides improved SNR.

III. DIFFUSION MRI RECOVERY

A. Structured Low Rank Algorithms for Multi-shot Echo Pla-
nar Imaging (EPI) Acquisition

Multi-shot annihilation relations exist for phase-corrupted
images as shown in [1], in addition to the multi-channel
annihilation relations discussed before. The phase-corrupted
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(a) Fully sampled (b) 3x recon (c) 4x recon

Fig. S5. Proposed H-DSLR reconstructions of 15-channel knee data for 3x
and 4x accelerations. The displayed images are sum-of-squares reconstruc-
tions. H-DSLR is robust to acceleration factors for different anatomies of
knee.

images γi[r], i = 1 . . . N satisfy a pairwise Fourier domain
annihilation relation γ̂i[k] ∗ φ̂j [k] − γ̂j [k] ∗ φ̂i[k] = 0,∀k,
where γ̂i[k] and φ̂i[k] are the Fourier coefficients of γi(k)
and φi(k) respectively. The φi[r] are smooth phase images.
The relations for each pair of phase-corrupted images can be
compactly written as in (5). Similar to the parallel imaging
case, the Hankel matrices corresponding to each shot and
channel are stacked horizontally to obtain T (Γ̂), which is
low rank due to large null space N. The columns of N are
vertically stacked filters φ̂i. In this case, G = I (identity
mapping). This lifting is similar to the parallel imaging case
but with different annihilation relations.

A
ve

ra
ge

SN
R

(d
B

)
on

te
st

da
ta

2 4 6 8 10 12
Number of Iterations for training

22

24

26

28

30

Av
er

ag
e 

SN
R 

(d
B)

 o
n 

te
st

 d
at

a

6x Brain, H-DSLR
4x Knee, H-DSLR

Number of Iterations for training

Fig. S6. Performance improvement in terms of average SNR (dB) on 6x
accelerated 12-channel brain and 4x accelerated 15-channel knee test data
respectively. The average testing SNR improves till K = 10 iteration and
saturates afterwards.

B. CNN Architecture for Diffusion MRI Recovery

For this application we use the MIMO version of modified
12-layer UNET as Nk. The number of input and output
channels are set according to complex channels in the dataset
which is calculated as N = Nsh ×Ncoil where Nsh denotes
number of shots per acquisition while Ncoil corresponds to
the number of coils used. Similar to other applications, we
ensure the number of trainable parameters are same for both K-
DSLR and H-DSLR. The regularization parameters were fixed
at λ = 1, β = 1. We chose K = 3 iteration model based on
performance which saturated with further iterations. All other
training parameters were kept similar to other experiments.

C. Data Acquisition

For diffusion MRI experiments, four-shot EPI data of seven
healthy subjects were obtained from [2]. The subjects were
scanned in a 3T scanner using 32-channel head coil. The
number of gradient directions were 60 per slice with the
parameters: FOV = 210 x 210 mm, TE = 84 ms, slice thickness
= 4 mm and a matrix size of 256 x 152 with partial Fourier
oversampling of 24 lines. The dataset was split into 68 training
slices from five subjects, five validation slices from the sixth
subject and six testing slices from the seventh subject. Each
slice had 60 directions. Similar to [2], the IRLS-MUSSELS
(IRLS-M) [3] reconstructions were used as ground truth for
training and quantitative comparisons.

D. State-of-the-art Methods for Comparison

For diffusion MRI experiments, we compare our proposed
scheme with MoDL-MUSSELS [2] which is a non-linear
extension of IRLS-MUSSELS. MoDL-MUSSELS (MoDL-
M) learns non-linear Fourier domain annihilation relations
along with spatial regularization. It is a phase blind recovery
scheme with a pre-calibrated approach that uses coil sensitivity
information estimated from additional calibration scans on
top of main scan. On the other hand, our proposed method
does a double (phase and coil sensitivity) blind recovery
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(a) 1st, 26.75 (b) 2nd, 27.78 (c) 3rd, 28.54 (d) 4th, 29.06 (e) 5th, 29.15 (f) 6th, 29.27 (g) 7th, 29.43 (h) 8th, 29.69 (i) 9th, 30.01 (j) 10th, 30.27

(k) 1st, 21.17 (l) 2nd, 22.39 (m) 3rd, 22.93 (n) 4th, 23.28 (o) 5th, 23.73 (p) 6th, 23.89 (q) 7th, 24.01 (r) 8th, 24.09 (s) 9th, 24.13 (t) 10th, 24.24

Fig. S7. Proposed H-DSLR reconstructions of 4x under-sampled 15-channel knee and 6x under-sampled 12-channel brain data as a function of iterations K
from left to right. The images get more de-aliased with increase in iterations. The reported numbers are SNR in dB which improves with iterations.
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(a) IRLS-M (b) MoDL-M (c) K-DSLR (d) H-DSLR

(e) AHB (f) MoDL-M (g) K-DSLR (h) H-DSLR

Fig. S8. 2-shot reconstruction results of 4-channel partial Fourier brain
diffusion MRI. IRLS-M (IRLS-MUSSELS) reconstruction was ground truth
for training. The proposed schemes are compared against MoDL-M(MoDL-
MUSSELS). The top row shows sum-of-squares images from different
schemes while the bottom row shows error maps generated from IRLS-M as
ground truth. Both K-DSLR and H-DSLR provide performance comparable
to MoDL-M.
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(a) IRLS-M (b) MoDL-M (c) K-DSLR (d) H-DSLR

Fig. S9. Comparison of calibrated approaches (MoDL-M (MoDL-MUSSELS)
and IRLS-M (IRLS-MUSSELS)) with the proposed calibration-less ap-
proaches during mismatch in scans. A 2-shot recovery of the 4-channel
partial Fourier brain data is shown for comparisons. The acquired k-space
measurements were translated in spatial domain to emulate motion. Both
calibrated approaches MoDL-M and IRLS-M reconstructions show diagonally
striped motion artifacts due to mismatch. Our proposed schemes (K-DSLR
and H-DSLR) remain unaffected.

that avoids potential motion artifacts introduced from the
sensitivity estimation step. Both the methods were tested on
the diffusion data described in Section III-C.

E. Brain Diffusion MRI Recovery

We performed a 2-shot recovery of brain diffusion MRI
with the proposed scheme and compared against pre-calibrated

MoDL-MUSSELS. All the networks were trained with IRLS-
MUSSELS reconstructions as ground truth. The comparisons
on one of the slices at a specific direction can be seen
in Fig. S8 where error maps are generated by computing
absolute differences with IRLS-MUSSELS (ground truth). The
H-DSLR and MoDL-MUSSELS reconstructions look sharper
at the edges compared to K-DSLR which can be attributed
to the spatial prior leveraged by these schemes. K-DSLR
error map shows some residual error along the skull region
which are further suppressed by the spatial domain prior in
H-DSLR. Proposed reconstructions are comparable to MoDL-
MUSSELS visually and also through error maps. Note that
MoDL-MUSSELS does a phase blind recovery by leveraging
coil sensitivity information. On the other hand, the proposed
schemes are calibration-less and hence perform a double blind
recovery which is more challenging.

F. Benefit over Calibrated Approaches
Pre-calibrated approaches suffer from motion induced ar-

tifacts due to mismatch between the calibration and main
scans. We demonstrate the benefit of our proposed calibration-
less scheme over pre-calibrated MODL-MUSSELS and IRLS-
MUSSELS through a simulation experiment. Similar to the
parallel MRI case, we introduce a mismatch by modulating the
Fourier data with a linearly varying phase term which leads to
a shift in spatial domain. The reconstructions results on a test
slice is shown in Fig. S9. We observe striped artifacts in both
IRLS-MUSSELS and MoDL-MUSSELS reconstructions due
to a mismatch between the sensitivities and coil images while
our proposed calibration-less approaches remain unaffected.
This study shows the benefit of our proposed scheme in
avoiding motion artifacts over calibrated approaches.
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