A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation

Haitao Cui^{1,§}, Shida Miao^{1,§}, Timothy Esworthy¹, Se-jun Lee¹, Xuan Zhou¹, Sung Yun Hann¹, Thomas J. Webster², Brent T. Harris³, and Lijie Grace Zhang^{1,4,5,6} (\bowtie)

¹ Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA

² Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA

³ Department of Neurology and Pathology, Georgetown University, Washington, DC 20007, USA

⁴ Departments of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA

⁵ Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA

⁶ Department of Medicine, The George Washington University, Washington, DC 20052, USA

[§] Haitao Cui and Shida Miao contributed equally to this work.

Supporting information to https://doi.org/10.1007/s12274-019-2340-9

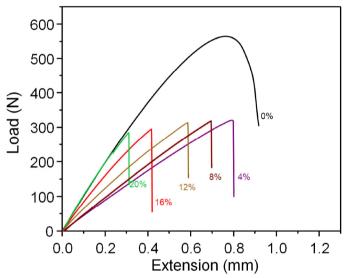


Figure S1 Load-extension curves of the nanocomposite constructs with different graphene content and pure SMP characterized at room temperature via uniaxial tensile testing.

