A. Background Information

A.1 Dimension reduction with factor models

For a general [-variate problem, where the dependence is specified through a Gaussian Process
w*(s) ~ GP;(0,C(-|9)), the specification of C(:|@) is complicated by the fact that it must be
a nonnegative definite function, and it must meet the symmetry constraint C(h|6) = C(—h|8)
(see|Ver Hoef and Barry| 1998} |Chiles and Delfiner, 2009} |Genton and Kleiber} |2015)). In addition
to the difficulty in specifying a suitable covariance function, the size of the LiDAR signals in
our application makes modeling directly this joint high-dimensional spatial component a com-
putationally daunting task. As such, we take advantage of the gains achieved using the spatial
factor model structure, which reduces the computational burden in two ways. First, it dramati-
cally reduces the dimensionality of the stochastic processes used, and second, it assumes that the
multivariate stochastic processes considered are composed of independent univariate processes.
Under the SFM structure, the spatial dependence is introduced by defining the spatial process
as w*(s) = Aw(s) ~ GP(0,H(-|¢)), where A is a factor loadings matrix (commonly tall and
skinny) and w(s) is a small-dimensional vector of independent spatial GP’s, providing the non-

separable multivariate cross-covariance function given by

H(h|¢p) = cov(Aw(s),Aw(s+h))

= Zpk L OR)ARA), = ch , &k) T, (A.10)

for locations s,s + h € D. Here, Cr(h|¢pi)’s are univariate parametric correlation functions,
and A is the kth column of A, which also corresponds to the eigenvector associated to the

only positive eigenvalue of the rank one matrix 7). This cross-covariance matrix is induced by
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g-variate (¢ < [) spatial factors w(s) with independent components wy(s) ~ GP(0,Ci(: | ¢r)).
Hence, var(wg(s)) = 1, cov(wg(s),w,(r)) = 0 for k # r, and cov(wg(s), wr(s + h)) = Cx(h| ¢x).
Additional constraints are required for factor models to be identifiable (Anderson, 2003).
Nevertheless, conveniently with spatial factor models only two groups of orthogonal transfor-
mations lead to non-identifiability issues, as shown in [Ren and Banerjee| (2013) . The first
of them is produced by an orthogonal matrix Py resulting from the product of Householder
reflectors, which is diagonal with 1’s and —1’s. The non-identifiability comes from the fact
that Py H(h| )Py = H(h|¢). The second type are permutation matrices Pp, given that

APpPhw(s) £ Aw(s), where “L”

represents equality in distribution. Both of these situations
can be avoided, either through the conventional approach of making the upper triangle of the
loadings matrix equal to 0 and its diagonal elements all equal to 1; or as in [Ren and Baner-

jee| (2013), by fixing the sign of one element in each column of A, while enforcing an ordering

constraint on the univariate correlation functions.

A.2 Nearest Neighbor Gaussian Processes

In spite of the dimension reduction achieved with the factor model structure, given the formidable
number of locations considered, even the factor model representation is prohibitive with dense
Gaussian processes. Under a Bayesian approach, ¢, + ¢, covariance matrices, each of dimension
n X n, have to be estimated and inverted at each iteration of the sampling algorithm. In view of
this, we resort to the sparse approximation provided by the NNGP approach.

The Nearest Neighbor Gaussian Process approach belongs to the class of sparsity inducing
methods that introduce zeros in the precision matrix to impose conditional independence, ex-
ploiting the graphical structure available for points distributed across space and/or time. The

idea underlying this method is to derive a sparse approximation of a parent GP, which is a proper

45



GP itself. The NNGP has been shown to provide an accurate and computationally efficient
approximation to the dense parent GPs (see for example Datta et al., 2016bjcla} [Finley et al.|
2017b).

To elaborate, consider a univariate spatial Gaussian Process w(s) ~ GP(0,C(-|¢)) for s €
D C R? Recall that when observed at a finite collection of locations T = {si,...,s,}, the
process constrained to these locations is such that w = (w(s1),...,w(sn))" ~ N, (0,C), with
C = ((C(HsZ — 85l zi)))) Alternatively, this joint density can be decomposed into the product

of conditionals
p(w1)p (walwi) ...p(wilw; : 1 <j <i)...p(wnlw; : 1 < j<n),

where w; = w(s;). This representation and the multivariate normality of w imply the linear
model given by w1 = 1 and w; = Z;;i bijw; + ni, with 1; ~ N(0,7;), where 7 = var(w1) and
7 = var(w;i|w; : 1 < j < ).

If locations are suitably ordered, a good approximation can be obtained by replacing the
conditioning set {w; :1<j < i}, for ¢ = 2,...,n, by a subset N(i) that contains a reduced
number of nearest neighbors. When considering neighborhoods of sizes up to m, the sparse

approximation to the dense linear model becomes

w; = Z bijw; +& = biwng + &, (A.11)
s;EN(i)
where N(i) contains the m; = min{m,i — 1} nearest neighbors within the conditioning set

{w; :1<j < i}, and wyy = {w; :s; € N(i)}. Denote by Cy,v represent the submatrix of

C indexed by the rows corresponding to locations in set U and by columns indexed by locations
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in V, and Cy be the square matrix with rows and columns indexed by locations indexed by
U. Using this notation, we have that b} = Ci,N(i)CE}W i.e., the kriging weights conditioned
on the neighbor set. Additionally, the last term on the right hand side & ~ N(0, F;), where
F; = var(wi|wn()) = Ci — Ci,N(i)CJ_\,thN(i),i. Hence, both b; and F; are entirely characterized
by the covariance function C(-,- | ¢) from the parent process. Note that the dense and the sparse
process share the same equations for locations i = 1,2, ..., m~+1. This implies that the covariance
among the first m + 1 locations under the NNGP is the same as that of the parent process.

In vector form, the sparse model can be written as w = Bw + £. Here, € ~ N, (0, F), where
F =diag{F; :i=1,...,n}, and B is the lower triangular matrix with zeros along the diagonal,

and at most m nonzero values in each row. The nonzero values in the ith row of B are located

in columns {j : s; € N(i)}. Hence, this representation implies that

w=(1-B) '¢~N,(0,C), (A.12)

where C = (I — B)"'F(I — B)~7 (with C~* sparse), which provides a good approximation to
the original covariance matrix C. For more details on the construction and appealing features of
the NNGP methodology, we direct the reader to the meticulous construction presented in |Dattal

et al.| (2016a).
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B. Sampling algorithm

To begin with, given that we have a two-step process, where w(s) is assumed to exclusively

capture the spatial patterns in the z(s), the full conditional for w(s;) is proportional to

N, (W) B Wi, F) T Na (wis) B wivgs), FS) x
s; €P(i)

Ni (z(si) | X2 (s:)' B, + Aw(si), ¥2) (B.13)

where P(i) = {s; € T :s; € N(j)}, is the set of locations to which s; is a neighbor. To simplify
(B.13), let s;, be the dth neighbor of s; € D (for 1 < d < m). The columns in B§-w) indexed by

the set

INGys;, ={d—1g+1,....(d—1)g+q}

relate s; and s;,. Denote by B](U;; the ¢ X ¢ matrix containing the columns indexed by IN(j),de
in B§w). From the component of the expression above corresponding to locations s; € P(i), we

may rewrite the quadratic form within the exponential function in the normal density, as

(W= Y0 BUIw(s)) B (W) - YD Blwsi) =

Ja€N(F) Ja€N(5)

/
(B wis) —x{%) @) (B wis) - x),

where xy‘;) =w(s;j) = 2,4 Bj(fjiw(sjd).

Making use of this notation, the full conditional for w(s;) for s; € T, is Ng,, (w(s;) \El(-w)ugw, ng)),
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with

p = [ E)TIBM wae + Y (B EM) I 4 ALET (2(si) — X.(s0)'8.) |, and
53673(1)
-1
= = [(E) T YT (BWYED)TIBY + ALBAL

s; €P(1)

Similarly, the full conditional for v(s;) is Ng, (v(s )|E(“)u(v> E(U)) where

p? = @B v+ Y BEYE) T 4T, y(s) - X, (1) B, — Aywis) | and
SjGP(i)
-1
=0 = [ED) e Y BOYED)BY 1w, T
s;€P(i)

To obtain the full conditional density for 3, and 3,, let W, be the n, X g, matrix with
rows given by w(s) for s € 7.. Define analogously the ny, X g, and ny X g, matrices WTy and
Vi, , respectively. Represent A, = (Af @ --- ¢ A7), Ay = (AY -+ )\zy)/, and T' = (v, :

. 'yhy)'. Additionally, for j = 1,...,h, and k = 1,..., hy, define z; = (2;(s) : s € T>)’, and

vt = (ye(r) : v € Ty)'. Also denote the n, X p. ; matrix of predictors for the jth outcome in

z(-) by X = (xi(s) : s € T2)' for j = 1,..., h.. Similarly, let X} = (x}/(r1) : ... : x}(rs,)) for
k=1,...,hy. Thus, assuming flat priors for 3, and 3, the full conditionals are
B. | Hszw@ |13, €5,
j=1
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1

where 15 = (X)) (2; = W X)) and 5 = 0] ((X5)X;}) ", and
hy
B0~ TNy (8] Qetty 20
k=1

where pf = (2 (X})' (v = Wr, A = V7, 7,) ) and QF = v} (X2)'Xa) "

Given the identifiability restrictions imposed on A, let ¢; = min{j — 1, ¢} for 2 < j < h;,
and denote by S\JZ = (M., )\jqj)' the vector of unrestricted elements in the jth row of A..
Define W1.; = (W1 - - - W;) (i.e., the matrix with the first j columns of W, ). Using the definitions

above, the full conditional density for A. can be represented as H;ZQ Ng; (5\] | Qn: ;LA;,QAi),
- J

where

w%z_wiz(jq)(zj - ngﬂj —-w;) if 2<j5<qu

EWL (- Xi8) i >

—1
(EWig oWig-n+La) i 2<j<aq

-1
(FWrwr +1,.) it >
J

The elements in A, are all unrestricted; hence, the full conditional posterior for A, corre-
sponds to T3 Na,, (A |Qayhag; Dy ), with
S

1
pag = W vk = X{BL = Vrymy),  and - Oy = ¢ (W7, W, +15,)
k

k

The sampler for T" has a similar form to that of A,, with the upper triangular elements
equal to zero; however, given that we make no dimension reduction for the forest outcomes, the
diagonal elements are only constrained to be positive (instead of setting them to one). First, for

2 < k < hy, let ¢ = min{k —1,qu}, denote ¥, = (Vk1,---,Vkq,) » and let Vi = (V1 Vi)
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denote the matrix with the first k columns of V7, . Then, the full conditional posterior density

. 1k - .
for T is [ ]2, N, ('Yk | Q. M—Yk:Qw): with

f}iviz(k—m()’k - X!B, —Wr Al —yeve) if 2<k<q

Vi, (i = XEBL — W, AY) it k>

—1
(wilifvll:(k—nvlz(kfl) + Ik—l) if 2<k<q

Q
)
I

-1
(Z Ve Vr +1.) it k>aq

As mentioned before, the diagonal elements of I" are assumed to be positive. Hence to
sample the kth diagonal element in T' we assume a prior oc Iy, >0). This yields a truncated
normal distribution, obtained from a normal with mean p,, and variance &,,, and truncated to

be greater than zero, where

e = (VoVe) TV (k= XEBY = W, AL = Vo),
i
e = Vove

Given that the half-¢ distribution is a mixture of two Inverse-Gamma distributions, the full
conditionals for 1, and 1, (the vectors of diagonal elements of ¥, and ¥,, respectively) are

conjugate with their corresponding likelihoods. Sampling them amounts to drawing from

v+n, v 1 ~ . P
5ty 2 () =X ()85 — (A w(si)” ]
J s; €72

h
¥~ [[z6|¥;

j=1
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with hyperparameters a. = (af, ..., aj_) sampled from

hy
V4ny v 1
vl o~ TIZ0 | ok =57 o+ g 2 (els) = xi(s:)'BY = WD) 'wls) = () v(s0)” |
k=1 s; €Ty
with hyperparameters a, = (ay, ... ,a%y) sampled from

hy
k=1

Lastly, we may use a Metropolis within Gibbs steps to sample ¢, and ¢,, with target

densities proportional to

qw
(¢, )Nng,, (Wr.[0,C™) = Hﬂ((bw,k)Nn (Wk\O,C,&w)Ww,k)) , and
k=1

du

7($,)Nng, (v7,10.CV) = T[ #(60.)Ns (¥:10.C(00))
r=1

which can both be sampled using a random walk Metropolis.
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C. Additional results from the simulation exercise
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Figure 7: Posterior median and 95% credible set vs true values of 3, for
qw € {3,5,8,10}. The rows vary by the number of spatial factors used in
model fitting, the columns vary by predictor.
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Figure 11: Imputed vs true values for missing outcomes from the simulation
exercise.
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Figure 12: Predicted vs true values for 500 out-of-sample locations from the

simulation exercise.

58



sAlyz(s))

Elyz(s)]

true y(s)

0 80 90 ¥0 20

(a') qw =3

0 80 90 ¥0 20 0L 80 90 ¥0 2¢O

) at 500

(

predicted and prediction uncertainty maps for yo7

9
out-of-sample locations from the simulation exercise.

Figure 13: True

59



