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Fig. S1: Amount of ctDNA correlates with tumor volume in stage I-III lung cancer.
Haploid genome equivalents (hGE) correlate with tumor volume with a linear regression slope of
close to 1 in logarithmic space. Gross tumor volumes were inferred from CT-scans. Blue shaded
region depicts the 95% confidence interval of a linear regression in log-log space. A | Reanalyzed
data of 87 early stage non-small-cell lung cancer patients of the TRACERx cohort where accurate
volumetric estimates were available (22). Haploid genome equivalents were calculated from the
mean variant allele frequency (VAF) of all clonal mutations per subject (see Materials and
Methods for details). For subject CRUK0053, clonality estimates were not available and hence
all mutations were assumed to be clonal. If tumors with lower volumes (close to the limit of
detection with higher variance) are excluded, the slope approaches 1. Excluding tumors with
volumes below 2 and 3 cm3 leads to slopes of 0.85 and 0.91, respectively. Linear regression
with a fixed slope of 1 predicts 0.25 hGE per plasma mL for 1 cm3 of tumor volume (95% CI:
0.15 � 0.40 hGE per plasma mL). B | Reanalyzed data of 46 early stage non-small-cell lung
cancer patients (14). Haploid genome equivalents were reported in Supplementary Table 3 of
the original study. Linear regression with a fixed slope of 1 predicts 0.11 hGE per plasma mL
for 1 mL of tumor volume (95% CI: 0.055� 0.21 hGE per plasma mL). C | Reanalyzed data of
49 locally advanced non-small-cell lung cancer patients (23). Haploid genome equivalents were
reported in Table S2 of the original study. Note that only for six subjects, mutations were known
a priori. For the remaining 43 subjects, mutation calls were based on the blood samples and
hence required stricter calling thresholds decreasing the sensitivity. Linear regression with a fixed
slope of 1 predicts 0.27 hGE per plasma mL for 1 mL of tumor volume (95% CI: 0.18�0.41 hGE
per plasma mL). Six subjects were both part of the cohorts of refs. (14) and (23) and only kept
once in the combined dataset.
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Fig. S2: Modeling ctDNA shedding with a lognormal distribution. A | Residuals of the
linear regression depicted in Fig. 1B are consistent with a normal distribution. B | Linear fit
shown in Fig. 1B and the corresponding residual analysis support the assumption of a correlation
with slope 1 between ctDNA levels and tumor volume in log-log space. For a fixed slope of 1,
linear regression on the same dataset predicts an identical amount of 0.21 ctDNA haploid genome
equivalents (hGE) per plasma mL for a 1 cm3 tumor with a narrower 95% confidence interval of
0.15�0.28 hGE per plasma mL. C | Fitted normal distribution for the logarithm of ctDNA hGE
per plasma mL detectable from a 1 cm3 tumor, so that 95% of the observations coincide with the
95% confidence interval of the linear regression. D | By applying an equilibrium equation and
assuming ctDNA is shed at cell apoptosis, the distribution depicted in C translates to a lognormal
distribution for the ctDNA shedding probability in linear space. This lognormal distribution has
parameters µ = �8.87 and � = 0.16, corresponding to a mean of 1.4⇥10�4 hGE per cell death
and a standard deviation of 2.2⇥10�5. E | The estimated amount of ctDNA mutant fragments
found in a 15 mL blood sample when the shedding probability follows a lognormal distribution
(mean = 1.74 hGE; orange bars) and when the shedding probability is fixed to the mean of the
lognormal distribution (mean = 1.72 hGE) are almost identical.
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Fig. S3: Detection probability of ctDNA mutant fragments in a 15 mL liquid biopsy
at a fixed tumor size depends on many parameters. Full lines denote the probability to
find at least 1 (blue), 2 (orange), 3 (purple), or 4 (red) mutant ctDNA fragments in a liquid
biopsy of 15 mL blood. Probability of finding mutant ctDNA fragments of a specific region
corresponds to haploid genome equivalents (hGE). Standard parameter values (if not otherwise
noted): birth rate b = 0.14 per cell per day, death rate d = 0.136 per cell per day, tumor
detection size M = 109, ctDNA half-life time t1/2 = 30 minutes, ctDNA shedding probability
per cell death qd = 1.4 · 10�4 hGE (Materials and Methods). A | Tumors with fewer than
109 cells (⇡ 1 cm3) rarely shed su�cient ctDNA that individual somatic mutations can be
robustly detected. B | Higher ctDNA half-life time t1/2 increases the number of mutant ctDNA
fragments at a given tumor size. C | Slower growing tumors lead to higher numbers of mutant
ctDNA fragments compared with fast growing tumor at the same size. Growth rate is varied by
changing the death rate and keeping the birth rate constant. D | A slightly increased ctDNA
shedding probability qd boosts the detection probability while for a reduced shedding probability
the detection probability quickly approaches zero.
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Fig. S4: Comparison between computer simulations, exact and asymptotic theoretical
distributions conditioned on tumor survival. Panels (A�G) show the level of biomarker
shed by cancer cells and circulating in the bloodstream at time t. Bars illustrate the distribution
of the number of biomarker molecules based on 104 simulation realizations. The probability
distributions illustrated are all conditional on primary tumor survival up to time t. Full lines
illustrate the exact probability distribution at time t, while dashed lines represent the asymptotic
results for large times and small shedding rate. Both agree with simulation results (bars). Each
panel shows the following combinations of shedding rates: A | qb > 0,�1 > 0, qd > 0.
B | qb > 0,�1 > 0, qd = 0. C | qb > 0,�1 = 0, qd > 0. D | qb > 0,�1 = 0, qd = 0.
E | qb = 0,�1 > 0, qd > 0. F | qb = 0,�1 > 0, qd = 0. G | qb = 0,�1 = 0, qd > 0.
H | Probability distribution of the primary tumor size at a given time t. Parameter values: birth
rate b = 0.14 per cell per day and death rate d = 0.136 per cell per day; ctDNA half-life time
t1/2 = 30 minutes; ctDNA shedding probability per cell death qd = 10�4 hGE, per cell division
qb = 10�4 hGE, and shedding rate per day (at cell necrosis) �1 = 10�5 hGE per cell per day.
All results are computed at time t = 3000 days from the primary tumor (PT) onset.
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Fig. S5: Plasma DNA concentration increases with disease progression. Analyzed data
from 812 normal subjects, 199 stage I patients, 497 stage II patients, and 307 stage III patients
of Cohen et al (9). A�D | Plasma DNA concentrations (ng per plasma mL) in healthy and
cancer patients. B | Red line illustrates fitted Gamma distribution with mean of 6.3 and median
of 5.2 ng per plasma mL. Depicted distribution is used to model the varying plasma DNA
concentration. E | Comparing plasma DNA concentrations. Two-sided Wilcoxon rank-sum
tests were used. Thick black bars denote 90% confidence interval. * P < 0.05; ** P < 0.01;
*** P < 0.001; n.s. denotes not significant.



B C

quarterly: median 0.49 cm3 (Ø 0.98 cm)
monthly: median 0.2 cm3 (Ø 0.73 cm)

quarterly: median 120 days
monthly: median 170 days

A

AUC 75% (0.1 cm3)
AUC 87% (0.2 cm3)
AUC 98% (0.5 cm3)

Requiring ≥1 called mutation

D E

quarterly: median 0.69 cm3 (Ø 1.1 cm)
monthly: median 0.28 cm3 (Ø 0.81 cm)

quarterly testing: median 85 days
monthly testing: median 150 days

Sequencing efficiency of 100%

Sequencing efficiency of 50%

Fig. S6: Expected tumor detection size and lead time compared to current clinical
relapse detection. A | ROC (Receiver Operating Characteristic) curves for tumors with 100
million cells (⇡ 0.1 cm3, blue line), 200 million cells (⇡ 0.2 cm3, orange line), or 500 million
cells (⇡ 0.5 cm3, red line) when 20 clonal tumor specific mutations are tracked for relapse
detection and one of these 20 mutations needs to be called for a positive test. AUC, area
under the curve. B�E | Since the same relapse detection test with a specificity of 99.5% for
monthly and quarterly testing was used, the monthly sampling produces 0.06 false-positives over
12 months of relapse testing while the quarterly sampling only produces 0.02 false-positives over
12 months. B | Expected tumor detection size distributions for monthly and quarterly repeated
relapse detection with a fixed specificity of 99.5% per test and a sequencing e�ciency of 100%.
? indicates diameter of spherical tumor. C | Expected lead time distributions compared to
imaging-based approaches applied at the same frequency with a detection limit of 1 cm3 for
monthly and quarterly repeated relapse detection with a fixed specificity of 99.5% per test and a
sequencing e�ciency of 100%. D | Expected tumor detection size distributions for monthly and
quarterly repeated relapse detection with a fixed specificity of 99.5% per test and a sequencing
e�ciency of 50%. E | Expected lead time distributions compared to imaging-based approaches
applied at the same frequency with a detection limit of 1 cm3 for monthly and quarterly repeated
relapse detection with a fixed specificity of 99.5% per test and a sequencing e�ciency of 50%.
Parameter values: birth rate b = 0.14 per cell per day; death rate d = 0.13 per cell per day;
ctDNA half-life time t1/2 = 30 minutes; ctDNA shedding probability qd = 1.4 · 10�4 hGE per
cell death; sequencing panel covers 20 clonal tumor-specific mutations; sequencing error rate
per base-pair 10�5; 15 mL blood sampled per test; plasma DNA median concentration 5.2 ng
per plasma mL.
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Fig. S7: Expected tumor detection size and lead time compared to current clinical
relapse detection for a sequencing e�ciency of 100%. For better comparability, positive
detection test thresholds were set such that if the test is repeated multiple times, a combined
false positive rate of 5% is obtained over all tests per year. Note the decreased expected
detection sizes and increased lead times compared to Fig. 3 where a sequencing e�ciency of
50% was assumed. A | Expected tumor detection size distributions for monthly and quarterly
repeated relapse detection tests. B | Expected lead time distributions compared to imaging-
based approaches applied at the same frequency with a detection limit of 1 cm3 for monthly
and quarterly repeated relapse detection tests. Parameter values: birth rate b = 0.14 per cell
per day; death rate d = 0.13 per cell per day; ctDNA half-life time t1/2 = 30 minutes; ctDNA
shedding probability qd = 1.4 · 10�4 hGE per cell death; sequencing panel covers 20 clonal
tumor-specific mutations; sequencing error rate per base-pair 10�5; sequencing e�ciency 100%;
15 mL blood sampled per test; median DNA concentration 5.2 ng per plasma mL.



A B

quarterly: median 0.36 cm3 (Ø 0.88 cm)
monthly: median 0.26 cm3 (Ø 0.79 cm)

quarterly testing: median 150 days
monthly testing: median 150 days

Requiring ≥2 called mutation out of 20

C D

quarterly: median 0.28 cm3 (Ø 0.82 cm)
monthly: median 0.19 cm3 (Ø 0.71 cm)

quarterly testing: median 170 days
monthly testing: median 180 days

Requiring ≥4 called mutation out of 20

Fig. S8: Expected tumor relapse detection size and lead time compared to current clinical
relapse detection when multiple called mutations are required for a positive test. For
better comparability, positive detection test thresholds of individal mutations were set such that if
the test is repeated multiple times, a combined false positive rate of 5% is obtained over all tests
per year. A | Expected tumor detection size distributions for monthly and quarterly repeated
relapse detection tests when 20 a priori known mutations are covered by the sequencing panel
and two of these 20 mutations need to be called for a positive relapse detection. B | Expected
lead time distributions compared to imaging-based approaches applied at the same frequency
with a detection limit of 1 cm3 for monthly and quarterly repeated relapse detection tests.
C | Expected tumor detection size distributions for monthly and quarterly repeated relapse
detection tests when 20 a priori known mutations are covered by the sequencing panel and four
of these 20 mutations need to be called for a positive relapse detection. D | Expected lead
time distributions compared to imaging-based approaches applied at the same frequency with a
detection limit of 1 cm3 for monthly and quarterly repeated relapse detection tests. Parameter
values: birth rate b = 0.14 per cell per day; death rate d = 0.13 per cell per day; ctDNA
half-life time t1/2 = 30 minutes; ctDNA shedding probability qd = 1.4 ·10�4 hGE per cell death;
sequencing panel covers 20 clonal tumor-specific mutations; sequencing error rate per base-pair
10�5; sequencing e�ciency 50%; 15 mL blood sampled per test; median DNA concentration
5.2 ng per plasma mL.
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Fig. S9: Cancer detection sensitivity changes non-monotonically with the required
number of called mutations for a positive test. A-C | If the mutation calling threshold
is constant (grey curves), specificity increases monotonically with the number of mutations
required for detection and quickly reaches almost 100%. Correspondingly, the p-value threshold
that determines the false positive rate (FPR) stays constant, and the sensitivity for a ctDNA
level of 200 hGE decreases monotonically to zero. If instead the mutation calling threshold is
adapted to control for an FPR of ⇠1% (blue curves), we observe two behaviors: i) specificity
remains constant, p-value calling threshold increases, and sensitivity varies non-monotonically;
ii) the minimum mutant fragment threshold of 1 is reached to stay below the desired FPR
and the specificity approaches one while the sensitivity approaches zero. D | For fixed plasma
normal DNA concentration and an FPR of  1%, the mutation calling threshold varies with the
number of called mutations required for detection, leading to a reverse sawtooth wave changing
sensitivity. Local maxima (or peaks) of the sensitivity occur exactly when the mutation calling
threshold decreases by one mutant fragment while still reaching a p-value below the desired
FPR. E | Same as D but integrated over a distribution of plasma DNA concentrations and an
additional 200 ctDNA hGE. Blue curve equivalent to C. F | Local sensitivity maxima for di↵erent
ctDNA levels depend on the number of mutations required for detection. G | Correspondingly,
the highest possible sensitivity for a given tumor size is achieved by di↵erent numbers of required
mutations. Parameter values: d = 0.13 per cell per day; t1/2 = 30 minutes; qd = 1.4 ·10�4 hGE
per cell death; sequencing panel covers 20 clonal tumor-specific mutations; sequencing error rate
per base-pair 10�5; sequencing e�ciency 100%; 15 mL blood sampled per test; plasma normal
median DNA concentration 5.2 ng/mL (if not specified otherwise).
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Fig. S10: Expected tumor detection size distributions for fast growing lung cancers.
Tumors grow with a rate of r = 1.0% per day which corresponds to a tumor volume doubling
time of 70 days. Positive screening test thresholds were set such that 0.01 false-positives are
expected per year (i.e., specificity of 99% for an annually repeated test). A | Repeated virtual
screening tests with one somatic mutation within a sequencing panel covering 2,000 base-pairs.
B | Repeated virtual screening tests with five somatic mutation within a sequencing panel
covering 300,000 base-pairs. C | Repeated virtual screening tests with ten somatic mutation
within a sequencing panel covering 300,000 base-pairs. Parameter values: birth rate b = 0.14
per cell per day; death rate d = 0.13 per cell per day; ctDNA half-life time t1/2 = 30 minutes;
ctDNA shedding probability qd = 1.4 · 10�4 hGE per cell death; sequencing error rate per
base-pair 10�5; sequencing e�ciency 50%; 15 mL blood sampled per test; plasma normal DNA
median concentration 5.2 ng per mL.
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Fig. S11: Cancer detection sensitivity decreases monotonically with an increasing number
of called mutations required for detection when a small number of somatic mutations
are covered by a large sequencing panel. A | Sensitivity to detection a tumor of a given size
decreases monotonically with an increasing number of called mutations required for detection
when only ten clonal somatic mutations of the tumor are covered by a sequencing panel with
10,000 base-pairs (compare to fig. S9 for small sequencing panels). ? indicates diameter of
spherical tumor. B | Requiring more than one called mutation for cancer detection leads to a
lower sensitivity - in particular for small tumors. Parameter values: mutation calling threshold
is adapted for a false positive rate (FPR) of 1%; birth rate b = 0.14 per cell per day; death rate
d = 0.136 per cell per day; ctDNA half-life time t1/2 = 30 minutes; ctDNA shedding probability
qd = 1.4 · 10�4 hGE per cell death; sequencing error rate per base-pair 10�5; sequencing
e�ciency 100%; 15 mL blood sampled per test; plasma normal DNA median concentration
5.2 ng per mL.



A B C1 mutation within 
2,000 sequenced base-pairs

5 mutations within 
300,000 sequenced base-pairs

10 mutations within 
300,000 sequenced base-pairs

95% screen-detected
median 6.4 cm3 (Ø 2.3 cm)

median 6.7 cm3 (Ø 2.3 cm)

99.6% screen-detected
median 5.1 cm3 (Ø 2.1 cm)

>99.9% screen-detected
median 4.1 cm3 (Ø 2.0 cm)

median 5.1 cm3 (Ø 2.1 cm) median 4.1 cm3 (Ø 2.0 cm)

Fig. S12: Expected tumor detection size distributions in the presense of eight lung
nodules. Positive screening test thresholds were set such that 0.01 false-positives are expected
per year of screening (i.e., specificity of 99% for an annually repeated test). Assuming eight
benign lung nodules with each 34 million cells (diameter of ⇡ 4 mm) replicating at a constant
size with a cell birth/death rate of bbn = dbn = 0.07 per day and shedding ctDNA with the
same probability qd (21, 41). Sequencing panels were conservatively assumed to cover the
same number of somatic mutations in benign nodules and malignant tumors. Repeated virtual
screening tests with one mutation per tumor covered by a sequencing panel of 2,000 base-pairs
(panel A), with five mutations per tumor (panel B) and with ten mutations per tumor covered
by a sequencing panel of 300,000 base-pairs (panel C). Parameter values: birth rate b = 0.14
per cell per day; death rate d = 0.136 per cell per day; ctDNA half-life time t1/2 = 30 minutes;
ctDNA shedding probability per cell death qd = 1.4 · 10�4 hGE; sequencing error rate per base-
pair 10�5; sequencing e�ciency 50%; 15 mL blood sampled per test; median DNA concentration
5.2 ng per plasma mL.
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Fig. S13: Operating ctDNA shedding processes determine the e↵ective shedding rate.
Panels depict haploid genome equivalents (hGE) of ctDNA present in 5 liters of blood (⇡ 55%
plasma) when a lung tumor reaches a a size of 1 billion cells. A | Blue line illustrates a scenario
where ctDNA is exclusively shed during apoptosis with a ctDNA shedding probability per cell
death qd = 10�4 hGE. Orange line illustrates a scenario where ctDNA is exclusively shed during
proliferation with a ctDNA shedding probability per cell division qb = 10�4 hGE. We obtain a
shedding rate of � = 1.36 · 10�5 hGE per day per cell for the first case and a shedding rate
of � = 1.40 · 10�5 hGE for the second case because cells proliferate and shed ctDNA slightly
more frequently than they die and shed ctDNA (b = 0.14 > d = 0.136). B | In both scenarios
cells shed ctDNA exclusively during apoptosis (qd = 10�4, qn = qb = 0). Cells die with the
same death rate d = 0.136 per cell per day and hence, we obtain identical shedding rates of
� = 1.36 · 10�5 hGE per cell per day. In the blue scenario, cells divide with a rate of b = 0.137
per day while cells divide with a rate of b = 0.176 per day in the orange scenario. Although the
shedding rates are identical, the slow growth rate of r = 0.1% leads to a slightly higher ctDNA
amount at the same size of a tumor. Parameter values: ctDNA half-life time t1/2 = 30 minutes.



Supplementary Tables

Table S1: Mean and variance for the distribution of the circulating biomarker CA
t at time t shed by a tumor conditioned on

survival until time t. Simulated results are averages over 104 realizations and are compared with the theoretical expression derived from
the marginal probability generating function C A

t (y | ⌦t). The first column shows the seven combinations of shedding rates we considered.
Parameter values: birth rate b = 0.14 per cell per day, death rate d = 0.136 per cell per day, ctDNA half-life time t1/2 = 30 minutes,
tumor age t = 3500 days corresponding to an expected size of 4.209⇥ 107 cells.

Shedding dynamics Mean Variance

�0 �1 �2 Simulations Exact Asymptotic Simulations Exact Asymptotic

0 10�5 0 12.5298 12.6494 12.6494 169.1204 172.6576 172.6579

1.36⇥ 10�5 0 0 17.1683 17.2032 17.2032 305.7878 313.1543 313.1548

0 0 1.4⇥ 10�5 17.5059 17.7092 17.7092 326.4480 331.3252 331.3257

1.36⇥ 10�5 10�5 0 30.1496 29.8527 29.8527 940.0496 921.0341 921.0356

0 10�5 1.4⇥ 10�5 30.4422 30.3586 30.3587 956.3959 952.0057 952.0072

1.36⇥ 10�5 0 1.4⇥ 10�5 34.4846 34.9124 34.9125 1235.4580 1253.7906 1254.7926

1.36⇥ 10�5 10�5 1.4⇥ 10�5 47.3219 47.5619 47.5619 2284.9660 2309.6932 2309.6970



Table S2: Mean and variance for the distribution of the circulating biomarker CA
t at time t shed by a tumor conditioned on

survival until time t across a wide range of shedding rates. Simulated results are averages over 105 realizations and are compared
with the theoretical expression derived from the marginal probability generating function C A

t (y | ⌦t). We explore a wide range of shedding
rates by varying �0 and setting �1 = �2 = 0. Parameter values: birth rate b = 0.14 per cell per day, death rate d = 0.136 per cell per
day, ctDNA half-life time t1/2 = 30 minutes, tumor age t = 3000 days corresponding to an expected size of 5.696⇥ 106 cells.

Shedding dynamics Mean Variance

� = �0 Simulations Exact Asymptotic Simulations Exact Asymptotic

10�3 171.6 171.04203 171.04305 29201 29426.407 29426.768

10�4 17.13 17.104203 17.104305 306.8 309.65785 309.66155

10�5 1.713 1.7104203 1.7104305 4.614 4.6359567 4.6360029

10�6 0.1709 0.1710420 0.1710430 0.2005 0.2002974 0.2002988

10�7 0.0172 0.0171042 0.0171043 0.01751 0.0173968 0.0173969

10�8 0.001755 0.0017104 0.0017104 0.001756 0.0017133 0.0017134



Table S3: Mean number of mutations of lung cancers covered by CancerSEEK and
CAPP-Seq. Mean number of clonal mutations of early stage lung cancers in the TRACERx
study (22) that are covered by the CAPP-Seq panel and the CancerSEEK panel (considering
only regions of interest).

Cohort Filter CAPP-Seq CancerSEEK

Whole

Overall 9.14 1.12

Never Smoker 3.83 1.00

Ex Smoker 8.25 0.92

Recent Ex Smoker 12.12 1.15

Current Smoker 10.29 1.00

Stage I Only

Overall 9.71 1.03

Never Smoker 4.67 1.22

Ex Smoker 8.76 0.76

Recent Ex Smoker 12.80 1.00

Current Smoker 12.50 0.75



Supplementary Note S1: Mathematical Modeling

We developed a stochastic model of cancer evolution and biomarker shedding to
study the potential of cancer detection based on the biomarker level in liquid
biopsies. Here we focused on somatic point mutations present in circulating tumor
DNA (ctDNA). Nonetheless, our framework applies to any biomarker that is shed
by cancer cells at some rate. These biomarkers can be released at di↵erent stages of
a cell cycle, for example during proliferation, apoptosis, or per unit of time.

We model the dynamics of tumor growth and biomarker shedding through a
continuous-time multi-type branching process (26, 52). The primary tumor grows
stochastically from a single malignant cell at time t = 0. The tumor size at time t,
denoted At and expressed in number of cells, is modeled by a supercritical
branching birth death process with net growth rate r = b � d > 0, where b and d
denote the birth and death rate per day, respectively (Fig. 1A). This process has a
probability of � = d/b to go extinct (52). Since we are only interested in primary
tumors that do not go extinct, we condition At on eventual survival, i.e. on the
event ⌦ := {At > 0 for all t}. Cancer cells shed a biomarker into the bloodstream at
a rate � per day. In our case, the biomarker is ctDNA measured in haploid genome
equivalents (hGE). For now, we assume that the biomarker is exclusively shed by
cells undergoing apoptosis and hence the shedding rate is given by � = d · qd, where
qd denotes the shedding probability per cell death (Fig. 1A).

Normal or benign tumor cells also shed cell-free DNA (cfDNA) into the
bloodstream. Cells in benign tumors and expanded subclones often harbor the same
cancer-associated mutations as cancer cells (39, 40). Hence, ctDNA shed from
benign tumors can be di�cult to distinguish from ctDNA shed from malignant
tumors. We define Bt as the size of the benign population of cells at time t that
shed the biomarker in the bloodstream, and denote their shedding rate as �bn . We
assume that benign lesions roughly replicate at a constant size. Hence, benign cells
divide and die at the same rate bbn = dbn, and their population size Bt remains
constant over time (Bt = B0 for all t). Considering again that the biomarker is
exclusively shed by cells undergoing apoptosis, the shedding rate of benign cells is
�bn = dbn · qd,bn per day. Although we conservatively assume that apoptotic benign
cells shed ctDNA with the same probability as malignant cells (qd = qd,bn), the
shedding rate �bn of benign cells is lower than the shedding rate � of malignant cells
because benign cells typically replicate at a lower rate than cancer cells (21).

The circulating biomarker is eliminated from the bloodstream at an elimination
rate " which can be calculated from the biomarker half-life time t1/2 as
" = log(2)/t1/2. We denote as CA

t and CB
t the amount of biomarker (i.e., number of

hGE) circulating in the bloodstream at time t shed by malignant and benign cells,



respectively. The total amount of the biomarker circulating at time t is thus
Ct = CA

t + CB
t .

Because malignant and benign cells shed the biomarker independently from each
other, the processes (At,CA

t ) and (Bt,CB
t ) can be studied separately. The stochastic

process (At,CA
t ) is a two-type branching process governed by the following transitions

A �! AA rate b

A �! C rate d · qd
A �! ; rate d (1� qd)

C �! ; rate " .

The process is initialized at time t = 0 with a single cancer cell and no circulating
biomarkers, that is

�
A0,CA

0

�
= (1, 0).

Because we assume that the benign cell population Bt remains constant over time
and biomarker units are eliminated from the bloodstream independently at the same
rate, the process CB

t is a branching pure-death process with constant immigration (53)
(or equivalently a M/M/1 queue system (54)). We assume that CB

t is at equilibrium
at time t = 0. We present additional details about this process, including the exact
form of CB

0 , in the next section.

Biomarker Size Distributions

The processes At, Bt and Ct are indexed by the time parameter t, counted from the
primary tumor onset. Clinically, this time is impossible to measure, and it is thus
convenient to express the previous processes in terms of other indexing parameters.
In our case, a suitable choice is to use the first passage time when the tumor reaches
a size of m cells

⌧m := inf{t > 0 : At = m} .

By employing this random variable, the processes CA
⌧m and CB

⌧m express the
biomarker levels in terms of an observable quantity, i.e. the primary tumor size. We
are especially interested in our model predictions for relatively large primary tumor
sizes. When m is large and the shedding rate � is small, we are able to apply
asymptotic results for the distributions of the processes CA

⌧m and CB
⌧m that greatly

simplify computations and help getting insights into the main evolutionary features
of the model. Hence, we first focus on these asymptotic results, while later we will
show how to generalize our framework to include multiple biomarker shedding
dynamics and to derive the probability distribution of the processes At, Bt and Ct

indexed by time. Unless otherwise specified, the presented results are conditioned
on eventual survival of At.



Note that we will employ the same sign ’⇠’ to indicate ”distributed as” and
”asymptotically converges to”. Since only the former usage applies to random
variables, this does not cause any notational ambiguity. Finally, whenever
asymptotic probability distributions are derived, formulas including the ’⇠’ sign will
be accompanied by text highlighting the relevant asymptotic limit.

Process CA
t

Here we provide a sketch derivation for the asymptotic distribution of CA
⌧m in the

small shedding rate - large primary tumor size limit (� ⌧ 1, m � 1). The
derivation follows from the results presented in ref. (55).

The biomarker is shed by cancer cells as a Cox process (or doubly stochastic
Poisson process (56)) with intensity (� · At)t�0. Furthermore, for large times the
branching birth death process At satisfies the classic result (52)

lim
t!1

At = Wert (1)

where W is a non-negative random variable such that W = 0 if and only if the
process At goes extinct. Let us assume m � 1 and consider the process At at time
⌧m, by definition, that is when the primary tumor is made of m cells. Conditioning
on ⌦ ⌘ {W > 0} and looking backwards in time, we see that the size of the primary
tumor at s days before ⌧m is given bym·e�rs. Hence, in the small � - largem limit, the
biomarker is shed as a Poisson process with mean �

R1
0 me�rsds = � ·m/r. Moreover,

by the same argument we see that the unordered times of biomarker shedding are
asymptotically distributed as i.i.d. Exponential(r) random variables. Given that the
elimination times of shed biomarkers are also i.i.d. Exponential("), the probability
that a randomly selected biomarker fragment is still circulating in the bloodstream
at time ⌧m is r/(" + r). Due to the thinning property of Poisson processes, we find
that for large primary tumor sizes m and small shedding rates �

CA
⌧m ⇠ Poisson

✓
m · �
"+ r

◆
. (2)

If a biomarker is only present in a subpopulation of the primary tumor or is only shed
by a fraction of primary tumor cells, m denotes the number of cells that actively shed
the biomarker.

Process CB
t

The process CB
t is a branching pure-death process with immigration, with death rate

" and immigration rate B0 · �bn = B0 · dbn · qd, because the population size Bt is



constant over time. The probability generating function for such a process follows
from ref. (53)

C B(y, t) =
�
1 + (y � 1)e�"t

�CB
0 e

�bn
" B0(y�1)(1�e�"t) . (3)

Conditioning on At survival, we have that limm!1 ⌧m = 1 almost surely. Therefore,
since the process (Bt,CB

t ) is independent of At, the large m limit of CB
⌧m coincides

with the large time limit of CB
t . When t is large, equation (3) converges to

lim
t!1

C B(y, t) = e
�bn
" B0(y�1) . (4)

independently of the initial biomarker level. The right hand side of equation (4) is the
probability generating function of a Poisson random variable with mean B0 · �bn/",
and so for large m we have

CB
⌧m ⇠ Poisson

✓
B0 · �bn

"

◆
. (5)

Since we assume that CB
t is in equilibrium initially, we set CB

0 = B0 · dbn · qd/".

Process Ct and sampling

By combining the previous results, we find the asymptotic limit for the distribution
of the total biomarker amount present in the bloodstream when the primary tumor
is made of a large number of cells. Conditioned on At survival, this limit is given by

C⌧m = CA
⌧m + CB

⌧m

d�! Poisson

✓
mdqd
"+ r

+
B0 dbn qd

"

◆
(6)

Suppose that a sample of blood with volume Vs is drawn from a patient with a
total blood volume equal to Vtot. Assuming that the circulating biomarker units are
well mixed in the bloodstream, we sample the biomarker units from the bloodstream
with probability p = Vs/Vtot. We define Xt as the total biomarker amount (i.e.,
number of haploid genome equivalents) present in a sample drawn at time t. Then,
by applying again the thinning property of Poisson processes, we find that for large
m the biomarker amount in the sample when the primary tumor is made of m cells
is asymptotically distributed as

X⌧m ⇠ Poisson

✓
p


mdqd
"+ r

+
B0 dbn qd

"

�◆
. (7)



General Framework

For the stochastic analysis of ctDNA shedding by malignant and benign cells we
employed the asymptotic results derived above. We further extended these results in
several ways. First, so far we focused on the case where biomarker shedding occurs
exclusively at cell apoptosis. We generalize our derivations to additionally include
shedding at cell necrosis (per unit of time) and proliferation. Second, we presented
size distributions in the asymptotic limit of large primary tumor sizes - small
shedding rates. For other shedding processes, We obtain similar distributions in the
asymptotic limit for large times - small shedding rates. Finally, we compute exact
probability distributions for the processes At, Bt and Ct at any given time t for all
three shedding processes and their mixtures. Below we present these three
extensions in greater detail.

In order to include the possibility of biomarker shedding by cancerous cells also at
necrosis and proliferations in our model, we consider the following set of transitions
for the process (At,Ct)

A �! AAC rate b qb rate �2
A �! AA rate b (1� qb) rate b� �2
A �! AC rate qn rate �1
A �! C rate d qd rate �0
A �! ; rate d (1� qd) rate d� �0
C �! ; rate " rate " .

(8)

Here, qd and qb denote the shedding probabilities at apoptosis and proliferation,
respectively. Similarly, �0 = d qd, �1 = qn and �2 = b qb denote the shedding rates of
malignant cells at apoptosis, necrosis, and proliferation, respectively. The total
shedding rate is then defined by � = �0 + �1 + �2.

Asymptotic results for multiple shedding processes

With the generalized definition of the total shedding rate �, we find that the biomarker
is shed by cancer cells as a Cox process with intensity (�At)t�0. Hence, the derivation
of CA

⌧m distribution is identical to the one above. In particular, we show again that
for a large primary tumor size m and a small total shedding rate �, the biomarker
amount present in the bloodstream when At = m asymptotically follows a Poisson
distribution with mean �·m

"+r .

Asymptotic results for large times



A similar derivation provides the size distribution for CA
t in the asymptotic limit for

large time and small total shedding rate. Under this limit and conditioning on At

survival, the total biomarker amount shed up to time t converges in finite dimensional
distributions to a Poisson random variable with mean W�ert

r , where W is the same
as in equation (1) (for details see ref. (55)). We recall that W > 0 if and only if
At eventually survives, and conditioned on this event, W follows an Exponential

�
r
b

�

distribution. The biomarker amount still present in the bloodstream at time t is thus
a compound Poisson process with probability generating function

E
h
zC

A
t

i
= E


exp

✓
W�ert

r
(µ(z)� 1)

◆�
.

Here µ(z) denotes the probability generating function of the process initiated by
a randomly selected biomarker unit, but because the biomarker cannot reproduce,
this process is a branching pure-death process whose size can only be 1 or 0. The
probability generating function of such a process is thus µ(z) = "+rz

"+r . Using this
expression and the results for W , the probability generating function for CA

t becomes

E
h
zC

A
t

i
=

✓
1� b�ert(z � 1)

r("+ r)

◆�1

. (9)

Notice that the same steps can be repeated to formally derive the asymptotic results
for large primary tumor sizes. The last expression represents the probability
generating function of a geometric random variable, and so in the asymptotic limit
for large times and small total shedding rates, conditioned on At survival, we find
that

CA
t ⇠ Geometric

✓
r("+ r)

b�ert + r("+ r)

◆
. (10)

First moments

In this section, we summarize the expected values and variances of the processes
At and Ct in the considered asymptotic limits. These moments follow from the
probability distributions we previously derived. The process At is a supercritical
branching birth death process with net growth rate r and extinction probability � =
d/b. In particular, recalling that ⌦ denotes the event of At eventual survival, we have
P(⌦) = 1� �. If A0 = 1, we have

E[At] = ert , Var(At) ⇠
1 + �

1� �
e2rt

and

E[At | ⌦ ] ⇠ ert

1� �
, Var(At | ⌦ ) ⇠ 1 + 2�

(1� �)2
e2rt .



For the process CA
t , given that (A0,CA

0 ) = (1, 0), equations (2) and (10) yield

E
⇥
CA

⌧m | ⌦
⇤
⇠ m �

"+ r
, Var

�
CA

⌧m | ⌦
�
⇠ m �

"+ r
(11)

and

E
⇥
CA

t | ⌦
⇤
⇠ b�

r("+ r)
ert , Var

�
CA

t | ⌦
�
⇠ b�

r("+ r)
ert

✓
b�

r("+ r)
ert + 1

◆
(12)

asymptotically for large primary tumor sizes - small shedding rates and large times -
small shedding rates, respectively.

In the same two limits, the process CB
t exhibits the same asypmtotic behaviour.

Conditional on CB
0 = B0 · �bn/" we find

lim
m!1

E
⇥
CB

⌧m

⇤
= lim

t!1
E[CB

t ] =
�bn
"

B0 , lim
m!1

Var
�
CB

⌧m

�
= lim

t!1
Var

�
CB

t

�
=
�bn
"

B0 .

Combining these results and applying the same initial conditions, we then get

E [C⌧m | ⌦ ] ⇠ m �

"+ r
+

B0 �bn
"

, Var (C⌧m | ⌦ ) ⇠ m �

"+ r
+

B0 �bn
"

(13)

for large M - small � and

E [Ct | ⌦ ] ⇠ b �

r("+ r)
ert +

B0 �bn
"

,

Var (Ct | ⌦ ) ⇠ b �

r("+ r)
ert

✓
b �

r("+ r)
ert + 1

◆
+

B0 �bn
"

(14)

for large t - small �.

Exact results

The asymptotic results discussed above perform extremely well for realistic parameter
values and perfectly match the exact simulation results (see fig. S4). In principle,
however, our mathematical framework can be used for other biomarkers - or entirely
di↵erent applications - where the parameter values may not fall in the asymptotic
regimes considered before. For this reason, we derive the exact distributions of the
processes At,Bt and Ct, for any given time t and combinations of non-zero shedding
rates.



Probability generating functions

In order to compute the exact distributions of At, Bt and Ct, we first derive the joint
probability generating functions of the processes (At,CA

t ) and (Bt,CB
t ). The marginal

generating functions then follow directly, and provide the probability distributions of
the individual processes by simple analytical or numerical inversion.

Process (At,CA
t )

Our derivation for the process (At,CA
t ) is based on previous results for a two-type

branching process presented in refs. (57,58). These studies assumed that cells of the
second type also have the ability to reproduce, but shedding (or mutations) can
happen only at wild-type cell death.

We consider instead the two-type branching process (At,CA
t ) fully defined by

the set of transitions in equation (8). For any given initial condition, we denote
P ⇤
m,n(t) = P ((At,CA

t ) = (m,n) | (A0,CA
0 ) = ⇤). The corresponding probability

generating function is then defined as

P⇤(x, y, t) =
X

m,n�0

xmynP ⇤
m,n(t) .

The backward Kolmogorov equations for this process read

dP (1,0)
m,n

dt
= (b� �2)P

(2,0)
m,n + (d� �0)�m,0�n,0

+ �0P
(0,1)
m,n + �1P

(1,1)
m,n + �2P

(2,1)
m,n � (b+ d+ �1)P

(1,0)
m,n

dP (0,1)
m,n

dt
= " �m,0�n,0 � "P (0,1)

m,n .

(15)

Hence, multiplying both sides of equation (15) by xmyn and summing over all non-
negative m,n we find

@tP (1,0) = (b� �2)P(2,0) + (d� �0)

+ �0P (0,1) + �1P (1,1) + �2P (2,1) � (b+ d+ �1)P(1,0)

@tP (0,1) = "� "P (0,1) .

Next, we observe that

P(2,0)(x, y, t) =
⇥
P(1,0)(x, y, t)

⇤2

because of the independence of the progenies of the two initial cells. By applying this



property and introducing the notation

A(x, y, t) = P(1,0)(x, y, t), C(x, y, t) = P(0,1)(x, y, t)

we reduce to the following system of first order di↵erential equations

@tA = (b� �2)A2 + (d� �0) + �0C + �1AC + �2A2C � (b+ d+ �1)A (16)

@tC = "� "C (17)

with initial conditions

A(x, y, 0) = x (18)

C(x, y, 0) = y . (19)

Equation (17), subject to the initial condition (19), has solution

C(x, y, t) = 1 + (y � 1)e�"t . (20)

Plugging this back into equation (16), we get

@tA =
⇥
b+ �2(y � 1)e�"t

⇤
A2+

⇥
�1(y � 1)e�"t � b� d

⇤
A+

⇥
d+ �0(y � 1)e�"t

⇤
. (21)

We apply the change of variables s = e�"t and find

@sA = � [b+ �2(y � 1)s]

"s
A2 � [�1(y � 1)s� b� d]

"s
A� [d+ �0(y � 1)s]

"s
.

To ease the notation, we rewrite the equation above as

@sA =
↵2 + �2s

s
A2 +

↵1 + �1s

s
A+

↵0 + �0s

s
(22)

where

↵2 = �b

"
, ↵1 =

b+ d

"
, ↵0 = �d

"

�2 = ��2(y � 1)

"
, �1 = ��1(y � 1)

"
, �0 = ��0(y � 1)

"
.

We are interested in the probability generating function A(x, y, t) for t � 0, that
corresponds to 0 < s  1. Equation (22) is a Riccati equation, which can be reduced
to a second order ODE. To do so, we define

X(x, y, s) =
↵2 + �2s

s
A(x, y, s)



which yields

@sX = X2 +
(↵2 + �2s)(↵1 + �1s)� ↵2

s(↵2 + �2s)
X +

(↵2 + �2s)(↵0 + �0s)

s2
. (23)

Next, we set

X ⌘ �@sY
Y

=) @sX =
(@sY )2

Y 2
� @2s Y

Y

so that equation (23) transforms into

@2s Y � (↵2 + �2s)(↵1 + �1s)� ↵2

s(↵2 + �2s)
@sY +

(↵2 + �2s)(↵0 + �0s)

s2
Y = 0 . (24)

Equation (24) is a second order linear di↵erential equation with rational coe�cients.
It has three singular points: s = 0 and s = �↵2

�2
being regular and s = 1 being

irregular with rank 1. Hence, equation (24) is a single confluent Heun equation (59).
To bring it into standard form, we first move the non-zero regular singularity to 1
through the change of variable z = � �2

↵2
s. This leads to

@2z Y +
(z � 1)

⇣
↵2�1

�2
z � ↵1

⌘
� 1

z(z � 1)
@zY +

↵2(z � 1)
⇣

↵2�0

�2
z � ↵0

⌘

z2
Y = 0 . (25)

We now look for a solution to equation (25) of the form

Y (z) = zmenzf(z) (26)

which implies

@zY = zm�1enz [(m+ nz)f + zf 0]

@2zY = zm�2enz
�⇥

(m+ nz)2 �m
⇤
f + 2z(m+ nz)f 0 + z2f 00 .

Substituting these expressions into equation (25) and rearranging, we obtain the
following di↵erential equation for f(z)

f 00 +
P (z)

z(z � 1)
f 0 +

Q(z)

z2(z � 1)
f = 0 (27)

where P (z) andQ(z) are two polynomials of second and third degree in z, respectively.
However, it is easily checked that by taking

m = �↵2, n = � ↵2

2�2


�1 +

q
�2
1 � 4�0�2

�
(28)

the first and last coe�cients of the polynomial Q(z) become zero. Hence, for these



values equation (27) can be written as

f 00 +

✓
�

z
+

�

z � 1
+ ⌘

◆
f 0 +

!z + ⇢

z(z � 1)
f = 0 . (29)

Here, the parameters �, � and ⌘ follow from the decomposition in partial fractions of
P (z)

z(z�1) while ! and ⇢ correspond to the coe�cients of second and first degree terms in

Q(z), respectively - when m and n are set as in equation (28). Explicit expressions
for all these parameters in terms of the original rates are given by

m =
b

"
, n =

b

2�2"

✓
�1 �

q
�21 � 4�0�2

◆

� =
b� d

"
+ 1 , � = �1 , ⌘ =

b

�2"

q
�21 � 4�0�2

! = �
b

2�2"2


(b+ d)�1 � (b� d)

q
�21 � 4�0�2 + 2(b�0 + d�2)

�

⇢ =
b

2�2"2

⇢
(b+ d� ")�1 � (b� d+ ")

q
�21 � 4�0�2 + 2[b�0 + (d� ")�2]

�
.

(30)

Now, equation (29) is the standard form of the single confluent Heun equation.
Solutions to such a second order di↵erential equation are called confluent Heun
functions and depend on six arguments - the five parameters of the equation and
the independent variable z. A standardized package for numerical and symbolical
computations involving Heun functions is currently provided only by Maple (60),
which includes in particular the procedures HeunC and HeunCPrime for the
evaluation of confluent Heun functions and their z derivative, respectively.
Constistently with these implementations the general solution of equation (29) can
be written as

f(z) = h1(z) +Dz1��h2(z) (31)

where

h1(z) = HeunC

✓
⌘, 1� �, � � 1,! � ⌘(� + �)

2
, ⇢+

1� �(� � ⌘)

2
, z

◆

h2(z) = HeunC

✓
⌘, � � 1, � � 1,! � ⌘(� + �)

2
, ⇢+

1� �(� � ⌘)

2
, z

◆

are the confluent Heun functions uniquely determined by the following initial
conditions

h1(0) = 1, h0
1(0) =

⇢

�

h2(0) = 1, h0
2(0) =

(� � 1)(� � ⌘)� ⇢

� � 2
.

(32)



Here h0
i denotes the z derivative of the confluent Heun functions hi. As mentioned

before these functions are implemented by the Maple procedure HeunCPrime and
uniquely determined by an additional condition on h00

i (0), too cumbersome to be
reported here. Also notice that the expression in equation (31) contains only one
integrating constant, D, as our derivation spawns from a first order di↵erential
equation. By plugging such expression back into equation (26), the solution to
equation (25) becomes

Y (z) = zmenzf(z) = zmenzh1(z) +Dz1+m��enzh2(z) .

Next, we denote the derivative of f(z) as

g(z) = f 0(z) = h0
1(z) +Dz�� [(1� �)h2(z) + zh0

2(z)] . (33)

Recalling that z = � �2

↵2
s = ks and that X(x, y, s) = �@sY

Y , we find

X(x, y, s) = �(m+ nks)f(ks) + ksg(ks)

sf(ks)
. (34)

Notice that in terms of the original parameters of our model the coe�cient k is given
by k = qb(y � 1) and thus depends on y. We can now apply the initial condition
for X(x, y, s) to find the value of the constant D. Since s = e�"t and X(x, y, s) =
↵2+�2s

s A(x, y, s), the initial condition A(x, y, t = 0) = x translates to X(x, y, s = 1) =
(↵2 + �2)x = ↵2(1� k)x. Therefore, equation (34) at s = 1 implies

↵2(1� k)x = �(m+ nk)f(k) + kg(k)

f(k)
.

Substituting the expressions for f and its derivative (equations (31) and (33),
respectively) and solving for D, we find

D = � (m+ nk + ↵2x� k↵2x)h1(k) + kh0
1(k)

k1�� [(m+ nk + ↵2x� k↵2x+ 1� �)h2(k) + kh0
2(k)]

.

Plugging this value back into equation (34), we find an expression for X in terms of
the functions hi(s) and h0

i(s). Multiplying this expression by s
↵2(1�ks) and substituting

s = e�"t, we obtain

A(x, y, t) =
ertK1(x, y)�2(y, t)�K2(x, y)�1(y, t)

ertK1(x, y) 1(y, t)�K2(x, y) 2(y, t)
(35)



where

K1(x, y) =

⇢
b� x[b+ �2(y � 1)]

"
+ nk

�
h1(k) + kh0

1(k)

K2(x, y) =

⇢
d� x[b+ �2(y � 1)]

"
+ nk

�
h2(k) + kh0

2(k)

�1(y, t) =


bnke�"t

"
+ 1

�
h1(ke

�"t) +
"k

b
e�"th0

1(ke
�"t)

�2(y, t) =


bnke�"t

"
+

d

b

�
h2(ke

�"t) +
"k

b
e�"th0

2(ke
�"t)

 1(y, t) = (1� ke�"t)h1(ke
�"t)

 2(y, t) = (1� ke�"t)h2(ke
�"t) .

(36)

This is the joint probability generating function of the processes At and CA
t ,

starting from one A cell at time t = 0.

To find the marginal generating function

A (x, t) =
1X

m=0

P(At = m | (A0,C
A
0 ) = (1, 0))xm

we take the limit for y ! 1 in equation (35). Given the conditions in equation (32),
this yields

A (x, t) =
e�rt(x� �) + �(1� x)

e�rt(x� �) + (1� x)
. (37)

As expected, this coincides with the probability generating function of a supercritical
birth death process with net growth rate r = b � d > 0 and extinction probability
� = d/b < 1. The exact distribution for the process At then follows by inverting
A (x, t) and is given by

P(At = m) =
1

m!

@mA (x, t)

@xm
��x=0

=

(
�

S(t) if m = 0⇣
1� �

S(t)

⌘
(S(t)� 1)S(t)�m if m � 1

(38)

where S(t) = 1��e�rt

1�e�rt . Similarly, the generating function

C A(y, t) =
1X

n=0

P(CA
t = n | (A0,C

A
0 ) = (1, 0))yn

is derived by taking the limit for x ! 1 in equation (35). The expression for C A



slightly simplifies to

C A(y, t) =
ertK̄1(y)�2(y, t)� K̄2(y)�1(y, t)

ertK̄1(y) 1(y, t)� K̄2(y) 2(y, t)
(39)

where

K̄1(y) =

⇢
nk � �2(y � 1)

"

�
h1(k) + kh0

1(k)

K̄2(y) =

⇢
nk � b� d+ �2(y � 1)

"

�
h2(k) + kh0

2(k)

and the functions �1,�2, 1, 2 are defined as in equation (36). The function
C A(y, t) can be inverted numerically (see discussion below on inversion techniques)
to find the distribution of the process CA

t .

We present the particular form that these results assume when one or more of the
parameters qd,�1, qb are zero. In general, among the nonzero shedding rates, the one
with the highest index determines the special functions involved in the generating
function A(x, y, t). As shown above, these are confluent Heun functions when �2 > 0,
while they become confluent hypergeometric functions when �2 = 0 and �1 > 0 and
Bessel functions of the first kind when �2 = 0,�1 = 0 and �0 > 0. The remaining
cases follow by straightforward substitution from these three. We provide a sketch
of how the previous derivation can be adapted to the cases �2 = 0,�1 > 0 and
�2 = 0,�1 = 0,�0 > 0. The steps up until equation (24) are valid for all scenarios,
which will be the starting point of the adapted derivations. Also notice that for all
these cases the marginal probability generating function A (y, t) remains unchanged,
as the evolution of the process At is not a↵ected by its shedding activity.

qb = 0,�1 > 0

When qb = 0, we have �2 = 0. Hence, equation (24) becomes

@2s Y � �1s+ ↵1 � 1

s
@sY +

↵2(↵0 + �0s)

s2
Y = 0

By seeking directly a solution of the form Y (s) = s�↵2f(s) and then applying the
change of variables z = �1s, the equation above reduces to the standard form of
Kummer’s equation (61)

zf 00(z) + (� � z)f 0(z)� !f(z) = 0 (40)



where

� = ↵0 � ↵2 + 1

c = �1

! = �↵2

✓
�0
�1

+ 1

◆
.

Including again only one integrating constant D, its solution can be expressed in
terms of the confluent hypergeometric function 1F1 as

f(z) = 1F1(!, �, z) +Dz1��
1F1(! � � + 1, 2� �, z)

Substituting back we immediately find an expression for the solution Y (s) in terms
of

h1(s) = 1F1(!, �, cs), h2(s) = 1F1(! � � + 1, 2� �, cs) .

Furthermore, since
@

@z
1F1(a, b, z) =

a

b
1F1(a+ 1, b+ 1, z)

the derivative of Y (s) can be computed in terms of the functions h1,h2, g1 and g2,
where

g1(s) = 1F1(! + 1, � + 1, cs), g2(s) = 1F1(! � � + 2, 3� �, cs) .

Joining these results together, we find an expression for X(s), in terms of the same
functions. This expression still depends on the integrating constant D, which is
determined by the initial conditionX(x, y, s = 1) = ↵2x. Then, multiplyingX(x, y, s)
by s

↵2
and substituting s = e�"t we eventually find

A(x, y, t) =
ertK1(x, y)�2(y, t)�K2(x, y)�1(y, t)

ertK1(x, y) 1(y, t)�K2(x, y) 2(y, t)
(41)

where

K1(x, y) = (b� d+ e)(1� x)h1(y, 0)� (�1 + �0)(y � 1)g1(y, 0)

K2(x, y) = (b� d� e)(d� bx)h2(y, 0) + (d�1 + b�0)(y � 1)g2(y, 0)

�1(y, t) = (b� d+ e)h1(y, t)� (�1 + �0)(y � 1)e�"tg1(y, t)

�2(y, t) = d(b� d� e)h2(y, t) + (d�1 + b�0)(y � 1)e�"tg2(y, t)

 1(y, t) = (b� d+ e)h1(y, t)

 2(y, t) = b(b� d� e)h2(y, t) .



The marginal probability generating function for the process CA
t becomes

C A(y, t) =
ertK̄1(y)�2(y, t)� K̄2(y)�1(y, t)

ertK̄1(y) 1(y, t)� K̄2(y) 2(y, t)
(42)

where

K̄1(y) = �(�1 + �0)(y � 1)g1(y, 0)

K̄2(y) = (b� d� e)(d� b)h2(y, 0) + (d�1 + b�0)(y � 1)g2(y, 0) .

qb = 0,�1 = 0

If we additionally have �1 = 0, equation (24) becomes

@2sY � ↵1 � 1

s
@sY +

↵2(↵0 + �0s)

s2
Y = 0 .

Through the change of variables z = 2
p
↵2�0s = c

p
s and by seeking a solution of

the form Y (z) = z↵1f(z), we reduce to the Bessel equation (61)

z2f 00 + zf 0 + [z2 � (↵2 � ↵0)
2]f = 0 . (43)

The solution to equation (43) can be expressed as a Bessel function of the first kind
J⌫(z) as

f(z) = J↵2�↵0(z) +DJ↵0�↵2(z) .

This allows us to write Y (s) in terms of h1(s) = J↵0�↵2(c
p
s) and h2(s) = J↵2�↵0(c

p
s)

and since
@zJw(z) =

w

z
Jw(z)� Jw+1(z) ,

we can compute Y (s) derivative in terms of the functions h1,h2, g1 and g2, where

g1(s) = J↵0�↵2+1(c
p
s), g2(s) = J↵2�↵0+1(c

p
s) .

By combining these expressions, we first derive X(s), and then find the integrating
constant D by applying the initial condition X(x, y, s = 1) = ↵2x. Multiplying by s

↵2

and substituting s = e�"t, we find

A(x, y, t) =
K1(x, y)�2(y, t)�K2(x, y)�1(y, t)

K1(x, y) 2(y, t)�K2(x, y) 1(y, t)
(44)



where

K1(x, y) = (bx� b)h1(y, 0) +
p

b�0(y � 1)g1(y, 0)

K2(x, y) = (bx� d)h2(y, 0) +
p

b�0(y � 1)g2(y, 0)

�1(y, t) = bh1(y, t)�
p
b�0(y � 1)e�

"
2 tg1(y, t)

�2(y, t) = dh2(y, t)�
p
b�0(y � 1)e�

"
2 tg2(y, t)

 1(y, t) = bh1(t)

 2(y, t) = bh2(t) .

From here we can recover the usual marginal probability generating function for the
process At by considering the expansions of Bessel functions Jw(z) around z = 0. The
marginal probability generating function for the process CA

t is instead given by

C A(y, t) =
K̄1(y)�2(y, t)� K̄2(y)�1(y, t)

K̄1(y) 1(y, t)� K̄2(y) 2(y, t)
(45)

where

K̄1(y) =
p
b�0(y � 1)g1(y, 0)

K̄2(y) = (b� d)h2(y, 0) +
p

b�0(y � 1)g2(y, 0) .

Finally, we remark that in all the derivations above, there are special cases of the
equation f(z) that require extra attention. Namely, if some of the equation coe�cients
are integers, then its general solution assumes a slightly di↵erent expression than the
one reported. However, it is unlikely that real estimates lead to such special cases,
which we therefore do not discuss in detail here.

Process (Bt,CB
t )

We derive exact results for the size distributions of the processes Bt and CB
t . So far, we

assumed a constant population of benign cells and studied the asymptotic behaviour
of the biomarker amount they shed. Here, we first present additional details about
this case, providing the exact generating function of CB

t at a given time t. Later, we
show how a derivation similar to that employed for the process (At,CA

t ) can be used
when Bt is modeled by a critical branching birth-death process.

Constant growth

In the derivation of asymptotic results for our model, we already mentioned that if
Bt is constant then CB

t is a branching pure-death process with immigration and its
exact probability generating function is given by equation (3). In our setup, we also
assume that CB

t is originally at equilibrium, i.e. that it starts at the expected value



of its large time asymptotic distribution. Since we observed that in this limit CB
t

converges to a Poisson random variable with mean �bn
" B0, we set CB

0 = �bn
" B0. With

this initial condition, equation (3) becomes

C B(y, t) =
n⇥

1 + (y � 1)e�"t
⇤
e(y�1)(1�e�"t)

o�bn
" B0

.

Numerical inversion of this function then provides the exact distribution of the process
CB

t at any given time t.

Critical growth

In our model Bt denotes the number of benign cells at time t with the ability to shed
the biomarker in the bloodstream. So far we have assumed that this number stays
constant over time, but more generally this number can fluctuate around a constant
average value. For this reason, Bt can be modeled as a critical branching birth death
process, i.e. as a process defined like At but with the same birth and death rates
bbn = dbn. Under this assumption, and assuming that the shedding probabilities at
cell apoptosis and proliferation are the same for benign and malignant cells, the set
of transitions characterizing the two-type process (Bt,CB

t ) are

B �! BBC rate bbn qb rate �bn,2
B �! BB rate bbn (1� qb) rate bbn � �bn,2
B �! BC rate �bn,1 rate �bn,1
B �! C rate bbn qd rate �bn,0
B �! ; rate bbn (1� qd) rate bbn � �bn,1
C �! ; rate " rate " .

The exact probability generating functions for this process can be computed through
a derivation similar to that shown for (At,CA

t ). Briefly, we can redefine P⇤ as

P⇤(x, y, t) =
X

m,n�0

xmyn P
��
Bt,C

B
t

�
= (m,n) |

�
B0,C

B
0

�
= ⇤

�

and set
B(x, y, t) = P(1,0)(x, y, t), C 0(x, y, t) = P(0,1)(x, y, t) .

As biomarker units are eliminated from the bloodstream at the same rate regardless of
the cell type that shed them, we have C 0(x, y, t) = C(x, y, t), where C(x, y, t) is given by
equation (20). However, the function B(x, y, t) does not follow straightforwardly from
A(x, y, t) by simply substituting the dashed rates and taking the limit as dbn ! bbn.
The reason is that in this limit the two linearly independent solutions h1(z) and h2(z)
of the reduced equation become the same and so a di↵erent set of solutions has to be



chosen. Once these are found, the subsequent steps can be repeated and an explicit
expression for B(x, y, t) can be derived. The exact probability generating function for
the process (Bt,CB

t ) is given by

P (B0,CB
0 )(x, y, t) = B(x, y, t)B0C(x, y, t)CB

0 .

The marginal generating functions for the two single processes follow from the
y ! 1 and x ! 1 limits, respectively. In particular, for any combination of non-zero
shedding rates the former is equal to

B(x, t) =

✓
1 +

x� 1

1� dbnt(x� 1)

◆B0

which coincides with the probability generating function of a critical branching
birth death process with death rate dbn and B0 initial individuals. This function is
analytically invertible, even though the terms of the probability mass function of Bt

can only be expressed as finite sums

P(Bt = m | B0) =
B0

⇣
dbnt

dbnt+1

⌘B0

m(dbnt)m(1 + dbnt)m

m�1X

j=0

✓
B0 � 1

B0 �m+ j

◆✓
m

j

◆
(dbnt)

2j .

The marginal generating function of CB
t can instead be inverted numerically to

derive the exact probability distribution of the process. However, while the above
described computations are feasible, modeling Bt as a critical branching birth death
process leads to tedious complications and does not practically change the dynamics
of the model. The complications are related to the fact that a critical branching
process eventually gets extinct with probability one. We are generally interested in
the large time limit distribution of Bt, but this limit converges to a point mass at zero
and conditioning on Bt eventual survival does not make sense either. Moreover, since
Bt starts with a very large number of cells, the time required by Bt to become extinct
would be unrealistically long. Indeed, the expected time to extinction for a critical
branching process is infinite, and using the expression above with dbn = 0.1, we find
that P(B10000 yrs = 0 | B0 = 107) ⇡ 10�12. For the same principle, the probability
that Bt exhibits significant deviations from B0 within human lifetime is very small.
To quantify the probability of such fluctuations, we exploit Chebyshev inequality:
using again dbn = 0.1 and B0 = 107, we find that P(|B55 yrs � 107| � 2⇥ 106)  0.01,
which says that even after waiting 55 years, the probability of observing a deviation
of at least 20% from the original population size would still be lower than 1%.

Process Ct and numerical inversion

Given the independence of biomarker shedding from benign and malignant cells, the



probability generating function of the process Ct = CA
t + CB

t is equal to

C (y, t) = C A(y, t)C B(y, t)

where the two functions on the right hand side are given by equation (39) (see also
equations (42) and (45) for special cases) and equation (3) (assuming Bt is
constant), respectively. As for many other functions derived before, C (y, t) can be
numerically inverted to find the exact distribution of the process Ct.

We briefly discuss some inversion techniques. The goal of the inversion procedure
is to derive the probability mass function of a stochastic process �t from its generating
function G(z, t) =

P1
k=0 P(�t = k)zk as

P(�t = k) =
1

k!

@kG(z, t)

@zk
��z=0

. (46)

In a few cases, the k-th derivative of the generating function is explicitly
computable, thus allowing us to find an analytic formula for the probability mass
function of �t. The expression for A (x, t) given by equation (37) is an example of
such a generating function and from it we directly derived the probabilities
P(At = m) (see equation (38)). For most generating functions, however, this
analytical inversion is not feasible and we have to compute the probability mass
function numerically. Algorithms for this numerical procedure are based on
techniques for series expansions of analytical functions, which are implemented as
Series in both Mathematica (see also NSeries) and Maple. For more details on the
numerical inversion of probability generating functions, we refer to refs. (62).

Conditional distributions

In our model summary we pointed out that we are interested in the probability
distributions of the processes At,Bt and Ct conditional on At non-extinction.
Therefore, the asymptotic results derived before are conditioned on the event of At

eventual survival, which we denoted as ⌦. The same results were also expressed in
terms of the primary tumor size, by computing the asymptotic distributions of the
processes involved at the time when At = m, for m large. Here we show how the
same kind of conditioning can be applied to the exact probability mass functions
derived above.

We note that all the probabilities involved in the following derivations are
conditioned on the usual initial values of the processes At,Bt and Ct. For clarity, we
do not introduce a new notation for such conditioning, and hereafter we implicitly



denote

P ( · ) = P

✓
· |

�
A0,B0,C

A
0 ,C

B
0

�
=

✓
1,B0, 0,

�bn
"

B0

◆◆
.

Conditioning on At survival

As we are dealing with exact distributions at a given time, we condition on the event
of At survival up to time t, that is

⌦t = {At > 0} .

We denote �t = P(⌦c
t) = P(At = 0). This probability is equal to A (0, t), so we

get

�t =
� � �e�rt

1� �e�rt
.

Bayes theorem yields

P (At = m | ⌦t) =
P (At = m)

P (⌦t)
· P (⌦t | At = m)

for any m � 0. The term P (⌦t | At = m), however, is equal to 0 for m = 0 and to 1
for every m � 1. Hence, we get

P (At = m | ⌦t) =
P (At = m)

1� �t

for every m � 1, and 0 otherwise.

Similar steps allow us to compute P
�
CA

t = n | ⌦t

�
. In this case, we find

P
�
CA

t = n | ⌦t

�
=

P
�
CA

t = n,⌦t

�

P (⌦t)
=

P
�
CA

t = n
�
� P

��
At,CA

t

�
= (0,n)

�

1� �t
. (47)

The terms P(CA
t = n) follow from the probability generating function C A(y, t).

Similarly, the probabilities P
��
At,CA

t

�
= (0,n)

�
are obtained by inverting the

function A(0, y, t).

Conditioning on one process size

The distribution of the total biomarker amount present in the bloodstream at time t



conditioned on the primary tumor size at that time is

P(Ct = n | At = m) =
nX

i=0

P
�
CB

t = i
�
P
�
CA

t = n� i | At = m
�

=

Pn
i=0 P

�
CB

t = i
�
P
�
At = m,CA

t = n� i
�

P(At = m)
.

The terms P
�
At = m,CA

t = n� i
�

follow from inverting the joint probability
generating function A(x, y, t). Moreover, in this case, if we consider a strictly
positive primary tumor size m, conditioning on At survival is not necessary as
{At = m} ⇢ ⌦t.

We note that once the exact probability mass functions are known one can
conversely condition on the total biomarker amount present and ask how this a↵ects
the primary tumor size distributions. To see this, we write

P(At = m | Ct = n) =
P(At = m,Ct = n)

P(Ct = n)

=

Pn
i=0 P

�
CB

t = i
�
P
�
At = m,CA

t = n� i
�

Pn
i=0 P (CB

t = i) P (CA
t = n� i)

.

By further conditioning on At survival up to t, we obtain

P(At = m | Ct = n,⌦t) =
P(At = m,⌦t | Ct = n)

P(⌦t | Ct = n)
=

(1� �t) P(At = m | Ct = n)

P(Ct = n | ⌦t) P(Ct = n)
.

Finally, we recall that because (Bt,CB
t ) is independent of the primary tumor

growth dynamics, any kind of conditioning on At size has no e↵ect on the Bt and CB
t

probability distributions.

Expected values

From equation (46) we recover the well known formulas for the mean and variance of
a discrete state stochastic process �t with probability generating function G(z, t)

E[�t] = @z G(z, t)|z=1, Var(�t) = @2z G(z, t)|z=1 + E[�t]� E[�t]
2 .

These properties allow us to derive analytical expression for the expected value and
variance of the processes At,Bt and Ct at any given time t. In this section, we
summarize these expressions, implicitly conditioning on (A0,CA

0 ) = (1, 0) and
CB

0 = �bn
" B0.



For the malignant cancer cell population, we have

E[At] = ert, Var(At) =
1 + �

1� �
ert(ert � 1)

and

E[At | ⌦t] =
ert � �

1� �
, Var(At | ⌦t) =

(1� �e�rt)(1 + 2�)ert(ert � 1)

(1� �)2
.

When the benign population is modeled by a critical branching birth death process,
we find

E[Bt] ⌘ B0, Var(Bt) = 2dbnB0t .

In this case, conditioning on At survival has no e↵ect as At and Bt are independent
processes.

As for the total amount of circulating biomarker, from the functions C A(y, t) and
C B(y, t) we get

E[CA
t ] =

� (ert � e�"t)

r + "
, E[CB

t ] ⌘
�bn
"

B0 .

The expression for the latter mean is the same for Bt modeled as a constant
population or as a critical branching birth death process. Furthermore, in our setup
such expectation does not depend on t as we start the process CB

t at its equilibrium.
Combining the previous results, we find

E[Ct] =
� (ert � e�"t)

r + "
+
�bn
"

B0 .

The variance of Ct and expressions for its first moments conditional on At survival
can be obtained from equation (47).

Sampling scheme

By combining the previous results, we can now derive the exact probability
distribution for the total biomarker amount present in a blood sample of a given
volume at time t. To this end, we first assume that at time t there is a fixed
biomarker amount Ct = n uniformly distributed over a total volume Vtot of plasma.
If we sample from it a volume Vs, each biomarker unit is in the sample independent
of the others with probability p = Vs

Vtot
. Hence, the total amount of biomarker Xt

present in the sample is binomially distributed with parameters n and p

P(Xt = k | Ct = n) =

✓
n

k

◆✓
Vs

Vtot

◆k ✓
1� Vs

Vtot

◆n�k

. (48)



The total amount of biomarker present in the plasma then follows by averaging over
all the possible values of Ct

P(Xt = k) =
1X

n=k

P(Ct = n) P(Xt = k | Ct = n) . (49)

The second term in the sum above is simply given by equation (48). As we noticed
in the derivation of our asymptotic results, if Ct follows a Poisson distribution, then
due to the thinning property, Xt follows a Poisson distribution as well. The expected
value and variance of Xt in terms of Ct are given by

E[Xt] = pE[Ct] , Var(Xt) = p(1� p)E[Ct] + p2 Var(Ct) .

To condition on At survival, we observe that

P (Xt = k | ⌦t ) =
P(Xt = k)� P(Xt = k,At = 0)

1� �t
. (50)

Of the two terms in the numerator, the first one coincides with equation (49), while
the second one expands as

P(Xt = k,At = 0) =
1X

n=k

P(Xt = k,At = 0 | Ct = n) P(Ct = n)

=
1X

n=k

P(Xt = k | Ct = n) P(At = 0 | Ct = n) P(Ct = n) .

The second equality follows from the fact that Xt and At are conditionally
independent given Ct. Equation (50) thus becomes

P(Xt = k | ⌦t) =

P1
n=k P(Xt = k | Ct = n) P(Ct = n) [1� P(At = 0 | Ct = n)]

P(⌦t)

=

P1
n=k P(Xt = k | Ct = n) [ P(Ct = n)� P(At = 0,Ct = n)]

P(⌦t)

=

P1
n=k P(Xt = k | Ct = n) P(Ct = n,⌦t)

P(⌦t)

=
1X

n=k

P(Xt = k | Ct = n) P(Ct = n | ⌦t) .
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