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Figure S1: Size distribution histograms for aggregates of yS-crystallin point variants allowed

to form without external provocation (left) and those formed through UV-A photodamage
(right).
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Figure S2: Trradiation of ¥S-WT from UVA (1.6 kJ/cm?) and UVB (104.4 J/cm? ) produces
aggregates with similar morphology independent of sample concentration during irradiation.
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Figure S3: TEM images of aggregates formed from S-WT after irradiation using UVA
or UVB radiation for 10 (0.5 kJ/cm?, 34.8 J/cm?), 20 (1.1 kJ/cm?, 69.6 J/cm?), and 30
minutes (1.6 kJ/cm?, 104.4 J/cm?). Under both treatments, globular aggregates form and
these particles associate, yielding larger aggregates.
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Figure S4: The first panel shows undamaged W'T ~S-crysallin at the same concentration as
for the variants shown in the other images. No aggregates are formed under these conditions.
The other panels show TEM images of yS-crystallin aggregates formed either by allowing
the sample to precipitate over time as described in the Methods section of the main text,
or by irradiation with UVA. Native aggregates from cataract-related point variants are very
similar in size and morphology to those formed via UVA photodamage.
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Figure S5: FTIR spectra of aggregated ~S-crystallins. (A) FTIR of soluble vS-WT and
tested point variants exhibit identical spectra. (B) Native aggregates of S point variants
exhibit minor broadening of the amide I peak and slightly elevated amide II/I peak intensity
ratios. (C) Soluble and aggregated vS-WT resulting from CuCl, treatment show minor
narrowing of the amide I peak. As is observed for the vS-crystallin point variants, the amide
IT/1 peak intensity ratio is increased. (D) UVB treatment of vS-WT induced similar changes
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Figure S6: (A) Structure of human ~S-crystallin (PDBID: 2M3T!), with the location of
the cysteine loop indicated by an open rectangle. (B) Predicted Cu*t binding sites for ~S-
crystallin generated via the MIB webserver (http://bioinfo.cmu.edu.tw/MIB/).%? Binding
predictions implicated some or all of C23, C25, C27, and C83 in the majority of the results.
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Figure S7: Analytical SEC measurements for vS-WT and vS-Cy collected separately fol-
lowing Cu®" treatment. The soluble sample (top panel) was collected as the supernatant
following treatment. The aggregates that were resuspended during the subsequent EDTA
treatment were then collected (middle panel). Finally, the remaining aggregates were treated
with DTT, with the resulting resuspension collection as the final samples. (bottom panel).
Prior to loading onto the SEC, each sample was treated with EDTA and DTT in order to
minimize potential damage to the column. The distribution of protein species for ¥yS-W'T is
similar across the three chromatograms. Monomers compose the bulk of the elutants while a
dimer peak is also clearly observable. In contrast to vS-W'T, in vS-Cy, monomeric species are
almost exclusively present in the remaining soluble and DTT-resolubilized chromatograms.
The EDTA-resolubilized chromatogram of vS-Cy is primarily dimeric with a low level of
monomer present.

S8



—— | e — Y a1

180
135
100
75
63
48
35
25
20
17
11

] Cu2+ A B C D

180
135
100
75
63
48
35
25
20
17
1

Figure S8: SDS-PAGE separation of yS-crystallin species after treatment with CuCly. The
gradient (left to right) used for all gels was 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 3, and 5
equivalents of CuCly. The lanes of gels A and B were loaded with equal concentrations and
volumes of protein, with the exception of the 5 equivalents lane, for which only trace amounts
of protein remained soluble. For gel C the samples were prepared with equal volumes of the
remaining soluble protein such that the observed loss of protein is representative of the
increased insoluble fraction. (Gel A) Soluble vS-WT after incubation with increasing levels
of CuCly. (Gel B) Soluble ¥S-WT after incubation with increasing levels of CuCly and
reduction subsequent reduction with BME. (Gel C) Soluble vS-WT after incubation with
increasing levels of of CuCl,. (Gel D) A: 4S-WT, B-D: vS-WT treated 1 equiv CuCl, alone
(B), with EDTA (C), with EDTA and BME (D), E-G: vS-Cy treated 1 equiv CuCl, alone
(E), with EDTA (F), or with EDTA and BME (G), H: soluble UV-B treated +S, I: soluble
UV-B treated vS with BME.

S9



DTT (5 equvi) - + - +

48 kDa
35 kDa

25 kDa
20 kDa

17 kDa W

Figure S9: SDS-PAGE analysis of vS-W'T stored for 5 months. Two independent samples
were stored at 10 mg/mL in the absence of reducing agent at 4 °C for 5 months. Prior to
electrophoresis, lanes 2 and 4 were treated with 5 equivalents of DTT. The first two lanes
show that the intramolecular disulfide bonds formed are completely reducible, whereas the
intramolecular disulfide formed in lane 3 shows negligible reduction following DTT treatment
(lane 4). In both cases, the low levels of dimeric species observed are eliminated following
reduction.
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Figure S10: SDS-PAGE analysis of chelating agent-treated vS-crystallin aggregates. Lanes
are labeled from left to right, following the ladded.. Lane 1: vS-W'T, Lane 2: vS-W'T treated
1 equiv CuCly alone, Lane 3: sample 2 with EDTA, Lane 4: sample 2 with EDTA and BME;,
Lane 5: vS-Cy treated 1 equiv CuCly, Lane 6: sample 5 with EDTA, Lane 7: sample 5 with
EDTA and BME, Lane 8: soluble UV-B-treated vS-W'T, Lane 9: sample 7 with BME.
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Figure S11: The observed secondary fragmentation observed for the YDCDCD-
CADFHTY/LSSCR peptides containing an intramolecular disulfide bond. Fragments con-
taining the intramolecular disulfide bond are colored red, while fragments of only one of
the peptides are colored blue. The first peptide, YDCDCDCADFHTY, and second peptide,
LSSCR, are indicated by the numbers ‘1’ and ‘2’, respectively. A slash between fragments
indicates an intramolecular disulfide bond. The observed masses for each fragment are listed

in Table S1.
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Figure S12: Digested fragments containing an intramolecular disulfide bond were identified
by their disappearance following the addition of DTT. The peptide trace without DTT is
colored black and the peptide trace with DTT is colored yellow. The predicted isotope
pattern for the fragment is shown as green bars. Secondary fragmentation was not sufficient
to confirm the location of the intramolecular disulfides were between peptides. The Nat-
bound versions of fragments 1 and 4 were also observed and are shown in the respective

traces.
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Table S2: Cysteine content of human «-, -, and y-crystallins

Protein | No. Residues | No. Cysteines | Percentage Cysteine UniProt ID
aA 173 2 1.16% CRYAA HUMAN
aB 175 0 0.00% CRYAB HUMAN

BA1* 198 5 2.53% CRBA1_ HUMAN
BA2 197 6 3.05% CRBA2 HUMAN
BA3 215 5 2.33% CRBA1 HUMAN
BA4 196 5 2.55% CRBA4 HUMAN
£B1 252 1 0.40% CRBB1_HUMAN
£B2 205 2 0.98% CRBB2 HUMAN
£B3 211 2 0.95% CRBB3_ HUMAN
vA 174 9 5.17% CRGA_ HUMAN
vB 175 7 4.00% CRGB_HUMAN
~C 174 8 4.60% CRGC_HUMAN
~D 174 6 3.45% CRGD_ HUMAN
¥S 178 7 3.93% CRGS _HUMAN

*Note: SA1 is an isoform of SA3 generated via an alternate translation initiation site
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Figure S13: The mass spectra and reconstructed masses for soluble fractions of vS-W'T
(A, B) and yS-Cy (C,D) following incubation with 2 equivalents of Cu*". Dimeric species
are evidenced as a doubly-charged species in the raw mass spectrum of vS-WT and the
resulting mass reconstruction. In contrast, minimal levels of dimer are observed for vS-Cy.
The expected monomeric and dimeric molecular weights are shown for vS-WT and yS-Cj in
panels C and D. The dimer masses assume a singular intermolecular disulfide bond. Inset
images show the mass reconstruction for the monomeric peak. The observed mass for vS-
WT is consistent with an m-2 species, while the mass of the vS-Cq peak is consistent with
the expected mass (m).
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