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APPENDIX A.  Numerical solution of pipette aspiration using an ODE model 

 

The deformation of the aspirated cell is assumed to be radially symmetric.  An initial resting state 

is defined as a biconcave disc according to the formulations of Fung (1) 

𝑧(𝑟) = (𝑐0 + 𝑐1𝑟0
2 + 𝑐2𝑟0

4)√1 − (𝑟0/𝑅0)2 (S1)

where z is the half thickness of the cell, r0 is the radial coordinate, and 𝑅0 is the cell radius.  

(Note, the subscript “0” indicates that this is the radial position of a material element in the 

undeformed shape.)  This expression is integrated to obtain the distance along the surface, s0 (r0), 

and the area of the surface inside the coordinate value A0(r0).  This information is saved in a look-

up table for determination of r0 for a given A0.  (Note that once the integration passes the edge of 

the undeformed cell, the relevant area is the area of one half of the cell plus the area outside the 

coordinate value r0.) 

To solve for the distribution of stress and density on the deformed surface we integrate the 

tangential force balance as 

∂𝜏1
𝑠𝑘

∂𝑠
= −

1

𝑟
(𝜏1

𝑠𝑘 − 𝜏2
𝑠𝑘)cos(𝜃) (S2) 

where s is the distance along the surface of the deformed shape, r is the radial coordinate of the 

deformed shape 𝜏1
𝑠𝑘 and 𝜏2

𝑠𝑘 are the meridional and the circumferential principal force resultants, 

and  is the angle between the surface normal and the axis of symmetry (cos =dr/ds). The 

integration must be completed under the constraint that the mass of membrane skeleton is constant 

∮ 𝜌𝑑𝐴 =  ∮ 𝜌 2𝜋𝑟𝑑𝑠 = ∮ 𝜌0𝑑𝐴0       (S3) 

Note that the resting density 0 is assumed to be constant and that /0 = 1/(12).  The constraint 

can be written as 

∮
𝜌

𝜌0
 2𝜋𝑟𝑑𝑠 =  𝐴0         (S4) 
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This relationship is also the basis for determining r0, the radial position of the instantaneous 

material element in the undeformed state.  This is needed to calculate 2 = r/r0.  Therefore, we 

use the fact that 

d𝐴0

d𝑠
=

2𝜋𝑟

𝜆1𝜆2
(S5) 

and use the look-up table constructed from the unstressed geometry to find r0(A0).  The 

integration of the tangential force balance proceeds with s as the independent variable.  The shape 

of the surface is assumed to be known: a hemispherical cap radius Rp, a section of cylinder with 

radius Rp and length Lp - Rp, and a biconcave shape described by Eq. S1 with the maximum radius 

calculated to maintain the total area of the shape a constant 

2𝜋𝑅𝑝
2 + 2𝜋𝑅𝑝(𝐿𝑝 − 𝑅𝑝) + 𝐴𝑑𝑖𝑠𝑘 = 𝐴0 (S6) 

Because the shape is fixed, for any s, the radius r and the angle to the surface normal  are known.  

It is fairly straightforward to integrate the three simultaneous first order differential equations for 

the dependent variables A0 and 1.  

 Starting the integration at the tip of the pipette, a guess is made for the starting value of o = 

1 = 2 at the tip.  One approach is to use this starting value to integrate over the entire cell surface 

and adjust the value of o in repeated tries until the mass conservation condition is met. This 

approach is problematic because of singularities that occur when o is too small and the integrated 

value of A0 is smaller than the cell area.  In this case ro goes to zero, and 2 becomes infinite.  A 

more robust approach is to choose a location (for example the base of the projection at the edge of 

the pipette), and calculate two sets of solution values for A0 and 1 at the chosen location, one 

starting from the tip of the projection for a range of starting values for o, and one starting at the 
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opposite pole at the center of the disk for a range of starting values d.  If we let the integrated A0 

on the disk be A0d, and the integrated A0 of the projection be A0p, then we require that  

𝐴0 − 𝐴0𝑑 = 𝐴0𝑝          (S7) 

We can then plot two curves, one of (A0 - A0d) as a function of 𝜏1
𝑠𝑘 (or equivalently, 1) at r = Rp 

determined from the disk integration, and one of A0p as a function of 𝜏1
𝑠𝑘 (or equivalently, 1) at 

the base of the projection from the integration over the projection.  The solution occurs where 

these two curves cross.  The corresponding values for o and d are the starting values for the 

solution satisfying continuity of stress and mass conservation over the cell surface.  Curves 

showing the solution intersections for a series of projection lengths is shown in Figure S1, and the 

distribution of density and shear force resultant are shown in Figures S2 and S3.  The distribution 

of the principal stretch ratios is shown in Figure S4. The reader is advised that this method is not 

efficient, and may require significant computing time, particularly for cases where the values of 

initial molecular lengths are distributed. 
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Figure S1. Intersecting curves show the solution points for 

four cases of increasing Lp/Rp.  The four curves for the 

disk solutions overlap, and the four sets of solutions for the 

projections are labeled as shown.  
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Figure S2. Distribution of density relative to the resting 

density 0 over the surface of the cell.  The distance s is 

measured along the surface from the tip of the projection.  
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Figure S3. Distribution of the shear force resultant s over 

the surface of the cell.  The distance s is measured along 

the surface from the tip of the projection. 
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Figure S4. Distribution of the principal stretches over the 

surface of the cell.  The distance s is measured along the 

surface from the tip of the projection. 

0 2 4 6 8 10 12

Surface Distance s ( m)

0.4

0.6

0.8

1

1.2

1.4

1.6

P
ri
n

c
ip

a
l 
S

tr
e

tc
h

e
s
 

1
, 

2

1
,L

p
/R

p
=1.10

2
,L

p
/R

p
=1.10

1
,L

p
/R

p
=1.57

2
,L

p
/R

p
=1.57

1
,L

p
/R

p
=2.03

2
,L

p
/R

p
=2.03

1
,L

p
/R

p
=2.50

2
,L

p
/R

p
=2.50



 6 

 

APPENDIX B.  Detailed derivations of the constitutive models 

Derivation of the simplified constitutive model 

 

 

For a unit cell with two orientations shown in Figure S5, i.e. n = 6, the free energy density is: 

𝑤 =
1

4𝐴0
𝑉𝑊𝐿𝐶(𝑎) + 2𝑉𝑊𝐿𝐶(𝑏) + 𝑉𝑊𝐿𝐶(𝑓) + 2𝑉𝑊𝐿𝐶(𝑑) +

𝐶

4𝐴

=
2𝑐𝛽

3𝑥0
2 [

3𝜆1
2𝑥0

2 − 2𝜆1
3𝑥0

3

2 − 2𝜆1𝑥0
+

3(𝜆1
2+3𝜆2

2)𝑥0
2 − (𝜆1

2 + 3𝜆2
2)3/2𝑥0

3

1 − √𝜆1
2

4
−

3𝜆2
2

4
𝑥0

+
3𝜆2

2𝑥0
2 − 2𝜆2

3𝑥0
3

2 − 2𝜆2𝑥0
+

3(𝜆2
2+3𝜆1

2)𝑥0
2 − (𝜆2

2 + 3𝜆1
2)3/2𝑥0

3

1 − √𝜆2
2

4
−

3𝜆1
2

4
𝑥0

] +
𝐶

4𝐴
(S8)

 

where 𝑐𝛽 =
𝑘𝐵𝑇𝜌0𝑠0

8𝑝𝜆𝑚𝑎𝑥
=

√3𝑘𝐵𝑇

4𝑝𝑠𝑚𝑎𝑥
, and the principal stress resultants are given by Eq. 5 and Eq. 6 as 

Figure S5.  Network elements having six different molecular orientations in the resting state. Directions 

of the principle stretch directions are as shown. Letters of the segments correspond to those in the energy 

expression (Eq. S8). 
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𝜏1
𝑠𝑘 =

4𝑐𝛽

3

𝜆1

𝜆2
[

1
4(1 − 𝜆1𝑥0)2 + 𝜆1𝑥0 −

1
4

𝜆1𝑥0
+

1

4 (1 − √𝜆1
2

4
+

3𝜆2
2

4
𝑥0)

2 + 𝜆1𝑥0 −
1
4

√𝜆1
2

4
+

3𝜆2
2

4
𝑥0

1

2

+

1

4 (1 − √𝜆2
2

4 +
3𝜆1

2

4 𝑥0)

2 + 𝜆1𝑥0 −
1
4

√𝜆2
2

4
+

3𝜆1
2

4
𝑥0

3

2
] −

𝑐𝛽𝑐𝛼

𝜆1
2𝜆2

2 (𝑆9)

 

𝜏2
𝑠𝑘 =

4𝑐𝛽

3

𝜆2

𝜆1
[

1
4(1 − 𝜆2𝑥0)2 + 𝜆2𝑥0 −

1
4

𝜆2𝑥0
+

1

4 (1 − √𝜆2
2

4
+

3𝜆1
2

4
𝑥0)

2 + 𝜆1𝑥0 −
1
4

√𝜆1
2

4
+

3𝜆2
2

4
𝑥0

1

2

+

1

4 (1 − √𝜆2
2

4 +
3𝜆1

2

4 𝑥0)

2 + 𝜆1𝑥0 −
1
4

√𝜆1
2

4
+

3𝜆2
2

4
𝑥0

3

2
] −

𝑐𝛽𝑐𝛼

𝜆1
2𝜆2

2 (𝑆10)

 

 

The shear stress, mean stress, shear modulus, and area modulus are given as 

𝜏𝑠
𝑠𝑘 =

𝜏1
𝑠𝑘 − 𝜏2

𝑠𝑘

2
=

1

2
(

𝜕𝑤

𝜕𝜆1

1

𝜆2
−

𝜕𝑤

𝜕𝜆2

1

𝜆1
) (S11) 

𝜏𝑎
𝑠𝑘 =

𝜏1
𝑠𝑘 + 𝜏2

𝑠𝑘

2
=

1

2
(

𝜕𝑤

𝜕𝜆1

1

𝜆2
+

𝜕𝑤

𝜕𝜆2

1

𝜆1
)  (S12) 

𝜇 = |
2𝜏𝑠

𝑠𝑘𝜆1
2𝜆2

2

𝜆1
2 − 𝜆2

2 |  (S13) 

𝐾 =
𝜕𝜏𝑎

𝜕𝛼
=

𝜕2𝑤

𝜕𝛼2
 (S14) 
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𝜏𝑠
𝑠𝑘 =

2𝑐𝛽

3𝜆1𝜆2
[

1
4(1 − 𝜆1𝑥0)2 + 𝜆1𝑥0 −

1
4

𝜆1𝑥0
𝜆1

2 −

1
4(1 − 𝜆2𝑥0)2 + 𝜆2𝑥0 −

1
4

𝜆2𝑥0
𝜆2

2

+

1

4 (1 − √𝜆1
2

4
+

3𝜆2
2

4
𝑥0)

2 + 𝜆1𝑥0 −
1
4

√𝜆1
2

4
+

3𝜆2
2

4
𝑥0

(
𝜆1

2

2
−

3𝜆2
2

2
) +

1

4 (1 − √𝜆2
2

4
+

3𝜆1
2

4
𝑥0)

2 + 𝜆1𝑥0 −
1
4

√𝜆2
2

4
+

3𝜆1
2

4
𝑥0

(
3𝜆1

2

2
−

𝜆2
2

2
) (S15)

 

𝜏𝑎
𝑠𝑘 =

2𝑐𝛽

3𝜆1𝜆2
[

1
4(1 − 𝜆1𝑥0)2 + 𝜆1𝑥0 −

1
4

𝜆1𝑥0
𝜆1

2 +

1
4(1 − 𝜆2𝑥0)2 + 𝜆2𝑥0 −

1
4

𝜆2𝑥0
𝜆2

2

+

1

4 (1 − √𝜆1
2

4
+

3𝜆2
2

4
𝑥0)

2 + 𝜆1𝑥0 −
1
4

√𝜆1
2

4
+

3𝜆2
2

4
𝑥0

(
𝜆1

2

2
+

3𝜆2
2

2
)

+

1

4 (1 − √𝜆2
2

4
+

3𝜆1
2

4
𝑥0)

2 + 𝜆1𝑥0 −
1
4

√𝜆2
2

4
+

3𝜆1
2

4
𝑥0

(
3𝜆1

2

2
+

𝜆2
2

2
)] −

𝑐𝛽𝑐𝛼

(𝜆1𝜆2)2
(S16)

 

 

To simplify the stress expressions, we explore the fact that Eq. 3 is an interpolation formula to 

the original worm-like chain model. In other words, Eq. 3 gives exact results for low and high 

force limits, but only gives an approximate result in intermediate force range (15% relative 

error). To obtain a simplified strain energy function, we will make it exact for low and high force 

limits, but construct an interpolation formula of stress in terms of stretches rather than the force 

in terms of chain length s in Eq. 3. 

 

Simplified constitutive model with area change 

To simplify the expression of the shear stress resultant in Eq. S15, assume it can be 

approximated as the following interpolated forms 
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𝜏𝑠𝑠
𝑠𝑘 =

2𝑐𝛽

3𝑥0
[𝑑0 + 𝑑1(𝜆𝑠 − 1) +

𝑑∞𝜆𝑠

(1 − 𝜆𝑠𝜆𝑎𝑥0)2
] (𝑆17) 

where the deformation is expressed in terms of isotropic (𝜆𝑎) and shear (𝜆𝑠) coefficients 

𝜆𝑎 = √𝜆1𝜆2 = √𝛼 + 1,  𝜆𝑠 = √𝜆1/𝜆2. 

 

 

To determine the three coefficients (d0, d1, d) we match the slope of Eq. 18 with Eq. 10 with n = 

6 for the low force limit and the high force limit.  

At the high force limit, 𝜆𝑠𝜆𝑎𝑥0~1, where the protein chain is close to its contour length, with 

asymptotic expansion at the high force limit or Laurent expansion, we get: 

𝜏𝑠
𝑠𝑘~

2𝑐𝛽

3𝑥0𝜆𝑎
2

[
𝜆𝑎𝜆𝑠

4(1 − 𝜆𝑠𝜆𝑎𝑥0)2
+ 𝑂(1)] (𝑆18) 

At the same time the simplified shear stress near the high force limit: 

𝜏𝑠𝑠
𝑠𝑘~

2𝑐𝛽

3𝑥0
 [

𝑑∞𝜆𝑠

(1 − 𝜆𝑠𝜆𝑎𝑥0)2
+ 𝑂(1)] 

By matching them we can get  

𝑑∞ =
1

4𝜆𝑎

(𝑆19) 

Enforcing 𝜏𝑠
𝑠𝑘 = 0 𝑓𝑜𝑟 𝜆𝑠 = 1,which means no shear stress when there is no shear deformation, 

we found that: 

𝜏𝑠𝑠
𝑠𝑘 =

2𝑐𝛽

3𝑥0
[𝑑0 +

𝑑∞

(1 − 𝜆𝑎𝑥0)2
] = 0 (𝑆20) 

so 

𝑑0 =
−1

4𝜆𝑎𝑥0
2(𝜆𝑎 − 1/𝑥0)2

,   (𝑆21) 

We obtain 𝑑1 by matching slopes in terms of 𝜆𝑠 near 𝜆𝑠 = 𝜆𝑎 = 1 ,which is equivalent to 

matching the initial shear modulus 𝜇0. At the low shear force point, where there is no shear 
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deformation,  

𝜇 =
2𝜏𝑠𝑠

𝑠𝑘𝜆1
2𝜆2

2

𝜆1
2 − 𝜆2

2 |
𝜆𝑠→1

=
𝑐𝛽

3𝑥0
[

1 + 𝜆𝑎𝑥0

4𝜆𝑎(1 − 𝜆𝑎𝑥0)3
+ 𝑑1(𝜆𝑎𝑥0)] 

Assuming the shear modulus under area deformation is only a function of expanded chain length 

𝜆𝑎𝑥0, 

 𝜇 = 𝜇(𝜆𝑎𝑥0), 

which indicates  
𝑐𝛽

3𝑥0
𝑑1= 𝑓(𝜆𝑎𝑥0) is also a function of 𝜆𝑎𝑥0. This means that during area 

expansion, the shear modulus hardening is independent of 𝑠0 and depends only on the expanded 

chain length 𝜆𝑎𝑠0. Then we have  

𝜇0 = 𝑐𝛽 (𝑐𝛼 +
3𝑥0 − 𝑥0

2

4(1 − 𝑥0)3
) =

𝑐𝛽

3𝑥0
[

1 + 𝑥0

4(1 − 𝑥0)3
+ 𝑑1(𝑥0)] 

𝑑1(𝑥0)

𝑥0
=

48(𝑥0)4 − 153(𝑥0)3 + 171(𝑥0)2 − 71(𝑥0) + 1

4𝑥0(𝑥0 − 1)3
, 

then: 
𝑑1(𝜆𝑎𝑥0)

𝑥0
=

48(𝜆𝑎𝑥0)4 − 153(𝜆𝑎𝑥0)3 + 171(𝜆𝑎𝑥0)2 − 71(𝜆𝑎𝑥0) + 1

4𝜆𝑎𝑥0(𝜆𝑎𝑥0 − 1)3
(𝑆22) 

So 

𝑑1 =
48(𝜆𝑎𝑥0)4 − 153(𝜆𝑎𝑥0)3 + 171(𝜆𝑎𝑥0)2 − 71(𝜆𝑎𝑥0) + 1

4𝜆𝑎(𝜆𝑎𝑥0 − 1)3
(𝑆23) 

Although the above equations were derived from the case of n = 6, it works for arbitrary n > 2, 

assuming isotropy. 

 

If the area is incompressible, our formulation is reduced to 

𝜏𝑠
𝑠𝑘 =

2𝑐𝛽

3𝑥0
[𝑐0 + 𝑐1(𝜆1 − 1) +

𝜆1

4(1 − 𝜆1𝑥0)2
] (𝑆24) 
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where      𝑐0 =
−1

4(1−𝑥0)2 

𝑐1 =
48𝑥0

4 − 153𝑥0
3 + 171𝑥0

2 − 71𝑥0 + 1

4(𝑥0 − 1)3
 

𝜇 =
2𝜏𝑠

𝑠𝑘

𝜆1
2 − 𝜆2

2 =
4𝑐𝛽

3𝑥0(𝜆1
2 − 𝜆2

2)
[𝑐0 + 𝑐1(𝜆1 − 1) +

𝜆1

4(1 − 𝜆1𝑥0)2
] (𝑆25) 

 

This equation also works for arbitrary n>2. 

 

Finite thermoelasticity and stresses of 2D hyperelastic membranes 

Let's consider the cytoskeletal network as a 2D hyperelastic material without any remodeling or 

dissipation. The Cauchy stress of a hyperelastic material is given as 

𝝈 =
2

𝐽
𝑭

𝜕𝑤

𝜕𝑪
𝑭𝑇 (𝑆26)

where w = H-TS = w(F,T) is the free energy density (measured per unit volume), 𝑪 = 𝑭𝑻𝑭 is 

the right Cauchy-Green deformation tensor, F is the deformation gradient, and J = det(F). H is 

the enthalpy (internal energy, per unit volume), T is the temperature, and S is the entropy (per 

unit volume).  If the material is isotropic, invariants of the deformation can be used to simplify 

the stress expression, so that the Cauchy stress resultant of a 2D isotropic hyperelastic material in 

Eq. S26 is reduced to 

𝝉 = 𝝈ℎ = 𝜏𝑎𝑰 +
𝜇

(α+1)2 (𝑩 −
tracⅇ(𝑩)

2
𝑰) (𝑆27) 

where      

𝜏𝑎 =
∂w

∂α
, μ =

∂w

∂β
, 𝑩 = 𝑭𝑭𝑻, 𝑭 =

∂𝐱

∂𝐗
 

   

where  and  are defined as the mean stress resultant and shear modulus and B is the left Cauchy-

Green deformation tensor. The area invariant,  = 12 – 1, and the shear invariant  = (1/2 + 
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2/1 - 2)/2 are those defined by Evans and Skalak (1), where 1 and 2 are the principal stretch 

ratios and h is the thickness. 𝐱 is the current coordinate vector and 𝐗 is the initial  coordinate 

vector. 

The principal stress resultants in the skeleton are related to the energy by: 

 𝜏1
𝑠𝑘 =

1

𝜆2

𝑑𝑤

𝑑𝜆1
 (S28) 

 𝜏2
𝑠𝑘 =

1

𝜆1

𝑑𝑤

𝑑𝜆2
 (S29) 

To convert from the discrete form of the potential (expressed in terms of individual molecules) to 

a continuous form, the different deformation experienced by molecules having different 

orientations relative to the principal axes of deformation must be considered.  We apply the affine 

assumption, namely, that the endpoints of the molecule follow the corresponding points in the 

continuum deformation. With this affine deformation assumption, we do not need to be concerned 

about the detailed connectivity between molecules.  Taking so as the resting molecular length, the 

molecular extension (s/so) is related to the material extension ratios by  

𝑠2 = 𝜆1
2𝑥0,𝑖

2 + 𝜆2
2𝑦0,𝑖

2  

 (
𝑠

𝑠0
)

𝑖

2
= 𝜆1

2 𝑐𝑜𝑠2 𝜃0,𝑖 + 𝜆2
2 𝑠𝑖𝑛2 𝜃0,𝑖 (S30) 

where 0,i = 
𝑖

𝑛
, 𝑖  (1, n) is the angle between the molecular vector for orientation i and the 

principal axis of extension in the resting state. The energy per unit area must be summed over 

molecular orientations.   

  

From Eq. 1 and. Eq. 2 we obtain 

 𝑤𝑡𝑜𝑡𝑎𝑙 = ∑  𝑛
𝑖=1 𝑉𝑒𝑓𝑓(𝑠)/𝐴 = ∑  𝑛

𝑖=1
𝑘𝐵𝑇𝑠𝑚𝑎𝑥

4𝑝𝐴
(

𝑠

𝑠𝑚𝑎𝑥
)

2
∙

3−2𝑠 𝑠𝑚𝑎𝑥⁄

1−𝑠 𝑠𝑚𝑎𝑥⁄
𝑐𝑜𝑠2 𝜃0,𝑖 

Substituting this into Eq. S28 and Eq. S29 we arrive at 



 13 

𝜏1
𝑠𝑘 =

1

𝜆2

𝑑𝑤

𝑑𝜆1
=

1

𝜆2

𝜕𝑤

𝜕𝑠

𝜕𝑠

𝜕𝜆1
=

𝜆1

𝜆2

𝜕𝑤

𝜕𝑠

𝑠0
2

𝑠
𝑐𝑜𝑠2 𝜃0,𝑖

= ∑  

𝑛

𝑖=1

𝑘𝑩𝑇

4(𝑝/𝑠0)𝐴

𝜆1

𝜆2
[

1

4(1 − 𝑠 𝑠𝑚𝑎𝑥⁄ )2
−

1

4
+ 𝑠 𝑠𝑚𝑎𝑥⁄ ]

𝑠

𝑠𝑜
𝑐𝑜𝑠2 𝜃0,𝑖

= ∑  

𝑛

𝑖=1

𝑘𝑩𝑇

4(𝑝/𝑠0)𝐴𝜆𝑚𝑎𝑥

𝜆1

𝜆2

6𝜆𝑚𝑎𝑥
2 − 9𝜆𝑚𝑎𝑥(𝑠/𝑠𝑜)𝑖 + 4(𝑠/𝑠𝑜)𝑖

2

(𝜆𝑚𝑎𝑥 − (𝑠/𝑠𝑜)𝑖)2
𝑐𝑜𝑠2 𝜃0,𝑖 

Since 𝜌0 =
𝑛

𝐴
 in this case,  

 𝜏1
𝑠𝑘   =   𝑐𝛽 [

2

𝑛

𝜆1

𝜆2
∑ (𝑐𝑜𝑠2 𝜃𝑜,𝑖 ⋅ 𝑃𝑖 (

𝑠

𝑠𝑜
))  −  

𝑐𝛼

𝜆1
2𝜆2

2
𝑛
𝑖=1 ]  (S31) 

 𝜏2
𝑠𝑘   =   𝑐𝛽 [

2

𝑛

𝜆2

𝜆1
∑ (𝑠𝑖𝑛2 𝜃𝑜,𝑖 ⋅ 𝑃𝑖 (

𝑠

𝑠𝑜
))  − 

𝑐𝛼

𝜆1
2𝜆2

2
𝑛
𝑖=1 ] (S32) 

where  

 𝑐𝛼   =  
6𝜆𝑚𝑎𝑥

2 −9𝜆𝑚𝑎𝑥+4

(𝜆𝑚𝑎𝑥−1)2   

 𝑐𝛽 =
𝑘𝑩𝑇𝜌0

8(𝑝/𝑠0)𝜆𝑚𝑎𝑥
  

and, 

 𝑃𝑖(𝑠/𝑠𝑜)   =  
6𝜆𝑚𝑎𝑥

2 −9𝜆𝑚𝑎𝑥(𝑠/𝑠𝑜)𝑖+4(𝑠/𝑠𝑜)𝑖
2

(𝜆𝑚𝑎𝑥−(𝑠/𝑠𝑜)𝑖)2   

 

Derivation of the area modulus K  

For this 2D isotropic hyperelastic material, we can calculate the area modulus as: 

𝐾𝑠𝑘 ≡ (
𝜕𝜏𝛼

𝑠𝑘

𝜕𝛼
)

𝛽

(𝑆33) 

with the stress expression 

𝜏1
𝑠𝑘   =   𝑐𝛽 [

2

𝑛

𝜆1

𝜆2
∑ (𝑐𝑜𝑠2 𝜃𝑜,𝑖 ⋅ 𝑃𝑖 (

𝑠

𝑠𝑜
))   − 

𝑐𝛼

𝜆1
2𝜆2

2

𝑛

𝑖=1

], 
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𝜏2
𝑠𝑘   =   𝑐𝛽 [

2

𝑛

𝜆2

𝜆1
∑ (𝑠𝑖𝑛2 𝜃𝑜,𝑖 ⋅ 𝑃𝑖 (

𝑠

𝑠𝑜
))  −  

𝑐𝛼

𝜆1
2𝜆2

2

𝑛

𝑖=1

], 

the tension can be calculated and simplified: 

𝜏𝛼
𝑠𝑘   =  

𝜏1
𝑠𝑘 + 𝜏2

𝑠𝑘

2
= 𝑐𝛽 [

1

𝑛
∑ (

𝜆1

𝜆2
𝑐𝑜𝑠2 𝜃𝑜,𝑖 ⋅ 𝑃𝑖 (

𝑠

𝑠𝑜
) +

𝜆2

𝜆1
𝑠𝑖𝑛2 𝜃𝑜,𝑖 ⋅ 𝑃𝑖 (

𝑠

𝑠𝑜
))   −  

𝑐𝛼

𝜆1
2𝜆2

2

𝑛

𝑖=1

] 

= 𝑐𝛽 [
1

𝑛𝜆1𝜆2
∑(𝜆1

2 𝑐𝑜𝑠2 𝜃0,𝑖 + 𝜆2
2 𝑠𝑖𝑛2 𝜃0,𝑖)𝑃𝑖 (

𝑠

𝑠𝑜
)   − 

𝑐𝛼

𝜆1
2𝜆2

2

𝑛

𝑖=1

] 

= 𝑐𝛽 [
1

𝑛𝜆1𝜆2
∑ 𝑥2𝑃𝑖(𝑥)  −  

𝑐𝛼

𝜆1
2𝜆2

2

𝑛

𝑖=1

] = 𝑐𝛽 [
1

𝑛(1 + 𝛼)
∑ 𝑥2𝑃𝑖(𝑥)  −  

𝑐𝛼

(1 + 𝛼)2

𝑛

𝑖=1

] (𝐵34) 

where 𝑥𝑖
2 = (

𝑠

𝑠0
)

𝑖

2
= 𝜆1

2 𝑐𝑜𝑠2 𝜃0,𝑖 + 𝜆2
2 𝑠𝑖𝑛2 𝜃0,𝑖. From the expression of 𝛼 and 𝛽 in terms of 

𝜆1 and 𝜆2, we can know: 

𝜕𝜆1

𝜕𝛼
=

1

2𝜆2
,
𝜕𝜆2

𝜕𝛼
=

1

2𝜆1

(𝑆35) 

 

then 
𝜕𝑥𝑖

𝜕𝛼
 can be gained from Eq. S30 

2𝑥𝑖

𝜕𝑥𝑖

𝜕𝛼
= 2𝜆1 𝑐𝑜𝑠2 𝜃0,𝑖 /(2𝜆2) + 2𝜆2 𝑠𝑖𝑛2 𝜃0,𝑖 /(2𝜆1) 

𝜕𝑥𝑖

𝜕𝛼
= 𝜆1 𝑐𝑜𝑠2 𝜃0,𝑖 /𝜆2 + 𝜆2 𝑠𝑖𝑛2 𝜃0,𝑖 /𝜆1 =

𝑥𝑖
2

2𝑥𝑖𝜆1𝜆2
=

𝑥𝑖

2(1 + 𝛼)
(𝑆36) 

 

Also from Eq. 9, we have 

𝜕𝑃𝑖(𝑥)

𝜕𝑥𝑖
=

3𝜆𝑚𝑎𝑥
2 − 𝜆𝑚𝑎𝑥𝑥𝑖

(𝜆𝑚𝑎𝑥 − 𝑥𝑖)3
(𝑆37) 

 

Everything can be expressed in terms of 𝛼, therefore, 
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𝐾 = 𝜕𝑐𝛽 [
1

𝑛(1 + 𝛼)
∑ 𝑥𝑖

2𝑃𝑖(𝑥)  − 
𝑐𝛼

(1 + 𝛼)2

𝑛

𝑖=1

] /𝜕(𝛼) 

= 𝑐𝛽 [
−1

𝑛(1 + 𝛼)2
∑ 𝑥𝑖

2𝑃𝑖(𝑥𝑖)  +
2

𝑛(1 + 𝛼)
∑

𝜕𝑥𝑖

𝜕𝛼
𝑥𝑖𝑃𝑖(𝑥𝑖)  +

1

𝑛(1 + 𝛼)
∑

𝜕𝑥𝑖

𝜕𝛼

𝜕𝑃𝑖

𝜕𝑥𝑖
𝑥𝑖

2 

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

+  
2𝑐𝛼

(1 + 𝛼)3
] 

= 𝑐𝛽 [
−1

𝑛(1 + 𝛼)2
∑ 𝑥𝑖

2𝑃𝑖(𝑥) 

𝑛

𝑖=1

+
1

𝑛(1 + 𝛼)2
∑ 𝑥𝑖

2𝑃𝑖(𝑥) 

𝑛

𝑖=1

+
1

𝑛(1 + 𝛼)
∑

𝜕𝑥𝑖

𝜕𝛼

𝜕𝑃𝑖

𝜕𝑥𝑖
𝑥𝑖

2 

𝑛

𝑖=1

+  
2𝑐𝛼

(1 + 𝛼)3
] (𝑆38) 

 

So  

𝐾 = 𝑐𝛽 [
1

𝑛(1 + 𝛼)
∑

𝑥𝑖

2(1 + 𝛼)

𝜕𝑃𝑖

𝜕𝑥𝑖
𝑥𝑖

2 +  
2𝑐𝛼

(1 + 𝛼)3
 

𝑛

𝑖=1

] 

=
𝑐𝛽

2𝑛(1 + 𝛼)2
[∑ 𝑥𝑖

3 

𝑛

𝑖=1

3𝜆𝑚𝑎𝑥
2 − 𝜆𝑚𝑎𝑥𝑥

(𝜆𝑚𝑎𝑥 − 𝑥)3
] + 

2𝑐𝛽𝑐𝛼

(1 + 𝛼)3
(𝑆39) 

 

 Two special cases of Eq. S39 are of interest.  The first is the purely isotropic deformation (no 

shear).  In this case x = 𝑥𝑖 = 1 = 2 = si/so = iso, and the expression reduces to: 

𝐾𝑠𝑘|𝑖𝑠𝑜 =
𝑐𝛽

2𝑛𝑥4
[∑ 𝑥3 

𝑛

𝑖=1

3𝜆𝑚𝑎𝑥
2 − 𝜆𝑚𝑎𝑥𝑥

(𝜆𝑚𝑎𝑥 − 𝑥)3
] + 

2𝑐𝛽𝑐𝛼

𝑥6
=

𝑐𝛽

2𝑥

3𝜆𝑚𝑎𝑥
2 − 𝜆𝑚𝑎𝑥𝑥

(𝜆𝑚𝑎𝑥 − 𝑥)3
+ 

2𝑐𝛽𝑐𝛼

𝑥6
(𝑆40) 

The second is the value for this coefficient in the resting state K0
sk, i.e. in the limit as x=iso → 

1.0: 

𝐾0
𝑠𝑘 = 𝑐𝛽 (2𝑐𝛼 +

3𝜆𝑚𝑎𝑥
2 − 𝜆𝑚𝑎𝑥

2(𝜆𝑚𝑎𝑥 − 1)3
) (𝑆41) 
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We can also derive an expression for the modulus  for an isotopic deformation: 

 

𝜇𝑖𝑠𝑜 = 𝑐𝛽𝑥2 (
6𝜆𝑚𝑎𝑥

2 − 9𝑥𝜆𝑚𝑎𝑥 + 4𝑥2

(𝜆𝑚𝑎𝑥 − 𝑥)2
+

𝑥(3𝜆𝑚𝑎𝑥
2 − 𝑥𝜆𝑚𝑎𝑥)

4(𝜆𝑚𝑎𝑥 − 𝑥)3
) (𝑆42) 

 

 

APPENDIX C.  Analysis of micropipette aspiration with cytoskeletal area change 

Here we consider the area change of the cytoskeleton when deriving the relationship between 

pressure and aspiration length in micropipette experiments. Assuming the area change of the 

cytoskeleton outside of the pipette is a uniform small constant 𝛼0, the deformation can be obtained 

from the mass conservation and total area conservation as 

𝜋𝑅0
2𝜌0 =

𝜋(𝑟2 − 𝑅𝑝
2)𝜌0

1 + 𝛼0
+ 𝑚𝑖𝑛𝑠𝑖𝑑𝑒 (𝑆43) 

Since 

𝜆1 =
(1 + 𝛼0)𝑅0

𝑟
(𝑆44) 

 

then we have 

𝑑𝑟

𝑑𝜆1
=

𝜆1𝑟

1 + 𝛼0 − 𝜆1
2 (𝑆45) 
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𝜏1,𝑡𝑖𝑝
𝑠𝑘 = ∫

(𝜏1
𝑠𝑘 − 𝜏2

𝑠𝑘)𝑑𝑟

𝑟

∞

𝑅𝑝

= ∫
2𝜏𝑠

𝑠𝑘

𝑟

𝑑𝑟

𝑑𝜆1

√1+𝛼0

𝜆𝐿

𝑑𝜆1

= ∫
4𝑐𝛽

3𝑥0
[𝑑0 + 𝑑1(𝜆𝑠 − 1) +

𝑑∞𝜆𝑠

(1 − 𝜆𝑠𝜆𝑎𝑥0)2
]

√1+𝛼0

𝜆𝐿

𝜆1

1 + 𝛼0 − 𝜆1
2 𝑑𝜆1

= ∫
4𝑐𝛽

3𝑥0
′ [𝑑0 + 𝑑1(𝜆𝑠 − 1) +

𝑑∞𝜆𝑠

(1 − 𝜆𝑠𝜆𝑎𝑥0
′ )2

]

1

𝜆𝐿
′

𝜆𝑠

1 − 𝜆𝑠
2

𝑑𝜆𝑠

=
4𝑐𝛽

3𝑥0
′ [𝐷0

′ + 𝐷1
′𝜆𝐿

′ + 𝐷2
′ ln (

𝜆𝐿
′ + 1

2
) + 𝐷3

′ ln (
1 − 𝑥0

′

1 − 𝑥0
′ 𝜆𝐿

′ ) +
𝐷4

′

1 − 𝑥0
′ 𝜆𝐿

′ ]                              (𝑆46)

 

Thus 

𝑅𝑝Δ𝑃 =
8𝑐𝛽

3𝑥0

′
[𝐷0

′
+ 𝐷1

′
𝜆𝐿

′
+ 𝐷2

′
ln (

𝜆𝐿

′
+ 1

2
) + 𝐷3

′
ln (

1 − 𝑥0

′

1 − 𝑥0

′
𝜆𝐿

′
) +

𝐷4

′

1 − 𝑥0

′
𝜆𝐿

′
] + 2𝑇∞ (𝑆47) 

where 𝜆𝐿

′
= 𝜆𝐿/√𝛼0 + 1 is the stretch at the entrance of pipette, and 

𝐷0
′ =

−1

4(1 + 𝑥0
′ )2(1 − 𝑥0

′ )2𝑥0
′ − 𝑐1

′  

𝐷1

′
= 𝑐1

′
=

48𝑥0

′
4

− 153𝑥0

′
3

+ 171𝑥0

′
2

− 71𝑥0

′
+ 1

4 (𝑥0

′
− 1)

3  

𝐷2

′
= −

𝑥0

′
2

+ 1

4(1 + 𝑥0

′
)2(1 − 𝑥0

′
)2

− 𝑐1

′
 

𝐷3

′
=

𝑥0

′

2 (1 + 𝑥0

′
)

2

(1 − 𝑥0

′
)

2 

𝐷4

′
=

1

4(1 − 𝑥0

′
)2

 

𝑥0

′
= 𝑥0√1 + 𝛼0 
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𝜆𝐿

′
=

√𝐴𝑐𝑒𝑙𝑙𝛼0

𝜋 + 2𝑅𝑝𝐿𝑝

𝑅𝑝
 

where 𝛼0 is the average area change of the flat membrane and 𝐴𝑐𝑒𝑙𝑙 = 135𝜇𝑚2 is the surface 

area of the RBC. 𝑇∞ = 𝐾0𝛼0, and 𝐾0 is the initial area modulus of the cytoskeleton. We choose 

𝐾0 = 2𝜇0, since α0 is small. 

 

𝝀𝑳
′  is a function of 𝛂𝟎 

By assuming the total membrane area is constant (Acell = 135 𝜇m2) due to the total area 

constraints from lipid bilayer and the membrane outside of the pipette has a uniform small 

constant 𝛼0, we have 

 

Area conservation:  𝐴𝑐𝑒𝑙𝑙 = 2π𝐿𝑝𝑅𝑝 + 𝐴𝑜𝑢𝑡, 

Mass conservation:  𝜌0𝐴𝑐𝑒𝑙𝑙 = 𝑚𝑖𝑛𝑠𝑖𝑑𝑒 +
𝐴𝑜𝑢𝑡𝜌0

𝛼0+1
, 

Mass conservation:  𝜌0𝐴𝑐𝑒𝑙𝑙 = 𝜌0𝜋𝑅̅0
2 +

𝐴𝑜𝑢𝑡𝜌0

𝛼0+1
, 

 

Aout represents for the deformed membrane area outside of the pipette, minside/𝜌0 is the initial area 

of the membrane inside pipette. 

 

By using Acell = constant and eliminating Aout, we get 

𝑚𝑖𝑛𝑠𝑖𝑑𝑒 =
𝐴𝑐𝑒𝑙𝑙𝛼0 + 2𝜋𝑅𝑝𝐿𝑝

𝛼0 + 1
𝜌0 (𝑆48) 

 

Since 

𝜋𝑅0
2𝜌0 =

𝜋(𝑟2 − 𝑅𝑝
2)𝜌0

1 + 𝛼0
+ 𝑚𝑖𝑛𝑠𝑖𝑑𝑒 (𝑆49) 

 

then 

 

𝜋𝑅0
2 =

𝜋(𝑟2 − 𝑅𝑝
2) + 𝐴𝑐𝑒𝑙𝑙𝛼0 + 2𝜋𝑅𝑝𝐿𝑝

1 + 𝛼0
(𝑆50) 

 

In particular, if r = Rp, we have 
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𝑅̅0
2 = 𝑅0

2|𝑟=𝑅𝑝
=

𝑚𝑖𝑛𝑠𝑖𝑑𝑒

𝜋𝜌0
=

𝐴𝑐𝑒𝑙𝑙𝛼0

𝜋
+ 2𝑅𝑝𝐿𝑝

𝛼0 + 1
(𝑆51) 

 

 

Since 

𝜆1 =
(1 + 𝛼0)𝑅0

𝑟
 

we can solve 𝜆𝐿  as 

 

𝜆𝐿 =
(1 + 𝛼0)𝑅0

𝑟
|

𝑟=𝑅𝑝

=
√𝛼0 + 1√𝐴𝑐𝑒𝑙𝑙𝛼0

𝜋 + 2𝑅𝑝𝐿𝑝

𝑅𝑝
                                   (𝑆52) 

 

  
 

𝜆𝐿
′ = 𝜆𝐿/√𝛼0 + 1 =

√𝐴𝑐𝑒𝑙𝑙𝛼0

𝜋
+ 2𝑅𝑝𝐿𝑝

𝑅𝑝
(𝑆53)
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APPENDIX D.  Cytoskeletal area change and effect of the number of orientations 

Additional details on stress-strain behavior: Area change with stretch 

One important difference between uniaxial extension (2 = 0) and pure shear (constant area) is 

that the area of the skeleton does change with extension, as would be expected for a 

compressible material.  This is illustrated in Fig. S6, where a biphasic change in skeletal area is 

predicted, increasing for smaller extensions and decreasing as the extension approaches max.  

For small extensions, the corresponding change in area does not depend strongly on the 

maximum stretch ratios (Fig. S6A), but unlike the stress resultants at large extensions, the 

changes in area expressed as a function of the extension normalized to max do not collapse to a 

single curve, but rather reflect larger area expansions for larger values of max over the entire 

range of values (Fig. S6B). 

 

Changes in shear modulus with area expansion 

In Figure 2 of the manuscript we illustrate how the area modulus and the ratio of the area 

modulus change with membrane expansion.  The shear modulus is also a function of both area 

  
A.            B. 

Figure S6. A. The compressibility of the skeleton is reflected in increasing skeletal area with 

extension.  Interestingly, the area increase reaches a maximum, and decreases at very high 

extensions.  B. Unlike the stress resultant, the area change remains dissimilar for different 

values of 1/max over the entire range of values.  These curves reveal, however, that the 

maximum area increase occurs at approximately 86% of maximum extension for all max. 
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expansion and shear deformation.  Both shear deformation (1/2) and skeletal dilation () 

cause molecules in the skeleton to approach their maximum length.  Therefore, for larger ratios 

of 1/2, the modulus approaches its asymptotic limit for smaller values of .  This is illustrated 

in Figure S7.   

 

 

Increasing n to approximate a random network 

Figure 2A in the main text shows how the calculated values of the stress resultant 1 vary with 

increasing n from 3 to 48.  In this section we examine the dependence of the “error” introduced 

in calculating the stress resultant for different n, s0 and smax. For a given value of smax the 

persistence length p is calculated according to the relationship given in the legend of Figure 7D: 

𝑝 =  𝑐1(6 −  9𝑐2 𝑠𝑚𝑎𝑥 + 4𝑐2
2 𝑠𝑚𝑎𝑥

2⁄⁄ ) (𝑠𝑚𝑎𝑥 𝑐2 − 1⁄ )2⁄ (𝑆54) 

 
 

Figure S7.  Dependence of the shear modulus on the area expansion for different ratios 

of stretches. The unit of the shear modulus is pN/ 𝜇m. 
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where c1 = 0.0275 and c2 = 101.85.  We consider a simple uniaxial extension, both for the case 

of pure shear (2 = 1/1) and for the case 2 = 0.  As noted in the main text (Figure 2B), 

differences in calculated values of 1 for different n increase as the extension approaches max = 

s0/smax.  Therefore, we characterize the accuracy of the calculations in terms of the maximum 

extension of the material for which the difference in the calculated 1 is less than 1%.  We find 

that this extension is within 0.5% of max for all cases when comparing n = 48 with n = 96, 

indicating that n = 48 is a good approximation for n → .  Therefore, the calculations were 

made for the maximum extension at which the calculated 1 is within 1% of the value calculated 

for n = 48. 

 

We find that the maximum extensions for errors less than 1% depend on the specific value of s0, 

but that the extensions expressed as a function of s0/smax fall on a single curve that is independent 

of smax (Figure S8A).  The maximum allowable extension increases with increasing n as 

expected (Figure S8B, Table S1).  Similar results were obtained for pure shear deformations 

(Figures S8C and S8D).  For modeling the skeleton with distributed values of s0, we performed 

the weighted sum of contributions to 1 for the different values of s0. The maximum allowable 

extensions for distributed values of s0 are shown in Table S2.  Note that when n is small (n = 3), 

significant errors can occur even for relatively modest extensions. 
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Table S1. Maximum allowable extension for 1% and 5% error (1/max, smax = 180 nm) 

Pure Shear 

 1% error        

n \ s0 20 30 40 50 60 70 80 90 97 

3 0.5041 0.5012 0.4979 0.4953 0.4957 0.503 0.521 0.5502 0.5762 

6 0.8298 0.8298 0.8298 0.8302 0.8312 0.833 0.8361 0.8407 0.8451 

12 0.9532 0.9534 0.9534 0.9536 0.954 0.9545 0.9552 0.9564 0.9575 

24 0.9874 0.9875 0.9876 0.9877 0.9878 0.988 0.9883 0.9886 0.9889 

          

 5% error        

3 0.5785 0.5745 0.573 0.5686 0.5684 0.5685 0.5755 0.589 0.605 

6 0.8677 0.8659 0.8686 0.8686 0.8668 0.8695 0.871 0.8744 0.8782 

12 0.9656 0.9632 0.9649 0.9633 0.9654 0.9646 0.9671 0.9672 0.9671 

24 0.9896 0.99 0.9905 0.9909 0.9914 0.9919 0.9924 0.9906 0.9911 

A           B 

  
 

C           D 

  
Figure S8.  A. Maximum allowable extension for error < 1%, for uniaxial extension (2 = 0).  

When the extension and the values of s0 are normalized by their maximum values, the curves 

are independent of smax. B. The maximum allowable extension increases with increasing n. C 

and D. Similar results were obtained for pure shear deformation (2 = 1/1). 
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Table S2. Maximum allowable extension (1/max, smax = 180 nm), Uniaxial (2 = 0) 

 1% error        

n \ s0 20 30 40 50 60 70 80 90 97 

3 0.5041 0.5149 0.5244 0.5323 0.54 0.5497 0.5645 0.5865 0.6065 

6 0.8471 0.8458 0.8453 0.8459 0.8475 0.8503 0.8542 0.8594 0.8639 

12 0.9569 0.9571 0.9571 0.9574 0.9579 0.9585 0.9593 0.9605 0.9614 

24 0.9885 0.9886 0.9886 0.9888 0.9889 0.9891 0.9893 0.9896 0.9898 

          

 5% error        

3 0.5963 0.5977 0.6046 0.6076 0.6132 0.6195 0.6277 0.6413 0.6522 

6 0.8787 0.8799 0.8784 0.8813 0.882 0.884 0.8872 0.8896 0.8926 

12 0.9662 0.9676 0.9692 0.9673 0.9692 0.9682 0.9704 0.9703 0.9700 

24 0.9898 0.9902 0.9906 0.9911 0.9915 0.992 0.9925 0.993 0.9913 

 

Table S3.  Maximum allowable extension for distributed s0 values, Pure Shear 

smax 200 180 160 140 

max 2.0619 1.8557 1.6495 1.4433 

n Maximum allowable extension for error < 1% 

3 1.31 1.20 1.11 1.05 

6 1.84 1.66 1.48 1.31 

12 1.99 1.79 1.59 1.40 

24 2.04 1.84 1.63 1.43 

 Maximum allowable extension for error < 5% 

3 1.47 1.33 1.20 1.09 

6 1.89 1.71 1.52 1.34 

12 2.00 1.81 1.61 1.41 

24 2.04 1.84 1.64 1.43 

 

Table S4.  Maximum allowable extension for distributed s0 values, Uniaxial (2 = 0) 

smax (nm) 200 180 160 140 

max 2.0619 1.8557 1.6495 1.4433 

n Maximum allowable extension for error < 1% 

3 1.41 1.29 1.18 1.09 

6 1.86 1.68 1.50 1.33 

12 1.99 1.80 1.60 1.41 

24 2.04 1.84 1.64 1.43 

 Maximum allowable extension for error < 5% 

3 1.56 1.42 1.28 1.15 

6 1.91 1.72 1.53 1.35 

12 2.01 1.81 1.61 1.41 

24 2.05 1.84 1.64 1.43 
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Appendix E. Goodness of fit for different values of persistence length and maximum length. 

 

Ideally one should be able to choose the best combination of molecular parameters (persistence 

length p and maximum molecular length smax) based on the goodness of fit for the least squares 

regressions.  Unfortunately, the resolution in the data is not sufficient to identify the best 

ordered pairs in the present case. The calculated sum of squared errors for each of the three 

different experiments presented in Figure 7 are tabulated below for the series of solution pairs for 

p and smax. In two of the cases in Fig. 7, the lowest sum of squared errors occurs for small values 

of smax and large values of p, but in the third case, the opposite is true.  Which solution gives the 

lowest sum of squared errors depends critically on the data point at the highest pressure.  Given 

this sensitivity, it would be inappropriate to infer too much about which of the possible 

combinations of smax and p most accurately reflect true membrane properties.   

Table S5 Fitting Error of Fig. 7A in the main text. 

smax p 𝜎𝑎𝑝 SSE SSEp  

130 48.5213 0.013069 0.99867 0.199734 

135 37.12 1.07 1.122 0.2244 

140 29.54 2.16 1.109 0.2218 

145 24.19 3.38 0.911 0.1822 

150 20.67 4.17 0.813 0.1626 

160 15.54 6.28 0.674 0.1348 

170 12.58 7.60 0.566 0.1132 

180 10.61 8.74 0.498 0.0996 

190 9.05 10.00 0.482 0.0964 

200 8.03 10.64 0.4595 0.0919 
Rp = 0.85 um. SSE: sum of the squared error.  SSEp: sum of the squared error per data point. 
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Table S6 Fitting Error of Fig. 7B in the main text. 

200 8.71 6.36 2.235 0.447 
Rp = 0.55 um. SSE: sum of the squared error.  SSEp: sum of the squared error per data point. 

 
Table S7. Fitting Error of Fig. 7C in the main text. 

190 9.48 10.68 5.821 0.83157143 

200 8.45 11.14 6.418 0.91685714 
Rp = 0.55 um. SSE: sum of the squared error.  SSEp: sum of the squared error per data point. 
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smax p 𝜎𝑎𝑝 SSE SSEp  

130 52.3648 -3.4339 0.45421 0.090842 

133 44.1032 -2.7385 0.37607 0.075214 

135 39.8566 -2.3664 0.48052 0.096104 

140 31.19 -0.89 0.5313 0.10626 

145 26.26 -0.46 0.615 0.123 

150 22.30 0.50 0.782 0.1564 

160 16.71 2.56 1.083 0.2166 

170 13.63 3.61 1.334 0.2668 

180 11.39 4.80 1.54 0.308 

190 9.82 5.77 1.948 0.3896 

smax p 𝜎𝑎𝑝 SSE SSEp  

130 55.0781 -0.37773 3.5905 0.51292857 

131 51.49 0 3.839 0.54842857 

133 43.6 1.51 2.617 0.37385714 

135 39.99 1.69 2.941 0.42014286 

140 30.82 3.39 3.024 0.432 

145 25.58 4.17 3.108 0.444 

150 21.80 4.95 3.388 0.484 

160 16.26 7.07 4.092 0.58457143 

170 13.34 8.06 4.441 0.63442857 

180 11.16 9.23 5.100 0.72857143 


