
Receptor-targeted engineered probiotics mitigate lethal *Listeria* infection

Rishi Drolia^{1,2}, Mary Anne Roshni Amalaradjou^{1,3}, Valerie Ryan¹, Shivendra Tenguria^{1,2}, Dongqi Liu^{1,2}, Xingjian Bai¹, Luping Xu¹, Atul K. Singh¹, Abigail D. Cox⁴, Victor Bernal-Crespo⁴, James A. Schaber⁵, Bruce M. Applegate^{1,6}, Ramesh Vemulapalli^{4,7}, and Arun K. Bhunia^{1,2,4,6*}

¹Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
²Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
³Department of Animal Science, University of Connecticut, Storrs, CT, USA
⁴Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
⁵Bindley Bioscience Research Center, Purdue University, West Lafayette, IN, USA
⁶Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
⁷Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA

*bhunia@purdue.edu

Supplementary Fig. 1 Analysis of LAP sequence, characterization of BLP-strains and Hsp60 expression in Caco-2 cells.

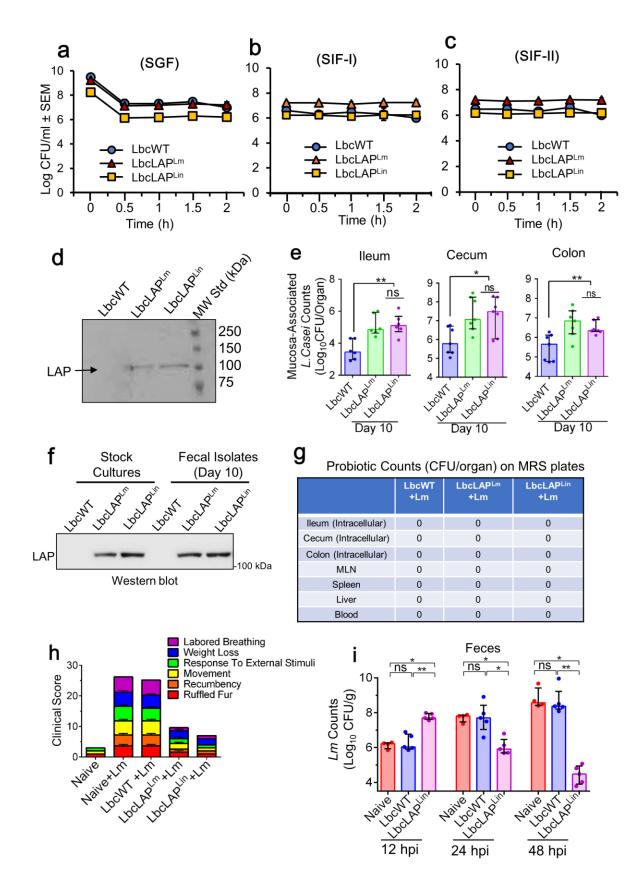
(a) Comparison of the amino acid sequence of LAP from different strains of *Lm* and *Lin* obtained from the NCBI database.

(b) Similar growth profiles of BLP strains in MRS and mMRS broths, relative to LbcWT or Lbc^{Vec} strains. (n = 3)

(c) Increased adhesion (MOE 10, 24 h) of the BLP strains (n = 6), relative to LbcWT (n = 4) strains or Lbc^{Vec} (n = 4) to Caco-2 cells.

(**d-f**, n = 3) Increased inhibition of *Lm* adhesion (**d**), invasion (**e**) and translocation (**f**) by the BLP strains in MDCK cells pre-exposed to *L. casei* strains for 24 h (MOE 10). *Lm* (MOI 50) was exposed for 1 h for adhesion and 2 h for invasion and translocation assays.

(**g-i**, n = 3) Increased inhibition of *Lm* (wild type) adhesion (**g**), invasion (**h**) and translocation (**i**) but not of the *lap*⁻strain by the BLP strains in Caco-2 cells pre-exposed to *L. casei* strains for 24 h (MOE 10). *Lm* exposure as in **d-f**.


(j) Agar well diffusion assay showing the absence of bacteriocin-like antimicrobial activity in LbcWT, Lbc^{Vec} and BLP strains against *Lm* lawn. *Pediococcus acidilactici*, (pediocin; a bacteriocin producer) and vancomycin were used as positive controls.

(k) Immunoblot confirming Hsp60-knockdown (Hsp60⁻) and overexpression (Hsp60⁺), relative to Hsp60^{Vec} in Caco-2 cells. Occludin; membrane marker, and MEK-1/2; cytosolic marker. Bottom panels show normalized densitometry reports (n = 3).

(I) Increased inhibition of *Lm* translocation (n = 3) by the BLP strains in Hsp60^{Vec} and Hsp60⁺ but not in Hsp60⁻ Caco-2 cells. *L. casei* pre-exposed for 24 h (MOE 10) before exposure to *Lm* for 2 h (MOI 50).

(m-o, n = 3) Decreased *Lm* adhesion (m), invasion (n) and translocation (o) in Caco-2 cells incubated with anti-Hsp60 mAb (5 µg/ml, 1 h) before *Lm* exposure. *Lm* exposure as in d-f.

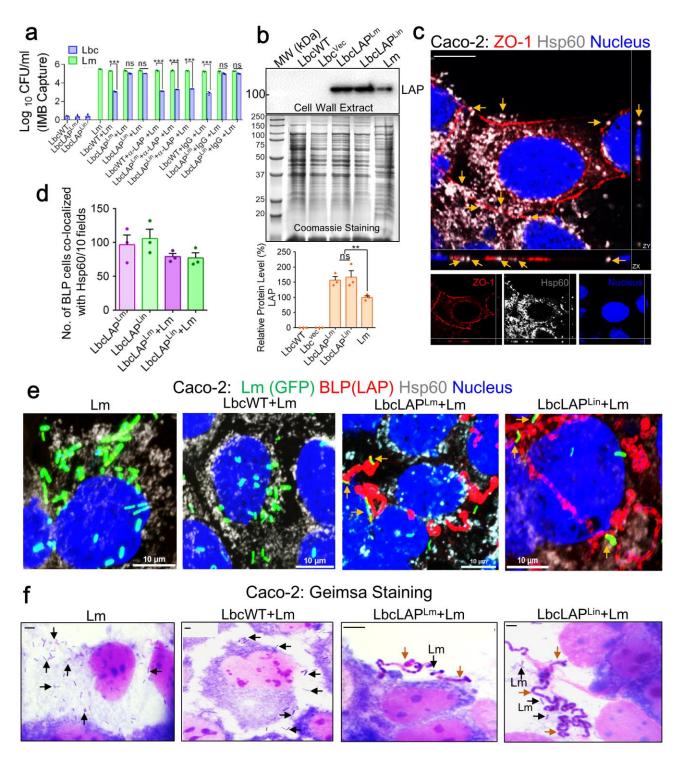
Data in **b**, **c**-**i** and **k**-**o** represent the mean \pm SEM with *n* = biologically independent samples from three independent experiments. The one-way (**c**-**f**, **k**, **m**-**o**) or two-way (**g**-**i**, **I**) ANOVA test followed by Tukey's multiple comparisons was used. For all analysis: ****p < 0.0001; ***p < 0.001; *p < 0.05; ns, no significance. Source data are provided as a Source Data file.

Supplementary Fig. 2 In vitro and in vivo characterization of BLP strains.

(**a-c**) Similar survival of *L. casei* (LbcWT) and BLP strains in simulated gastric fluid (SGF) (**a**), simulated intestinal fluid I (SGF-I) (**b**), and simulated intestinal fluid II (SGF-II) (**c**). Data represent the mean of one single experiment with similar results from the three independent experiments.

(d) Immunoblot confirmation of LAP expression in BLP strains following sequential exposure to SGF, SIF-I, and SGF-II.

(e) Increased mucosal association of BLP strains in the ileum (n = 6), cecum (n = 7), and colon (n = 7), of mice on day 10. No colonies were detected on MRS+vancomycin plates from mock-treated control (naïve) animals. Each point represents an individual mouse (n) from three independent experiments.


(f) Immunoblot confirmation of LAP expression in fecal isolates of BLP strains.

(g) No BLP strains (10 days treatment) were detected in the intestinal (after gentamicin protection assay) or extra-intestinal tissue samples. Data are representative of n = 7 mice from three independent experiments.

(h) Clinical score of mice after *Lm* challenge. Data represent mean \pm SEM from *n* = 5 representative mice from each treatment group of three independent experiments.

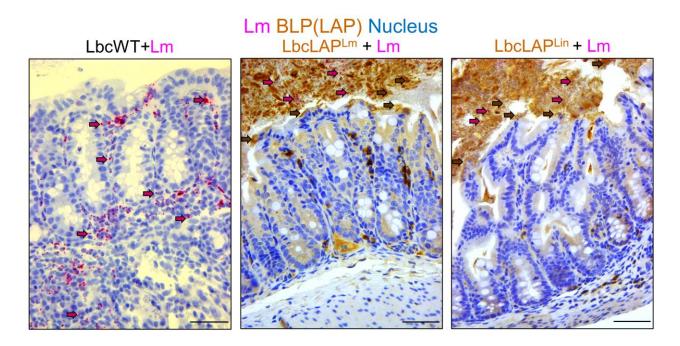
(i) Increased *Lm* shedding in the feces in mice treated with BLP-strains at 12 hpi (n = 4, 5, 5, for each group, respectively) but significantly reduced at 24 (n = 4, 5, 5, for each group, respectively) and 48 (n = 4, 5, 5, for each group, respectively) hpi. Each point represents an individual mouse (n) from two independent experiments.

Bar and brackets in **e** and **i** represent the median and interquartile range, respectively. The Mann-Whitney nonparametric test (two-tailed) was used, and comparisons were made between each treatment group individually. For all analysis: **p < 0.01; *p < 0.05; ns, no significance. Panels **d** and **f** are representative of three independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 3 Co-aggregation and surface co-localization of BLP with Hsp60.

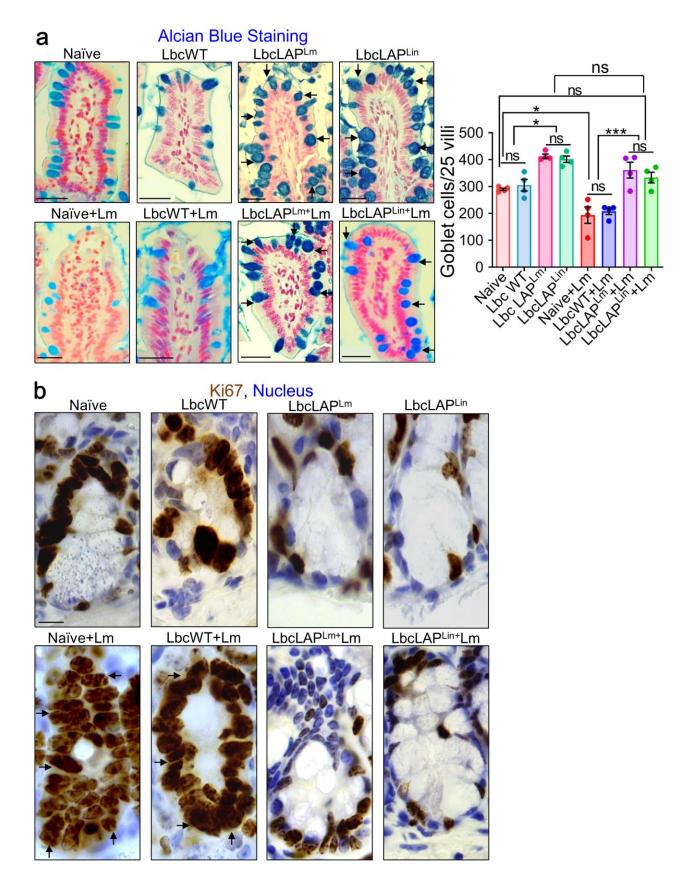
(a) Inhibition of formation of BLP-*Lm* co-aggregates (CFU, mean \pm SEM, n = 3 from three independent experiments) by pre-incubation of BLP with anti-LAP mAb but not with an isotype IgG followed by IMB-based capture.

(b) Western blot showing relative expression of LAP on BLP and *Lm* cell wall. Equal amounts of proteins are analyzed (BCA assay) as confirmed by Coomassie blue staining (bottom panel). The densitometry report (bottom-most panel) represent mean \pm SEM, *n* = 3 from three independent experiments.


(c) Micrographs of Caco-2 cells immunostained for ZO-1 (red, cell periphery), Hsp60 (white, host cell receptor) and nucleus (blue; DAPI). Surface expression of Hsp60 (white) and co-localization with ZO-1 (red) were evident on the Caco-2 cell membrane (puncta, yellow arrows). Separated channels; bottom panels. Bars, 10 µm.

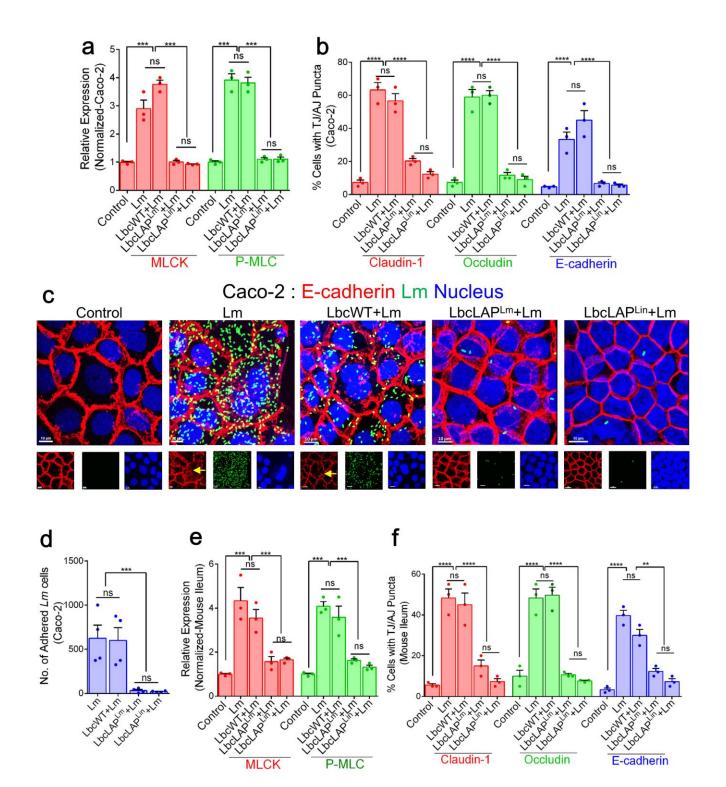
(d) Measurements (mean \pm SEM) of co-localized BLP cells with membrane expressed Hsp60 from immunostained images (**Fig. 4 e-h**). Each point represents an average of 10 fields from each of the three independent experiments n = 30 fields.

(e) Micrographs of *Lm*-GFP cells co-incubated with or without *L. casei* (LbcWT and BLP) strains on Caco-2 cells (1:1 ratio, MOE 50 for each, 1 h). Cells were immunostained for LAP on BLP strains (red), Hsp60 (white, host cell receptor) DAPI (blue, nucleus) and *Lm*-GFP cells (green). Bars, 10 μ m. In BLP co-incubated cells the *Lm*-GFP cells showed markedly reduced adhesion and BLP cells were co-aggregated with *Lm*-GFP cells (arrows). No immunostaining of LbcWT was observed with the anti-LAP mAb.


(f) Giemsa staining micrographs depicting reduced adhesion and competitive exclusion of *Lm* (black arrow) cells by BLP strains (yellow arrows) but not by LbcWT strains. *Lm* cells with or without *L. casei* (LbcWT and BLP strains) strains were co-incubated (1:1 ratio, MOE 50 for each, 1 h) on Caco-2 cells. Bars, 1 μ m.

For plots, **a**, **b** and **d**, the one-way ANOVA test followed by Tukey's multiple comparisons was used. For all analysis: ***p < 0.001; **p < 0.01; ns, no significance. All images in **c**, **e**, **f** are representative of five different fields from three independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 4 BLP and Lm co-aggregation on colonic villi.

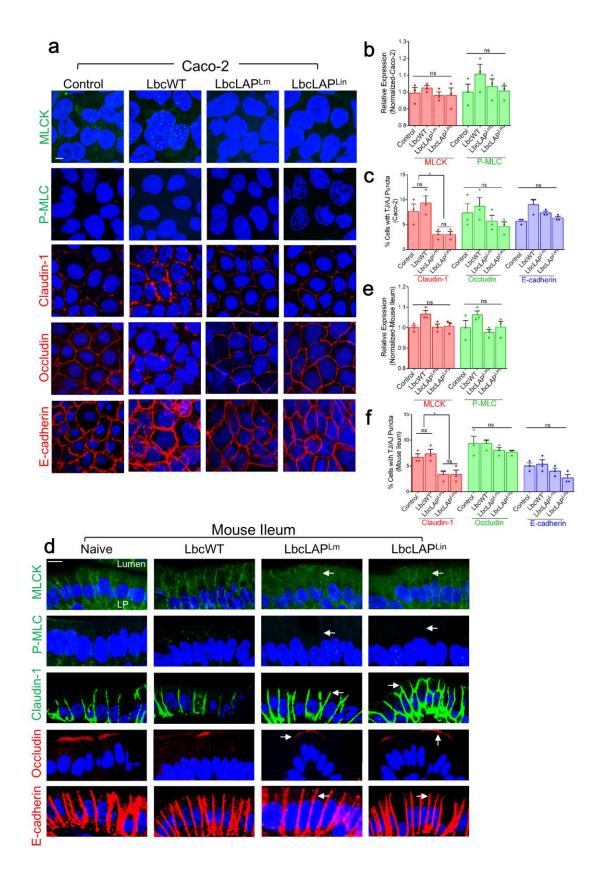

Zoomed-out micrographs of colonic villi of LbcWT-or BLP-treated (10 days) mice at 48 hpi dual immunostained for *Listeria* (anti-*Lm* pAb, pink rods, pink arrows) and LAP (anti-LAP mAb to stain the BLP strains, brown, brown arrows) and counterstained with hematoxylin to stain the nucleus (blue). Bars, 25 µm. Translocated *Lm* is observed in the lamina propria (pink arrows, left panel) in LbcWT-treated mice but confined in the lumen (pink arrows, middle and right panels) in BLP-treated mice. Images are representative of 10 different fields from 4 independent mice for each treatment. Source data are provided as a Source Data file.

Supplementary Fig. 5 Goblet cell counts and crypt cell proliferation in ileal villi.

(a) Representative Alcian blue staining micrographs of ileal tissue sections from control (mock-treated) uninfected naïve mice, *L. casei*-treated (10 days, LbcWT or BLP) pre or post-*Lm* challenge at 48 hpi depicting increased goblet cells (arrows) in BLP-treated mice and quantification of goblet cells (right panel, each point represents an individual mouse, 4 mice per group, n = 100 villi). Scale bar, 25 µm. Data represent the mean ± SEM and statistical significance was determined by using the one-way ANOVA test followed by Tukey's multiple comparisons. For analysis: ***p < 0.001; *p < 0.05; ns, no significance. Source data are provided as a Source Data file.

(**b**) Representative immunohistochemical micrographs (high magnification) of the ileal crypt stained for Ki67 (brown) from control (mock-treated) uninfected naïve mice or *L. casei*-treated (10 days, LbcWT or BLP) pre-or post-*Lm* challenge at 48 hpi. Arrows depict increased Ki67⁺ cells in the naïve of LbcWT-treated mice at 48 hpi. Scale bar, 10 μm. Images (a, b) are representative of four independent mice.

Supplementary Fig. 6 BLP preserves *Lm*-induced disturbance of intestinal epithelial cell-cell junctional integrity.

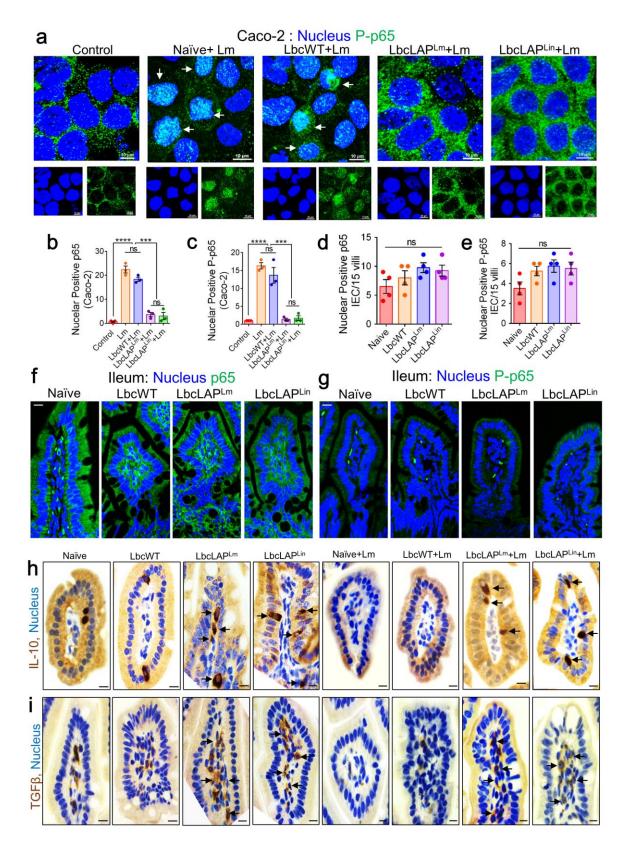

(**a**, **b**) Quantitative analysis (mean \pm SEM, n = 3) of MLCK and P-MLC expression (**a**) and of claudin-1, occludin, and E-cadherin puncta formation (**b**) from images of immunostained Caco-2 cells (**Fig. 7e**) treated with LbcWT or BLP strains (MOE; 10, 24 h) before exposure with *Lm* (MOI; 50, 2h).

(c) Separated channel images showing mislocalization (intracellular puncta, endocytosis) of E-cadherin (labeled in red; arrows) in *Lm* exposed cells or treated with LbcWT before *Lm* exposure (MOI; 50, 2h). Caco-2 cells pretreated with BLP strains show intact localization of E-cadherin and markedly reduced adhesion of *Lm*. Separated channels are shown individually at the bottom of the merged images for clarity of the E-cadherin panel in **Fig. 7e**. Images are representative of five different fields from three independent experiments.

(d) Enumeration (mean \pm SEM, n = 4 independent biological samples) of adhered *Lm* cells from immunostained images (**Fig. 7e**) of Caco-2 cells treated with LbcWT or BLP strains (MOE 10, 24 h) before *Lm* exposure (MOI 50, 2h).

(e, f) Quantitative analysis (mean \pm SEM, n = 3 mice) of MLCK and P-MLC expression (e) and of claudin-1, occludin, and E-cadherin puncta formation (f) from images of immunostained ileal tissues (**Fig. 7f**) of mock-treated uninfected naïve mice or naïve, LbcWT or BLP-treated mice (10 days) at 48 hpi with *Lm*.

Each point represents an average of five different fields from one of the three (**a**, **b**) or four (**d**) independent experiments or a single mouse per treatment (**e**, **f**) The one-way (**d**) or two-way ANOVA (**a**, **b**, **e** and **f**) test followed by a Tukey's multiple comparisons was used. For all analysis: ****p < 0.0001; ***p < 0.001; **p < 0.



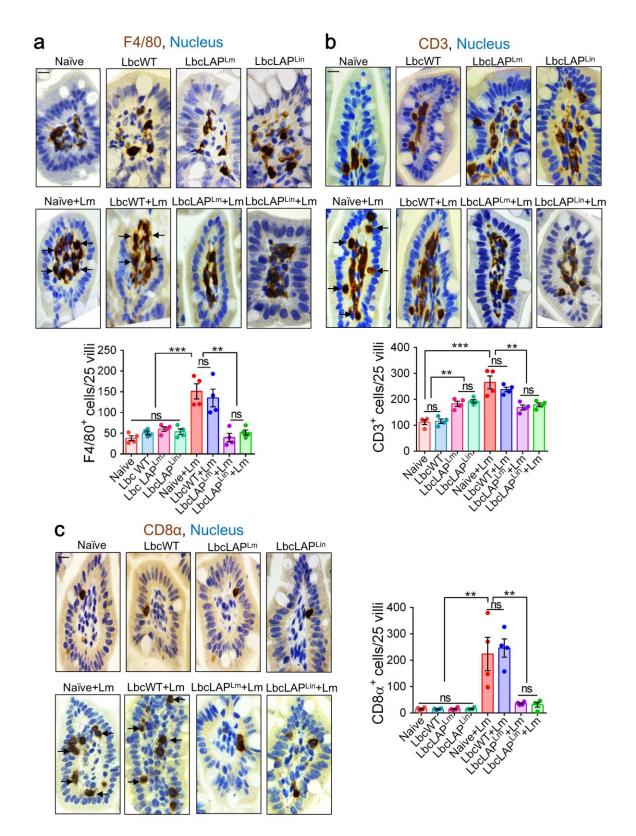
Supplementary Fig. 7 BLP does not cause disturbance of intestinal epithelial cell-cell junctional integrity.

(**a**, **d**) Confocal immunofluorescence micrographs of immunostained Caco-2 cells without treatment (control) or exposed to LbcWT or BLP strains (MOE 10, 24 h) without *Lm* exposure (**a**) or immunostained ilea from mock-treated mice (naïve) or treated with LbcWT or BLP strains (10 days) without *Lm* exposure (**d**) showing baseline MLCK (green, arrows, **d**) and P-MLC (green, arrows, **d**) expression and intact localization of claudin-1 (red) in Caco-2 (A), green in mouse ileum (**d**, arrows), occludin (red, arrows, **d**), and E-cadherin (red, arrows, **d**). Images are representative of five different fields from three independent experiments (**a**) or 3 mice per treatment (**d**). Scale bars, 10 μm.

(**b**, **c**, **e**, **f**) Quantitative analysis (mean \pm SEM, n = 3 biologically independent samples) of MLCK and P-MLC expression in Caco-2 (**b**) and mouse ileum (**e**) and of claudin-1, occludin, and E-cadherin puncta formation in Caco-2 (**c**) and mouse ileum (**f**) from images of immunostained Caco-2 cells (**a**) or mouse ileum (**b**). Each point represents an average of five different fields from one of the three independent experiments (**b**, **c**) or a single mouse per treatment (**e**, **f**).

Statistical significance was determined by using the two-way ANOVA (**b**, **c**, **e** and **f**) test followed by Tukey's multiple comparisons. *p < 0.05; ns, no significance. Source data are provided as a Source Data file.

Supplementary Fig. 8 BLP prevents *Lm*-induced NF-kB activation and modulates cytokines.


(a) Confocal immunofluorescence micrographs showing decreased nuclear localization of P-p65 (a, green) in Caco-2 cells treated with BLP strains (MOE 10, 24 h) but not with LbcWT before *Lm* exposure (MOI 50, 1h). Arrows indicate the nuclear localization of P-p65 in *Lm* exposed cells or those treated with LbcWT strain before *Lm* exposure. Separated channels are shown individually in the bottom panels of the merged images. Scale bars, 10 μ m. Images are representative of five different fields from three independent experiments.

(b, c) Quantified results from Fig. 8a expressed as mean \pm SEM p65 and Supplementary Fig. 8b expressed as mean \pm SEM P-p65 (b) nuclear positive Caco-2 cells. Each point represents five different fields from one of the three independent experiments (n = 15 fields).

(**d**, **e**, **f**, **g**) Quantified results (mean \pm SEM) and confocal immunofluorescence micrographs and showing no increase in nuclear localization of p65 (**d**, **f**) and P-p65 (**e**, **g**) in villi of mice ilea after *L. casei* treatment (LbcWT or BLP) for 10 days, relative to naïve mock-treated mice. Each point in **d**, **e** represents an average of 15 villi from a single mouse, 4 mice per group, *n* = 60 villi. Scale bars, 10 µm.

(**h**, **i**) Representative immunohistochemical micrographs of sections of the ileum showing increased IL-10⁺ cells (**a**, brown, arrows) and TGF β^+ cells (**b**, brown, arrows) in BLP-treated (10 days) mice, relative to LbcWT-treated (10 days) mice pre or post-*Lm* challenge at 48 hpi. Nuclei are counterstained (blue). Scale bars, 10 µm

Statistical significance (**b**, **c**, **d** and **e**) was determined by using the one-way ANOVA followed by Tukey's multiple comparisons test. For all analysis: ****p < 0.0001; ***p < 0.001; ns, no significance. Source data are provided as a Source Data file.

Supplementary Fig. 9 Analysis of F4/80 (macrophage), CD3 and CD8 positive cells in the intestinal tissues of BLP-treated mice.

(a, b) Representative immunohistochemical micrographs (top panels) and respective quantification (bottom panels, mean \pm SEM) of ileal tissues showing increased F4/80⁺ macrophage (a, brown, arrows), CD3⁺ cells (b, brown, arrows) in naïve or LbcWT-treated (10 days), relative to BLP-treated (10 days) mice at 48 hpi. Bars, 10 µm.

(c) Representative immunohistochemical micrographs (left) and respective quantification (right, mean \pm SEM) of ileal tissues showing increased CD8⁺ cells (**a**, brown, arrows) in naïve or LbcWT-treated (10 days), relative to BLP-treated (10 days) mice at 48 hpi. Bars, 10 µm.

For panels **a-c** tissue sections were counterstained with hematoxylin to stain the nucleus. Each point represents an average of 25 villi from a single mouse, 4 mice per group, n = 100 villi. Statistical significance was determined by using the one-way ANOVA followed by Tukey's multiple comparisons test. For all analysis: ***p < 0.001; **p < 0.01; ns, no significance. Source data are provided as a Source Data file.

Supplementary Table 1. List of antibodies, bacterial strains, biological samples, chemicals, critical commercial assays, experimental models (cell lines and mouse strains), oligonucleotides and software/algorithms used in the study.

Reagents	Source	Catalog No.
Antibodies		
Mouse monoclonal anti-LAP	Our Lab ¹	N/A
Horse anti-mouse IgG (HRP-linked)	Cell Signaling	Cat # 7076, RRID: AB_330924
Goat anti-rabbit IgG (HRP-linked)	Cell Signaling	Cat # 7074, RRID: AB_2099233
Rat monoclonal anti-ZO-1	Thermo Fisher Scientific	Cat # MABT11MI, RRID: AB_628459
Rabbit polyclonal anti-Listeria	Our Lab	N/A
Rabbit polyclonal anti-InIA	Our Lab ²	N/A
Mouse monoclonal anti-N- acetylmuramidase (NamA)	Our Lab ³	N/A
Rabbit polyclonal anti-Hsp60	Our Lab ²	N/A
Mouse monoclonal anti-β-actin	Santa Cruz Biotechnology	Cat # sc-47778, RRID: AB_626632
Normal mouse IgG	Santa Cruz Biotechnology	Cat # sc-2025, RRID: AB_737182
Normal rabbit IgG	Santa Cruz Biotechnology	Santa Cruz Biotechnology
Mouse monoclonal anti-Hsp60	Enzo life Science	Cat # ADI-SPA-806F, RRID: AB_11177888
Rabbit monoclonal anti-MEK 1/2	Cell Signaling	Cat # 8727, RRID:AB_10829473
Rabbit polyclonal anti-Muc-2	Novus Biological	Cat # NBP1-31231, RRID: AB_10003763
Rabbit monoclonal anti- Ki67	Cell Marque	Cat # 275R-15, RRID: AB_1158033
Rabbit polyclonal anti-Cleaved-caspase 3 (Asp175)	Cell Signaling	Cat # 9661S, RRID: AB_2341188
Mouse monoclonal anti-MLCK	Sigma-Aldrich	Cat # M7905, RRID: AB_477243
Rabbit polyclonal anti–phosphorylated MLC	Cell Signaling	Cat # 3671, RRID: AB_330248
Mouse monoclonal anti-phosphorylated MLC	Cell Signaling	Cat # 3675, RRID: AB_2250969
Mouse monoclonal anti-Claudin-1	Thermo Fisher Scientific	Cat # 37-490-0, RRID: AB_ 2533323
Mouse monoclonal anti-Occludin	Thermo Fisher Scientific	Cat # 33-150-0, RRID: AB_2533101
Rabbit monoclonal anti-E-cadherin (Human)	Cell Signaling	Cat # 3195, RRID: AB_2291471
Rat monoclonal anti-E-cadherin (Mouse)	Invitrogen	Cat # 13-190-0, RRID: AB_2533005

Rabbit monoclonal anti-NF-kB p65	Cell Signaling	Cat # 8242, RRID:
	een eignamig	AB_10859369
Rabbit monoclonal anti-Phospho-NF-KB	Cell Signaling	Cat # 3033, RRID:
p65 (Ser536)		AB_331284
Rat monoclonal anti-IL-10	Abcam	Cat # AB 189392, RRID:
		AB_733113
Rat monoclonal anti-TGF-β clone	Abcam	Cat # AB215715, RRID: NA
(EPR21143)		
Rat monoclonal anti-F4/80	Bio-Rad	Cat # MCA497R, RRID:
		AB_323279
Rat monoclonal anti-CD4	Invitrogen	Cat # 14-9766-82, RRID:
		AB_2573008
Rabbit polyclonal anti-CD3	Dako	Cat # A0452, RRID: AB_
		2335677
Rat monoclonal anti-CD8α	Invitrogen	Cat # 14-0808-82, RRID:
		AB_2572861
Rat monoclonal anti-FoxP3	Invitrogen	Cat # 14-5773-82, RRID:
		AB_467576
Rabbit polyclonal anti-CD11c	Invitrogen	Cat # PA5-79537, RRID: AB_
		2746652
Goat polyclonal anti-NKp46	R&D Systems	Cat # AF2225, RRID: AB_
		355192
Goat anti-mouse IgG (H+L), F(ab')2	Cell Signaling	Cat # 4408, RRID:
Fragment (Alexa Fluor 488 Conjugate)		AB_10694704
antibody Goat anti-rabbit IgG (H+L), F(ab')2	Cell Signaling	Cat # 4412, RRID:
Fragment (Alexa Fluor 488 Conjugate)		AB_1904025
antibody		AD_1904023
Goat anti-mouse IgG (H+L), F(ab')2	Cell Signaling	Cat # 4409, RRID:
Fragment (Alexa Fluor 555 Conjugate)	Och Olynaing	AB_1904022
antibody		//B_1001022
Goat anti-rabbit IgG (H+L), F(ab')2	Cell Signaling	Cat # 4413, RRID:
Fragment (Alexa Fluor 555 Conjugate)	e en eignamig	AB_10694110
antibody		
Goat anti-rat IgG (H+L), (Alexa Fluor 555	Cell Signaling	Cat # 4417, RRID:
Conjugate) antibody		AB_10696896
Goat anti-rabbit IgG (H+L), Highly Cross-	Invitrogen	Cat # A21245, RRID:
Adsorbed (Alexa Fluor 647 Conjugate)	Ū	AB_253813
antibody		
Goat anti-rabbit ImmPRESS HRP	Vector Labs	Cat # MP-7451, RRID: AB_
		2631198
Goat anti-rat ImmPRESS HRP (M	Vector Labs	Cat # MP-7444, RRID: AB_
adsorbed)		2336530
Horse anti-mouse ImmPRESS HRP	Vector Labs	Cat # MPX-2402, RRID: AB_
		2336831
Horse anti-Goat ImmPRESS HRP	Vector Labs	Cat # MP-7405, RRID: AB_
		2336526
Isotype control Mouse IgG	Vector Labs	Cat # I-2000, RRID: AB_
· · · · ·		2336354
Isotype control Rabbit IgG	Vector Labs	Cat # I-1000, RRID: AB_
		2336355

Isotype control Rat IgG	Vector Labs	Cat # I-4000, RRID: AB_ 2336356
Bacterial Strains		
<i>L. monocytogenes</i> F4244 (WT), serovar 4b, a clinical isolate	CDC, Atlanta, GA ³	N/A
L. monocytogenes KB208 (lap ⁻)	Our Lab ⁴	N/A
L. monocytogenes CKB208 (lap ⁻ +lap ^{Lm})	Our Lab ⁴	N/A
L. monocytogenes CKB208 (lap ⁻ +lap ^{Lin})	This study	N/A
L. monocytogenes F4244 expressing GFP	Bruce Applegate Lab	N/A
L. innocua F4248	CDC, Atlanta, GA	N/A
Lactobacillus casei, ATCC334 (WT)	Michael Miller, UIUC	N/A
Lactobacillus casei, vancomycin-resistant (300 µg/ml)	This study	N/A
<i>L. casei</i> expressing LAP of <i>Lm</i> (AKB906, LbcLAP ^{Lm})	This study	N/A
<i>L. casei</i> expressing LAP of <i>L. innocua</i> (AKB907, LbcLAP ^{Lin})	This study	N/A
<i>L. casei</i> carrying empty plasmid pLP401T (Lbc ^{Vec})	This study	N/A
Pediococcus acidilactici strain H	Our Lab⁵	N/A
Salmonella enterica serovar Typhimurium ver. Copenhagen	Our Lab	N/A
Biological Samples		
Tissues isolated from ileum and colon of 8- 10 weeks-old A/J mice	N/A	N/A
Chemicals		
MRS Broth	Difco/BD	Cat # D088107
Modified MRS containing 1% mannitol	Koo et al. 2012 ⁶	N/A
Modified Oxford agar Base	Neogen Corporation	Cat # 7428
Modified Oxford agar Base supplement	Neogen Corporation	Cat # 7991
Buffered Listeria enrichment broth	Neogen Corporation	Cat # 7675
Buffered Listeria enrichment broth	Neogen	Cat # 7980
supplement	Corporation	
Tryptic Soy Broth	Difco/BD	Cat # DF0370-07-5
Brain heart infusion agar	Neogen Corporation	Cat # 7116
Pepsin	Sigma-Aldrich	Cat # 1.07185
Lipase	Sigma-Aldrich	Cat # L0382
Bovine Bile	Sigma-Aldrich	Cat # B8381
Porcine pancreatin	Sigma-Aldrich	Cat # P3292
DAPI	Cell Signaling	Cat # 4083
FITC-labeled 4 kDa dextran	Sigma-Aldrich	Cat # 46944
Anti-Listerial magnetic Dynabeads	Thermo Fischer Scientific	Cat # 71006

Halt proteases and phosphatase inhibitors	Thermo Fischer Scientific	Cat # PI78443
Restore Western Blot Stripping Buffer	Thermo Fischer Scientific	Cat # PI46430
Proteinase K	Dako	Cat # S3004
Bloxall solution (Blocking Solution)	Vector Labs	Cat # SP-6000
ImmPACT DAB (Chromogen)	Vector Labs	Cat # SK-4105
ImmPACT Vector Red (Chromogen)	Vector Labs	Cat # SK-5105
Prolong Gold (Antifade Reagent)	Invitrogen	Cat # P36934
Critical Commercial Assays		
Mouse TNF-α ELISA kit	Ray Biotech	Cat # ELM-TNFa-1
Mouse IL-6 ELISA kit	Ray Biotech	Cat # ELM-IL6-1
Mouse IFNy ELISA kit	Ray Biotech	Cat # ELM-IFNg-1
BCA assay kit	Thermo Fisher	Cat # PI23235
DCA assay Ki	Scientific	Cat # F123233
B-PER extraction kit	Thermo Fisher	Cat # 78243
D-F EIX EXITACIION KIL	Scientific	Cat # 70243
Mem-Per Plus Membrane Protein	Thermo Fisher	Cat # PI89842
Extraction Kit	Scientific	Cal # F109042
Experimental Models: Cell Lines	Scientino	
Cell line: Caco-2	ATCC	Cat # HTB37
	Our Lab ²	N/A
Cell line: Caco-2 presenting stable		IN/A
suppression of <i>hsp60</i> mRNA via short		
hairpin RNA (shRNA) mediated targeting	Our Lab ²	N/A
Cell line: Caco-2 presenting a non- targeting control shRNA vector		N/A
Cell line: Caco-2 presenting a constitutive	Our Lab ²	N/A
overexpression of Hsp60		IN/A
Cell line: MDCK	ATCC	Cat # MDCK (NBL-2) CCL-34
		Cat # MDCK (NBL-2) CCL-34
Experimental Models: Organisms/Strains		0, , , ,, ,, 0000040
Mouse: A/J	The Jackson	Stock # 000646
	Laboratory	
Oligonucleotides		
Lcas467 DNA Oligo, Alexa 488	Integrated DNA	N/A
5'	Technologies ⁷	
/5Alex488N/CCGTCACGCCGACAACAG-		
3'		
LAPN-F 5'-	Integrated DNA	
GACCATGGATGGCAATTAAAGAAAATG-	Technologies ⁶	
3' and LAPX-R-5'-		
GACTCGAGTCAAACACCTTTGTAAG-3'		
Software and Algorithms		· · · · · ·
Bio-Rad quantity one 4.6.9	Bio-Rad	http://www.bio-rad.com/en-
		ch/product/quantity-one-1-d-
		analysis-software
ImageJ 1.51t	NIH	https://imagej.nih.gov/ij/
GraphPad Prism 6.0	GraphPad Software	https://www.graphpad.com/sc ientific-software/prism/

Microsoft Excel 2010/365	Microsoft	https://products.office.com/en -us/excel
Nikon Elements Ver4.60.00	Nikon	https://www.nikoninstruments. com/Products/Software/NIS- Elements-Basic-Research

Supplementary References

- Pandiripally, V.K., Westbrook, D.G., Sunki, G.R. & Bhunia, A.K. Surface protein p104 is involved in adhesion of *Listeria monocytogenes* to human intestinal cell line, Caco-2. *J. Med. Microbiol.* 48, 117-124 (1999).
- 2. Burkholder, K.M. & Bhunia, A.K. *Listeria monocytogenes* uses *Listeria* adhesion protein (LAP) to promote bacterial transpithelial translocation, and induces expression of LAP receptor Hsp60. *Infect. Immun.* **78**, 5062-5073 (2010).
- 3. Bailey, T.W., do Nascimento, N.C. & Bhunia, A.K. Genome sequence of *Listeria monocytogenes* strain F4244, a 4b serotype. *Genome Announcements* **5**, e01324-01317 (2017).
- 4. Jagadeesan, B. et al. LAP, an alcohol acetaldehyde dehydrogenase enzyme in *Listeria* promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species. *Microbiology* **156**, 2782-2795 (2010).
- 5. Bhunia, A.K., Johnson, M.C. & Ray, B. Purification, characterization and antimicrobial spectrum of a bacteriocin produced by *Pediococcus acidilactici. J. Appl. Bacteriol.* **65**, 261-268 (1988).
- 6. Koo, O.K., Amalaradjou, M.A.R. & Bhunia, A.K. Recombinant probiotic expressing *Listeria* adhesion protein attenuates *Listeria monocytogenes* virulence in vitro. *PLoS One* **7**, e29277 (2012).
- 7. Quevedo, B. et al. Phylogenetic group-and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms. *BMC Microbiol.* **11**, 14 (2011).