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Circulating levels of endothelial miR-150 are reduced in pul-
monary arterial hypertension (PAH) and act as an indepen-
dent predictor of patient survival, but links between endo-
thelial miR-150 and vascular dysfunction are not well
understood. We studied the effects of endothelial miR-150
supplementation and inhibition in PAH mice and cells
from patients with idiopathic PAH. The role of selected me-
diators of miR-150 identified by RNA sequencing was evalu-
ated in vitro and in vivo. Endothelium-targeted miR-150 de-
livery prevented the disease in Sugen/hypoxia mice, while
endothelial knockdown of miR-150 had adverse effects.
miR-150 target genes revealed significant associations with
PAH pathways, including proliferation, inflammation, and
phospholipid signaling, with PTEN-like mitochondrial phos-
phatase (PTPMT1) most markedly altered. PTPMT]1 reduced
inflammation and apoptosis and improved mitochondrial
function in human pulmonary endothelial cells and blood-
derived endothelial colony-forming cells from idiopathic
PAH. Beneficial effects of miR-150 in vitro and in vivo
were linked with PTPMT1-dependent biosynthesis of mito-
chondrial phospholipid cardiolipin and reduced expression
of pro-apoptotic, pro-inflammatory, and pro-fibrotic genes,
including ¢-MYB, NOTCH3, transforming growth factor B
(TGF-B), and Collal. In conclusion, we are the first to
show that miR-150 supplementation attenuates pulmonary
endothelial damage induced by vascular stresses and may
be considered as a potential therapeutic strategy in PAH.

INTRODUCTION

Pulmonary arterial hypertension (PAH) is a severe and currently
incurable disease characterized by progressive thickening of small ar-
teries in the lung, leading to increased pulmonary vascular resistance
and right heart failure." Endothelial damage followed by proliferation
of vascular smooth muscle cells underlie the disease pathology.” The
converging effects of hypoxia, inflammation, and oxidative and meta-
bolic stress play a key contributory role.

At the cellular level, the arterial and right ventricular (RV) remod-
eling in PAH is associated with a shift from oxidative phosphory-
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lation to glycolysis,” which increases the availability of non-
oxidized lipids, amino acids, and sugars essential for rapid
cell proliferation.* These changes are accompanied by inhibition
of mitochondrial biogenesis, mitochondrial fragmentation, mem-
brane hyperpolarization, and altered reactive oxygen species
(ROS) production.™’

MicroRNAs (miRNAs) have emerged as essential regulators of mul-
tiple cellular processes, simultaneously controlling mRNA process-
ing, stability, and translation of multiple gene targets. Given the
multifaceted nature of PAH pathology, there is interest in the role
of miRNAs in the pathogenesis of this condition.’

We have previously shown that reduced miR-150-5p (referred to as
miR-150) levels in plasma, circulating microvesicles, and the blood
cell fraction from PAH patients are significant predictors of survival,
independent of age, cardiac index, disease duration, and circulating
lymphocyte count.” While miR-150 is highly expressed in mature
lymphocytes, circulating lymphocytes account for only about 6% of
the variation in the miR-150 level, suggesting that endothelial cells
are a likely source of this miRNA.® The impact of variation in endo-
thelial miR-150 expression on endothelial function or disease pathol-
ogy has not yet been investigated.

Herein, we describe the effects of endothelial miR-150 supplementa-
tion and inhibition in experimental PAH, human pulmonary artery
endothelial and smooth muscle cells, and blood-derived endothelial
colony-forming cells (ECFCs) from PAH patients and identify the
signaling mediators involved. We show that miR-150 has anti-
apoptotic, anti-inflammatory, anti-proliferative, and anti-fibrotic ef-
fects and is required for mitochondrial adaptation to an increased en-
ergy demand in conditions of vascular stress.
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RESULTS

Endothelial supplementation of miR-150 improves pulmonary
vascular hemodynamics and reduces vascular remodeling in
Sugen/hypoxia mice

As a proof of concept, the potential therapeutic effects of miR-150
administration were evaluated in Sugen/hypoxia PAH mice (Fig-
ure 1A). miR-150 complexed with the lipid carrier DACC was deliv-
ered via tail vein injection at 4-day intervals throughout the 3-week
period of study. The DACC liposomal formulation targets the
vascular endothelium, with highest efficiency seen in the lung. ™"
Analysis of the distribution of fluorescently labeled RNA mimic
duplex 1-Cy3 delivered in DACC liposomes 24 h post-injection
confirmed that liposomal cargo accumulated in the lung, but also in
other tissues, including heart and liver (Figure S1).

The control Sugen/hypoxia animals showed a significantly elevated
right ventricular systolic pressure (RVSP), right ventricular
hypertrophy (RVH), and increased vascular muscularization,
marked by a prominent staining of o-smooth muscle actin
(a-SMA) of pre-capillary arterioles (Figures 1B-1E). Lung and
heart levels of miR-150 were significantly reduced in these mice
when compared with healthy transfection controls (Figures 1F
and 1G). Reduction in miR-150 expression was most prominent
in the vascular endothelium while miR-150 expression levels in
leukocytes and airway epithelium remained relatively unaffected
(Figure S2).

Effective miR-150 delivery to lung and heart tissues was confirmed
by qPCR (Figures 1F and 1G). The treatment reduced RVSP (p <
0.05), RVH (p < 0.05), and vascular muscularization (p < 0.0001;
Figures 1B-1E). To evaluate potential liver toxicity of DACC/
miR-150 delivery, aspartate aminotransferase (AST) assay was per-
formed on liver tissues from different study groups (Figure S3).
DACC-treated mice showed an ~2-fold increase in AST activity,
comparable to the levels seen in hyperglycemic mice.'" This mild
hepatotoxic effect is more likely to be associated with liposomal liver
clearance'” rather than miR-150, as no significant difference in AST
activity was noted between DACC controls and DACC/miR-150-
treated mice.

Heterozygous endothelial-specific deletion of miR-150 worsens
the symptoms of pulmonary hypertension (PH)

Heterozygous miR-150iEC-knockout (KO) mice (miR-lSOﬂ/
Cdh5(PAC)-iCreERT2) were used for experiments to mimic the
reduction (but not complete depletion) of miR-150 content seen in
human disease and pre-clinical models of PAH. Following tamoxifen
administration, the efficiency of Cre-recombinase-mediated deletion
of miR-150 was confirmed by qPCR (Figure 2A).

Sugen/hypoxia miR-150iEC-KO mice showed a substantial eleva-
tion of RVSP (~2-fold increase, p < 0.0001), accompanied by a
rise in RVH and pulmonary vascular muscularization (both p <
0.05), compared with Sugen/hypoxia wild-type littermates (Figures
2B-2E).

Identification of miR-150-regulated genes

In order to identify potential mediators of miR-150-induced effects,
human pulmonary artery endothelial cells (HPAECs) transfected
with miR-150 or non-targeting control miRNA were subjected to
RNA profiling.

Out of the 13,767 genes identified, 180 genes were significantly
upregulated (p < 0.01, fold change > 1.5) and 207 were downregulated
(p < 0.01, fold change < -1.5) by miR-150 (Figure 3A). Heatmap and
unsupervised hierarchical clustering of the top 26 differentially ex-
pressed genes (with adjusted p < 0.05) are shown in Figure 3B. A
list of differentially expressed genes is provided in Table S3.

PTEN-like mitochondrial phosphatase (PTPMT1I), a mitochondrial
protein tyrosine phosphatase essential for cardiolipin biosynthesis,
was the most significantly altered gene, showing a 2.5-fold increase
in expression (adjusted p value of 5.48 x 10~7), compared with con-
trols. miRNAs can reduce gene expression by binding to the 3 UTR of
target mRNAs or increase target gene expression by binding to gene
promoters.”” RNAhybrid analysis has identified 70 putative miR-150
predicted binding sites to PTPMT1, with free energy ranges between
—20.2 and —38.1 kcal/mol. The top minimum free energy (MFE)
event (—38.1 kcal/mole) occurred within the promoter region of
PTPMT]I (Figure 3C; Figure S4). Predicted binding of miR-150 to
PTPMT]I and transforming growth factor 1 (TGFBI) is illustrated
in Figure S4. While previous studies showed an upregulation of
mRNAs through miRNA binding to their promoter,"* this mecha-
nism has been relatively less well investigated, compared to mRNA
degradation and translational repression through binding to the 3’
UTR. Delineating specific mechanisms through which miR-150 reg-
ulates PTPMT1 and other gene targets will require further studies.
The increase in the expression of PTPMTI was validated by qPCR
(Figure 3D) and western blotting (Figure S5), and reductions in the
expression of other genes identified by RNA sequencing (RNA-
seq), including SERPINEI, PERP, DUSP5, NOTCH3, and c¢-MYB,
were validated by qPCR (Figure S5).

Pathway analysis of miR-150 gene targets showed significant associ-
ations with pathways regulating cell proliferation, inflammation,
and oxidative metabolism, including NOTCH signaling (p = 0.029),
cardiolipin biosynthesis (p = 0.014), and inositol phosphate signaling
(p = 0.007) (Figure 3E).

Consistent with the findings in vitro, quantification of transcripts by
qPCR and RNAscope fluorescent in situ hybridization, which allows
specific identification of single transcripts,'” confirmed expression
changes of miR-150 target genes (c-MYB and NOTCH3) in the lungs
of miR-150-treated animals (Figures S6 and S7). Heart tissue from
miR-150-treated Sugen/hypoxia mice showed significantly reduced
expression of markers of cardiac hypertrophy and fibrosis, including
TGFBI, alpha-1 type I collagen (Collal), and regulator of calcineurin
1 (Reanl) (Figure S8). In contrast, heart tissues from Sugen/hypoxia
miR-150iEC-KO mice showed significantly increased levels of Collal,
compared with the corresponding wild-type disease controls (Figure S9).
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Figure 1. Effect of pulmonary endothelial miR-150 supplementation on development of PH in Sugen/hypoxia mice

(A) Experimental layout. (B-D) Right ventricular systolic pressure (RVSP) (B), right ventricular hypertrophy (RVH; right ventricle to left ventricle + septum ratio [RV/LV+S]) (C),
and percentage (D) of muscularized vessels <50 um in diameter/total number of vessels in the lungs of normoxia control mice and Sugen/hypoxia mice treated with
scrambled control or miR-150 mimic delivered by intravenous (i.v.) administration of DACC lipoplex, as indicated. (E) Representative images of a-SMA staining in lung
sections from Sugen/hypoxia mice treated with scrambled control or miR-150 mimic. (F and G) miR-150 expression in lung and heart, as indicated; fold change of normoxia
control. *p < 0.05, **p < 0.005, **p < 0.001, ****p < 0.0001, comparisons with normoxia control; *p < 0.05, **#p < 0.001, **¥p < 0.0001, comparisons with scrambled control
(by one-way ANOVA with a Tukey’s post-test.). Bars are means + SEM. n = 8 mice/group.

PTPMT1 mediates homeostatic effects of miR-150 by qPCR (Figure 4A). Transfection efficiency evaluated with the Cy5-
In order to study the regulatory role of miR-150 in endothelial cell re-  labeled miR negative control was ~85% (Figure S10). Supplementa-
sponses, HPAECs were transfected with miR-150 mimic or miR-150  tion of miR-150 markedly attenuated endothelial cell apoptosis, hyp-
inhibitor. Changes in the intracellular miR-150 levels were confirmed  oxia-induced cell proliferation, and nuclear factor kB (NF-kB)
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Figure 2. Effect of endothelial miR-150 deletion on development of PH in Sugen/hypoxia mice

(A) Effect of tamoxifen administration on miR-150 levels in lungs of wild-type (WT) (150**) and miR-150iEC-HTKO mice (150*/7). Data are expressed as fold
change of normoxia control. (B-D) RVSP (B), RV/LV+S (C), and percentage (D) of muscularized vessels <560 um in diameter/total number of vessels in the lungs
of normoxia wild-type control (+ tamoxifen), normoxia miR-150*~ control (without tamoxifen), and Sugen/hypoxia miR-150%/~ mice with and without tamoxifen, as
indicated. In (A)=(D), open bars mark miR-150-deficient animals. (E) Representative images of a-SMA staining. Scale bar, 25 um. *p < 0.05, **p < 0.005, ***p < 0.0001,

comparisons with normoxia control; #p < 0.05, *##

means + SEM. n = 4-8 mice/group.

activation (Figures 4B-4D). In contrast, inhibition of miR-150 mark-
edly augmented endothelial damage and inflammatory activation
(Figures 4B-4D).

To see whether manipulation of miR-150 levels in endothelial
cells can affect smooth muscle cell proliferation, HPAECs and
human pulmonary artery smooth muscle cells (HPASMCs)
were seeded on the opposite sides of a porous membrane in
Transwell dishes (Figure S11). Endothelial miR-150 overexpres-
sion significantly reduced hypoxia-induced proliferation of
HPASMCs (Figure S11).

Hypoxic exposure significantly reduced PTPMTI1 expression in
HPAECs (1.5-fold decrease, p < 0.01) and HPASMCs (2.5-fold
decrease, p < 0.001), compared with normoxic controls (Figure S12).
Overexpression and silencing of PTPMT1 (Figure 4E) mimicked, to a
large extent, changes induced by manipulation of miR-150 expression
(Figures 4F-4H), suggesting that PTPMT1 acts as a key mediator of
the anti-proliferative and anti-inflammatory effects of miR-150 in
pulmonary endothelial cells.

p < 0.0001, comparisons with miR-150*~ control (by one-way ANOVA with a Tukey’s post-test). Bars are

miR-150 and PTPMT1 improve mitochondrial function in
HPAECs

Energy metabolism constitutes an essential link between cell growth
and apoptosis.'® In order to assess the effect of miR-150 and PTPMT1
on energy metabolism, HPAECs and HPAEC:s transfected with miR-
150 or PTPMTI were subjected to bioenergetic profiling. The
extracellular acidification rate (ECAR), which reflects the level of
glycolysis, was not significantly affected by either treatment, but mito-
chondrial oxygen consumption rate (OCR), reflective of the level of
mitochondrial respiration, was significantly elevated in miR-150
and PTPMT1-overexpressing cells (Figures 5A-5C).

The treatment of cells with miR-150 and PTPMT1 significantly
reduced mitochondrial proton leak (Figure 5D). As proton leak de-
picts the protons that migrate into the matrix without producing
ATP, a reduction in proton leak indicates an improvement in
coupling of substrate oxygen and ATP generation.”

Measurement of metabolic potential helps to evaluate the capacity of
cells to respond to stress conditions associated with increased energy
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demand via mitochondrial respiration and glycolysis. The results
show that miR-150 and PTPMTT1 significantly increased mitochon-
drial metabolic potential measured as fold increase in OCR over basal
control levels, while glycolytic metabolic potential in cells remained
relatively unaffected (Figures 5E and 5F).

miR-150 and PTPMT1 restore cardiolipin levels in Sugen/
hypoxia lung and heart tissues and increase mitochondrial
content in human PAH ECFCs

PTPMT1 is a mitochondrial tyrosine kinase, essential for the biosyn-
thesis of cardiolipin, the main phospholipid component of mitochon-
drial membranes and a key regulator of mitochondrial structure and
function.'®” We evaluated the effect of miR-150 and PTPMT1 sup-
plementation on cardiolipin levels in lungs and hearts from miR-150-
treated Sugen/hypoxia mice, as well as HPAECs and ECFCs from
idiopathic PAH (IPAH) patients.

PTPMT1 and cardiolipin levels were significantly reduced in Sugen/
hypoxia mice, while miR-150 supplementation restored their expres-
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sion to the level seen in healthy mice (Figures 6A-6C). Overexpression
of PTPMT1 and miR-150 significantly elevated cardiolipin levels in
cultured endothelial cells (p < 0.01 and p < 0.05, respectively)
(Figure 6D).

Blood-derived ECFCs are often used as surrogates for pulmonary
endothelial cells in PAH.** qPCR analysis showed that miR-150
and PTPMTI1 expressions were markedly reduced in ECFCs from
IPAH patients, compared with the cells from healthy individuals
(p < 0.01, n = 12-14) (Figures 7A and 7B). IPAH cells also showed
a marked (~2-fold, p < 0.05) reduction in cardiolipin levels, which
was restored upon treatment with miR-150 and PTPMTI1
(Figure 7C).

Reduction in mitochondrial oxidative phosphorylation in PAH is
linked with an increase in mitochondrial fragmentation and a reduc-
tion in mitochondrial biomass.” Accordingly, we observed increased
mitochondrial fragmentation and reduced mitochondrial content in
ECFCs from IPAH patients, compared with healthy controls (Figures
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Figure 4. Endothelium-protective effects of miR-150 and PTPMT1

(A-D) Effect of miR-150 mimic and miR-150 inhibitor on (A) miR-150 expression levels in HPAECs, (B) starvation-induced apoptosis (caspase-3/7 activity assay), (C) hypoxia-
induced proliferation (EdU incorporation assay), and (D) hypoxia (24 h)-induced NF-kB activity (luciferase reporter assay). (E-H) Effect of PTPMT1 overexpression (PTPMT1) or
silencing (SiPTPMT1) on (E) PTPMT1 mRNA expression, (F) apoptosis, (G) proliferation, and (H) hypoxia-induced NF-kB activity in HPAECs. In (A), n =3;in (B)-(H), n=6."p <
0.05, *p < 0.001, **p < 0.001, ***p < 0.0001, comparisons with untreated transfection control; *p < 0.05, #p < 0.001, ##*p < 0.0001, comparisons with treated (starvation
or hypoxia, as appropriate) transfection controls (one-way ANOVA with a Tukey’s post-test). Bars are mean fold changes of transfection control + SEM.
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Figure 5. Effect of miR-150 and PTPMT1 on
metabolic potential in HPAECs

(A-F) Extracellular acidification rate (ECAR) (A), oxygen
consumption rate (OCR) (B), energy map (C), proton leak
(D), ECAR metabolic potential (% of basal control) (E), and
OCR metabolic potential (% of basal control) (F) in control
HPAECs (transfection control) and HPAECs transfected
with miR-150 or PTPMT1, as indicated. n = 5. Bars are
means = SEM. *p < 0.05, ****p < 0.0001, comparison with
transfection control (basal); *p < 0.05, as indicated (by
one-way ANOVA with a Tukey’s post-test).
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7D-7F). Overexpression of miR-150 and PTPMT1 restored healthy
control phenotype in IPAH cells (Figures 7D-7F).

DISCUSSION

This study highlights the key role of endothelial miR-150 in the regu-
lation of pulmonary vascular homeostasis. We show that supplemen-
tation of miR-150 reduces expression of markers of inflammation,
apoptosis, and fibrosis critical to the pathology of PAH, including
¢-MYB, NOTCH3, TGF-f and Collal, and it enhances mitochon-
drial metabolic potential via increased expression of PTPMT1, the
key regulator of cardiolipin biosynthesis.

Downregulation of miR-150 in pulmonary endothelium and IPAH

endothelial cells may result from transcriptional repression by
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stressed

phenotype The effects of PTPMT1 can be linked to its role

in the biosynthesis of cardiolipin, a mitochon-

drial-specific phospholipid regulating mito-
chondrial membrane integrity and function. Interaction with cardio-
lipin is required for optimal activity of several inner mitochondrial
membrane proteins, including the enzyme complexes of the electron
transport chain and ATP production.'®

miR-150 and PTPMT1 may reduce maladaptive right ventricular
remodeling by augmentation of glucose oxidation and prevention
of capillary rarefaction.”® In addition to the increased PTPMT1
levels, miR-150-treated Sugen/hypoxia mice showed reduced
expression of cardiac hypertrophy and the fibrosis markers
Collal, TGFBI, and Rcanl.’® Reduction in Collal expression is
likely to be mediated by direct targets of miR-150, c-MYB, Spl,
or B integrin.’*> miR-150 interaction with TGFB1 can poten-
tially occur through multiple locations, with the top predicted
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oy € To summarize, we show that reduction in endo-

site within the first intron of TGFBI. Interestingly, TGEF-f
signaling can also block miR-150 expression,”"*” suggesting the
existence of a feedback regulatory mechanism. Further studies
are required to establish the precise nature of miR-150 interactions
with its target genes.

Endothelial apoptosis, increased ROS generation and reduction in mito-
chondrial cardiolipin contribute to right ventricular failure in PAH.>**
Electron leak is the major causative factor for production of mitochon-
drial superoxide, and hence the reduction in mitochondrial proton leak
by PTPMT1 may account for the beneficial effects of miR-150
treatment.

Anti-remodeling effects of miR-150 are likely to result from the
cumulative changes in expression of multiple genes. Besides
PTPMT]1, other signaling mediators, including c-MYB, NOTCH3,
activin receptors 1 and 2, and matrix metalloproteinases, are likely
to play a role. c-MYB stimulates cell migration, increases recruit-
ment of endothelial progenitor cells,” and promotes cardiac hy-
pertrophy and fibrosis.”” NOTCH3 is a marker and predictor of
PAH, and its blockade is sufficient to reverse experimental
PAH.”®* Consistently, we observed contemporaneous, opposing
changes in the expression of miR-150 and its targets, c-MYB
and NOTCHS3, in human cells and lung tissues from PAH mice.
While the overall effect of DACC-mediated miR-150 supplementa-
tion was beneficial, it showed a mild hepatotoxic effect, possibly as

thelial miR-150 levels has adverse effects on pul-
monary hemodynamics in PAH mice, while endothelium-targeted
delivery of miR-150 is protective. In addition to the anti-proliferative
and anti-fibrotic actions of miR-150, activation of PTPMT1-cardioli-
pin signaling by this miRNA may facilitate adaptation of lung and
heart to high energy demand in stress conditions induced by mechan-
ical workload, hypoxia, or inflammation.

MATERIALS AND METHODS

Animal experiments

All studies were conducted in accordance with UK Home Office Ani-
mals (Scientific Procedures) Act 1986. To induce PAH, 8- to 12-week-
old C57BL/6 male mice (20 g; Charles River Laboratories, UK) were in-
jected subcutaneously with Sugen (SU5416; 20 mg/kg) and housed in
hypoxia (10% O,) for 3 weeks (n = 8/group).”’ mirVana hsa-miR-
150-5p (ID MC10070) mimic or scrambled miRNA control (Ambion)
in complex with DACC lipoplex preparation (Silence Therapeutics,
London, UK)’ was administered intravenously once every fourth day
at 1.5 mg/kg/day for 3 weeks, on five occasions to PAH mice and nor-
moxic healthy controls. The first injection was given 1 day before Su-
gen/hypoxia administration. At 3 weeks, the mice were anesthetized
by intraperitoneal injection of ketamine/Domitor (75 mg/kg + 1 mg/
kg). The development of PAH was verified as previously described.”!

Mice with inducible, conditional, endothelium-specific deletion of

miR-150 were obtained by crossing floxed miR-150 mice
(stock Mir150""™"/Mmjax mice from Jackson Laboratory) on a
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Figure 7. miR-150, PTPMT1, and cardiolipin levels and mitochondrial biogenesis in IPAH ECFCs

(A and B) miR-150 (A) and PTPMT1 (B) expression levels in ECFCs from healthy individuals and IPAH patients (fold change of control). (C-E) Cardiolipin levels (C), mito-
chondrial fragmentation (D), and mitochondrial content (mitochondrial coverage/cell) (E) in ECFCs treated, as indicated. (F) Representative images of mitochondrial frag-
mentation in healthy and IPAH ECFCs. Inset in the top right corner is an enlarged image of the boxed area. Mitochondria were immunolabeled with fluorescein isothiocyanate
(FITC) (green) and F-actin with tetramethylrhodamine isothiocyanate (TRITC)-phalloidin (red). Scale bar, 10 um. Data are expressed as means + SEM. *p < 0.05, **p < 0.01,
comparison with healthy control. In (A) and (B), n = 12-14; in (C)—(E), n = 4.
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C57BL/6 background with C57BL/6 mice carrying tamoxifen-induc-
ible Cre recombinase under the control of the Cdh5 promoter
(Cdh5(PAC)-iCreERT2)."” Deletion of miR-150 in miR-150""/
Cdh5(PAC)-iCreERT2 mice (referred to as miR-150iEC-KO)
induced by tamoxifen was confirmed by PCR.

A detailed description of experimental procedures is available in the
Supplemental materials and methods.

AST activity assay

An AST assay - (MAKO55, Sigma-Aldrich, Darmstadt, Germany) was
performed on frozen mouse liver tissues, according to the manufac-
turer’s guidelines.

RNAscope

For formalin-fixed, paraffin-embedded lung sections, an RNAscope
multiplex fluorescent reagent kit v2 (Advanced Cell Diagnostics,
Newark, CA, USA) and a TSA cyanine 3 & 5, tetramethylrhod-
amine (TMR), fluorescein evaluation kit system (PerkinElmer,
Waltham, MA, USA) were used according to the manufacturers’
protocols.

A detailed description of experimental procedures is available in the
Supplemental materials and methods.

Cell culture
HPAECs and HPASMCs were cultured as previously described.”’
Cells were exposed to hypoxia (5% CO,, 2% O,) for 24-72 h.

A detailed description of non-contact cell culture and cell treatments
is available in the Supplemental materials and methods.

Blood-derived human endothelial cells and human lung samples
All investigations were conducted in accordance with the Declara-
tion of Helsinki. Venous blood samples were obtained with the
approval of the Brompton Harefield & NHLI and Hammersmith
Hospitals Research Ethics Committees, and informed written con-
sent was received from healthy volunteers (n = 14) and patients
with IPAH (n = 12). Human ECFCs were derived from peripheral
blood samples as previously described.”’ Clinical information and
experimental procedures are provided in the Supplemental materials
and methods.

Cell transfection
Detailed descriptions of transfection procedures and cell treatments
are available in the Supplemental materials and methods.

Quantitative real-time PCR

RNA was extracted from cultured cells or tissue using a Monarch total
RNA miniprep kit (New England Biolabs, Ipswich, MA, USA). Input
RNA was reverse transcribed using a LunaScript RT supermix kit
(New England Biolabs) or a TagMan miRNA reverse transcription
kit (Thermo Fisher Scientific, Waltham, MA, USA) and a custom
multiplex RT primer pool in a SimpliAmp thermal cycler (Applied

Biosystems, Foster City, CA, USA) according to the manufacturers’
instructions. A list of TagMan miRNA and gene expression assays
and additional methodological information are available in the Sup-
plemental materials and methods.

Western blotting

Protein levels of PTPMT1 and B-actin in HPAECs transfected with
scrambled miRNA and miR-150 mimic obtained 24 h post-transfec-
tion were determined by western blotting. Blots were probed with
mouse monoclonal anti-B-actin (Sigma-Aldrich, A1978; 1:3,000),
mouse monoclonal anti-PTPMT1 (Santa Cruz Biotechnology, sc-
390901; 1:500) and secondary antibodies, and horseradish peroxidase
(HRP)-linked sheep anti-mouse immunoglobulin G (IgG) (GE
Healthcare, NAG31V; 1:1,000). The relative intensity of the immuno-
reactive bands was determined by densitometry using Image] soft-
ware (National Institutes of Health, https://imagej.nih.gov/ij/), and
PTPMT1 expression was normalized to B-actin.

RNA sequencing and identification of signaling mediators of
miR-150

Next-generation RNA sequencing was carried out as previously
described.”* Genes were considered differentially expressed when
the adjusted p value was greater than 0.05 and there was at least a
1.5-fold change in expression. miRNA target prediction was carried
out with TargetScan Human, miRecords, and Ingenuity Expert Find-
ings. Gene enrichment was carried out using Ingenuity Pathway
Analysis (IPA, version 01-12, QIAGEN, Hilden, Germany).

The RNA sequencing data generated and analyzed during this study
are available in the BioProject repository at the following link:
https://www.ncbi.nlm.nih.gov/bioproject/PRINA645887 (BioProject
ID PRJNA645887; BioSamples SAMNI15518378, SAMN15518379,
SAMN5518380, SAMN15518381, SAMN15518382, and SAMN1551
8383; SRA accession nos. SRR12210268, SRR12210267, SRR122
10266, SRR12210265, and SRR12210264).

RNAhybrid*’ was used to identify the MFE hybridization of the mature
miR-150 (MIMAT0000451) sequence against the DNA sequence
within a 2-kbp window inclusive of the gene body for PTPMTI
(chr11:47563600-47575461) and TGFBI (chr19:41328324-41355
922). A maximum of 100 hits per target and a maximum MFE
threshold of —20 with approximate p values estimated from the
3utr_human for the target sequence were applied.

Measurement of cell apoptosis, proliferation, and inflammatory
activation

A 5-ethynyl-2’-deoxyuridine (EdU) proliferation assay, NF-kB activ-
ity, and caspase-3/7 apoptosis assays were carried out as previously
described.*! Additional details are provided in the Supplemental ma-
terials and methods.

Seahorse bioenergetics assay

OCRs and ECARs were measured in a Seahorse extracellular flux
analyzer using XF24 (Seahorse Bioscience, North Billerica, MA,
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USA) and with a Seahorse XF mito stress test kit (Agilent Technolo-
gies, Santa Clara, CA, USA, 103015-100).

Immunostaining
A detailed description of experimental procedures is available in the
Supplemental materials and methods.

Cardiolipin measurement
Quantification of cardiolipin was carried out with cardiolipin assay
kit (BioVision, Milpitas, CA, USA, K944-100).

Mitochondrial fragmentation count and mitochondrial content
Mitochondrial fragmentation (area taken by mitochondrial particles
<2 pm in length)** and total mitochondrial coverage (area taken by
all mitochondria) were determined in confocal images using NIP2
image software.”” A detailed description of experimental procedures
is available in the Supplemental materials and methods.

Statistical analysis

All experiments were performed at least in triplicate, and measure-
ments were taken from distinct samples. Data are presented as
mean + SEM. Normality of data distribution was assessed with a Sha-
piro-Wilk test in GraphPad Prism 7.03. Comparisons between two
groups were made with a Student’s t test or Mann-Whitney’s U
test, whereas three or more groups were compared by use of
ANOVA with a Tukey’s post hoc test or Kruskal-Wallis test with
Dunn’s post hoc test, as appropriate. Statistical significance was
accepted at p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.
1016/j.0mtn.2020.10.042.
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SUPPLEMENTAL MATERIAL

“Mir-150-PTPMT1-Cardiolipin signaling in Pulmonary Arterial Hypertension”

Giusy Russomanno, Kyeong Beom Jo, Vahitha B. Abdul-Salam, Claire Morgan, Jens
Endruschat, Ute Schaeper, Ahmed H. Osman, Mai M. Alzaydi, Martin R. Wilkins & Beata
Wojciak-Stothard*.

Animal experiments

All studies were conducted in accordance with UK Home Office Animals (Scientific
Procedures) Act 1986. All animals were randomly allocated to groups, and all personnel
involved in data collection and analysis (haemodynamics and histopathologic measurements)
were blinded to the treatment status of each animal. Only weight-and age-matched males were
included for experimentation as, in contrast to the human clinical studies, most animal studies

have shown that female sex and estrogen supplementation have a protective effect against PAH.

To induce PAH, 8-12 weeks old C57/BL male mice (20 g; Charles River, UK) were injected
subcutaneously  with  Sugen (SU5416; 20mg/kg), suspended in 0.5% [w/V]
carboxymethylcellulose sodium, 0.9% [w/v] sodium chloride, 0.4% [v/v] polysorbate 80, 0.9%
[v/v] benzyl alcohol in deionized water once/week. Control mice received only vehicle. Mice
were either housed in normal air or placed in a normobaric hypoxic chamber (10% O>) for 3

weeks (n= 8/group).

mirVana hsa-miR-150-5p (ID MC10070) mimic or scrambled miRNA control (Ambion) in
complex with DACC lipoplex preparation (Silence Therapeutics)'! was administered
intravenously via tail vein injection once every fourth day at 1.5 mg/kg/day for 3 weeks, on 5
occasions. The first injection was given 1 day before Sugen/hypoxia administration. At 3 weeks,
the mice were anaesthetised by intraperitoneal injection of Ketamine/Dormitor (75 mg/kg + 1

mg/kg).



In addition, to follow the distribution of liposomal cargo, a single intravenous injection of
fluorescently labelled DACC/siRNA-Cy3 (2.8 mg/kg body weight) in healthy mice was
performed. Localization of the fluorescently-labelled RNA in paraffin sections of lung, heart,
kidney, spleen and liver taken 4 and 24 hours post-injection, was analysed with fluorescent

confocal imaging.

To produce mice with inducible conditional endothelium-specific deletion of miR-150, floxed
miR-150 mice (STOCK Mir150™M™M/Mmjax mice from Jackson Laboratories) C57/BI6
background were crossed with C57/BI6 mice carrying tamoxifen-inducible Cre recombinase
under the control of the Cdh5 promoter (Cdh5(PAC)-iCreERT22. Following tamoxifen
administration, efficient Cre-recombinase deletion of miR-150 was confirmed by PCR in miR-

150"/Cdh5(PAC)-iCreERT2 mice (henceforth referred to as miR-150iEC-KO).

Weaned mice were ear-notched and samples were incubated in lysis buffer (100 mM Tris HCI
pH 8.5, 5 mM EDTA, 200 mM NacCl, 0.2% SDS, 0.14 mg/mL Proteinase K, Ambion™) for 2
hours at 55°C under agitation (700 rpm). Samples were then vortexed and pelleted at 14,000
rpm for 10 minutes. Supernatant was transferred to a new DNase-free tube and DNA was
precipitated in isopropanol (20 minutes incubation at RT). DNA was pelleted at 14,000 x g for
10 minutes, supernatant was discarded and the DNA pellet was air dried and then resuspended

in 100 pL of DNase-free water.

PCR reactions were performed using REDTaq® ReadyMix™ PCR Reaction Mix (Sigma-
Aldrich, cat. R2523) with the primers listed in Supplemenrary Table S1 (500 nM of each) in a
SmplyAmp™ Thermal Cycler (Applied Biosystems). All primers were purchased from Sigma-

Aldrich.

Thermocycling conditions for miR-150 followed the Jackson Laboratory’s instructions

(www.jax.org): 2 min at 94°C, then 20 s at 94°C, 15 s at 65°C, 10 s at 68°C, for 10 cycles, 15



s at 94°C, 15 s at 60°C, 10 s at 72°C, for 28 cycles, and a last step of 2 min at 72°C. For Cre
genotyping, thermocycling conditions were as follows: 3 min at 94°C, then 30 s at 94°C, 30 s

at 70°C, 60 s at 72°C, for 32 cycles, and a last step of 10 min at 72°C.

All PCR products were separated on a 2% agarose gel, visualized using GelRed Nucleic Acid
Gel Stain (Thermo Fisher Scientific, cat. NC0017761), and size was estimated with comparison
to a DNA mass ladder (GeneRuler 100 bp DNA Ladder, Thermo Fisher Scientific, cat.

SM0243).

At 6 weeks of age, miR-150"/Cdh5(PAC)-iCreERT2 mice were injected intraperitoneally with
100 pL of 5 mg/mL tamoxifen (Sigma, cat. no. T5648) or vehicle (12.5% vol/vol ethanol in
peanut oil) for 5 consecutive days®. Littermate wild-type animals were used as control. Two
weeks after tamoxifen injection, mice were injected with Sugen and housed in normal air or

hypoxia for 3 weeks (n=4-8/group).

The development of PAH was verified by measuring right ventricular systolic pressure (RVSP),
right ventricular hypertrophy (assessed as the right ventricle to left ventricle/septum ratio -
RV/LV+S), and muscularisation of small intrapulmonary arteries, as previously described®.
RVSP was measured via direct cardiac puncture using a closed-chest technique in the
spontaneously breathing, anesthetized animal. Pressure measurements were repeated three
times and the mean value used. Data were collected by Power Lab Data Acquisition system
(AD Instruments) and analysed using LabChart 8 software (AD Instruments) by an investigator

blinded to the treatment group.

The right lung lobe was harvested and snap frozen in liquid nitrogen or placed in RNAlater®
RNA Stabilization Solution for RNA isolation. The left lobe was inflation-fixed (10%
formaldehyde in PBS), embedded in paraffin, and sectioned for histology. The heart and liver

were collected and snap frozen or placed in RNAlater®. Transverse formalin-fixed lung sections



were stained with an anti-smooth muscle actin antibody (DAKO MO0851) or Verhoeff’s van
Gieson stain (EVG) to visualise elastic lamina. Pulmonary vascular remodelling
(muscularisation of small intrapulmonary arteries) was determined by counting all
muscularised vessels with a diameter smaller than 50 pm in each lung section and expressed as
a % of all (muscularised + non-muscularised) vessels. Counting was performed by two

observers blinded to treatment.

In situ hybridization

In situ hybridization was carried out on paraffin lung sections of untreated mice and
Sugen/hypoxia mice (n=3, 5 weeks hypoxia) using miRCURY LNA™ microRNA ISH
Optimization kit (Exiqon, cat no 339459). Negative control: LNA™ scrambled microRNA
probe, double DIG labelled (40 nM); Positive controls: LNA™ U6snRNA probe, 5°DIG-
labeled (1 nM), LNA™ microRNA223 probe, double DIG labelled (40 nM, labels myeloid,
granulocytic and monocytic cell lineages in the hematopoietic system). LNA™ microRNA150
probe double DIG labelled (40 nM) was used to study changes in miR-150 levels. Hybridization
temperature: 54°C. The sections were incubated with sheep anti-DIG antibody (1:200, Roche
Applied Science; cat. no 1333 089), biotinylated donkey anti-sheep antibody (1:200, Sigma, cat
no. AP184B), streptavidin-peroxidase conjugate (1:200), followed by DAB/hematoxylin
staining. A detailed protocol can be found in miIRCURY LNA miRNA Detection Probes

Handbook — Qiagen.

RNAscope®



For formalin-fixed, paraffin-embedded lung sections, RNAscope® Multiplex Fluorescent
Reagent Kit v2 (Advanced Cell Diagnostics) and TSATM Cyanine 3 & 5, TMR, Fluorescein
Evaluation Kit System (PerkinElmer) were used according to manufactures’ protocols®.
Briefly, tissue sections in 5-um thickness were baked in a dry oven (Agilent G2545A
Hybridization Oven, Agilent Technologies) for 1 hour at 60°C, and deparaffinised in xylene,
followed by dehydration in 100% ethanol. Tissue sections were then incubated with
RNAscope® Hydrogen Peroxide for 10 minutes at room temperature. After washing twice with
distilled water, manual target retrieval was performed boiling the sections (100°C to 103°C) in
1X Target Retrieval Reagents using a hot plate for 15 minutes. Slides were then rinsed in
deionized water, 100% ethanol, and incubated with RNAscope® Protease Plus at 40°C for 30
minutes in a HybEZ hybridization oven (Advanced Cell Diagnostics, PN 321710/321720).
Hybridization with target probes (Mm-Myb-C1l, NM _001198914.1; Mm-Notch3-C2,
NM_025576.2) was carried out incubating the slides at 40°C for 2 hours. Two different
probes/channels (C1-C2) were multiplexed. After washing twice with Wash Buffer, slides were
stored overnight in 5x SSC buffer (0.75M NaCl, 0.075M sodium citrate). The following day,
the slides were incubated at 40°C with the following reagents: Amplifier 1 (30 min), Amplifier
2 (30 min), Amplifier 3 (15 min); HRP-C1 (15 min), TSA® Plus fluorophore for channel 1
(fluorescein, PerkinElmer; 1:1000; 30 min), HRP blocker (15 min); HRP-C2 (15 min), TSA®
Plus fluorophore for channel 2 (cyanine 3, PerkinElmer; 1:1000; 30 min), HRP blocker (15
min). After each hybridization step, slides were washed three times with Wash Buffer at room
temperature.

RNAscope hybridisation was combined with immunofluorescence® 8. Tissue was blocked for
1 hour at room temperature with 3% normal horse serum (Vector Laboratories) in 1X PBS
containing 0.1% bovine serum albumin (Sigma-Aldrich), and 0.01% sodium azide (Sigma-

Aldrich), and then incubated with polyclonal rabbit antibody raised against human von



Willebrand Factor (1:500; A0082, Dako), at 4°C overnight. After three washes in PBS, slides
were incubated with FITC-labelled Goat Anti-Rabbit antibody (1:100; 111-095-003, Jackson
ImmunoResearch Inc.) for 30 minutes at RT. Following immunostaining, tissues were mounted
in Vectashield with DAPI and examined under a fluorescent confocal microscope (Leica, TCS

SP5, Leica Biosystems, Bretton, Peterborough).

Cell culture

Human pulmonary artery endothelial cells (HPAECs, Promocell, C-12241) were cultured in
endothelial cell growth medium 2 (ECGM2; PromoCell, C-22111) and human pulmonary
artery smooth muscle cells (HPASMCs, Lonza, CC-2581) in smooth muscle cell growth
medium 2 (SMCGM?2, PromoCell, C-22062), as previously described 4. In some experiments,
the cells were exposed to hypoxia (5% CO2, 2% O>) for 18-72 hours.

For non-contact co-culture of HPAECs and HPASMCs, Transwell dishes with 0.4 um pore
polyester membrane inserts (Scientific Laboratory Supplies, UK) were used. HPAECs were
seeded into the fibronectin-coated top chambers and cultured in complete ECGM2 medium,
whereas HPASMCs were seeded at the bottom of the plate and cultured in complete SMCGM2
for 24 h. The two cell types were then washed with PBS, combined together and co-cultured in
endothelial cell basal medium supplemented with 10% FBS (Sigma-Aldrich, F7524), and
selected components of ECGM2 supplement pack (PromoCell, C-22111): EGF (2.5 ng/L), FGF

(10 ng/L), IGF (20 ng/L) with 1% penicillin and streptomycin.

Blood-derived human endothelial cells and human lung samples

All investigations were conducted in accordance with the Declaration of Helsinki. VVenous

blood samples were obtained with the approval of the Brompton Harefield & NHLI and



Hammersmith Hospitals Research Ethics committees and informed written consent from
healthy volunteers (n=14) and patients with idiopathic PAH (IPAH, n=12). Participants were
identified by number. Human endothelial colony forming cells (ECFCs) were derived from

peripheral blood samples as previously described . Clinical information is shown in Table S2.

Cell Transfection

Briefly, HPAECs were left untreated (control) or were transfected with control miRNA (non-
targeting transfection control; Ambion Life Technologies, 4464076) at 20 nmol/L, or
miRVana™ has-miR-150-5p, (4464066 Assay ID MC10070;), miRVana™ miRNA inhibitor,
(4464084, Assay ID MH10070), both at 20 nmol/L, or control sSiRNA (non-targeting negative
control siRNA; Invitrogen, 4390843) at 10 nmol/L, or SiPTPMTL1 (4392420 Assay ID s229946)
at 10 nmol/L, using Lipofectamine RNAIMAX in antibiotic-free media, following
manufacturer’s instruction. After 24 hours, the media were changed and cells were exposed to
hypoxia for 24-72 hours. Alternatively, on the following day, the untransfected and transfected
cells were starved for 9 hours before caspase 3/7 assay. Human pcDNA PTPMTL,
NM _175732.2 (clone OHu11042; 2B Scientific Ltd. Upper Heyford, UK) was transfected into
HPAECs with Lipofectamine RNAIMAX at 2ng/well in a 24-well dish, as recommended by
the manuafacturer. Transfection efficiency was measured by the uptake of Cy3™ Dye-Labeled
Pre-miR Negative Control (AM17120; Thermo Fisher Scientific) and quantitative real-time
PCR (RT-gPCR). All experiments were performed 24 hours after transfection. Transfected cells
were exposed to hypoxia (2% Oz, 5% CO.), serum and growth factor depletion or inflammatory
cytokines. Cell proliferation and NF«kB activity assays were carried out 72 and 48 hours post-

transfection, respectively.



RNA Extraction

RNA was extracted from cultured cells or tissue (~10 mg) stored in RNALater® using
Monarch® Total RNA Miniprep Kit (New England BioLabs). For maximal RNA recovery,
tissues was mechanically homogenized using a Kinematica™ Polytron™ PT 1300 D and
incubated at 55°C for 5 minutes with Proteinase K following manufacturer’s instructions. To
remove any residual DNA that may affect downstream applications, an On-Column DNase |
digestion was also performed. RNA concentration and purity was evaluated using NanoDrop
2000 spectrophotometer (Thermo Scientific). The A260/230 and A260/280 ratios were used to

assess the presence of contaminants. RNA was then stored at -80°C for later experiments.

Real-time quantitative PCR

Input RNA (50-100 ng/uL) was reverse-transcribed using LunaScript® RT SuperMix Kit (New
England BiolLabs) or TagMan MicroRNA Reverse Transcription Kit (Thermo Fisher
Scientific) and custom Multiplex RT Primer pool in a SimpliAmp™ Thermal Cycler (Applied
Biosystems), according to the manufacturer’s instructions. The multiplex RT primer pool
consisted of primers for miR-150-5p and U6 (Thermo Fisher Scientific). No-template samples
where included as negative controls.

TagMan® miRNA Assays for hsa-miR-150-5p (Assay 1D 000473), and U6 snRNA (Assay ID
001973), and TagMan® Gene Expression Assays for PTPMT1 (Hs00378514 m1,
MmO00458631_m1), SERPINE1 (Hs00167155 m1), PERP (Hs00953482 gl), DUSP5
(Hs00244839 m1), c¢cMYB  (Hs00920556_m1,  MmO00501741 m1),  NOTCH3
(Hs01128537_m1,  MmO01345646 _m1),  Collal  (MmO00801666_gl),  Rcanl
(MmO01213406_m1), Tgfol (Mm01178820 m1), and GAPDH (Hs02786624 g1,

Mm99999915 g1; all Thermo Fisher Scientific), were used to perform quantitative PCR



(gPCR). No-template samples were included as negative controls and all PCRs were performed
in triplicate. The reaction was performed on a QuantStudio 12K Flex Real-Time PCR System
(Applied Biosystems). Data were analysed using QuantStudio 12K Flex Software version 1.2
(Applied Biosystems). For relative quantification, the data were analysed using the 2744¢t
method, where U6 snRNA and GAPDH were used as endogenous normalization controls for

miR-150 and gene expression, respectively.

RNA-Sequencing and identification of signaling mediators of miR-150

10pl of RNA (250-300 ng/ul) extracted from cells transfected with miR-150 mimic or
scrambled control in three independent experiments, were sent in to Imperial BRC Genomics
Facility (Imperial College of London, UK) for next-generation RNA-sequencing RNA quality
and quantity were assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies) and a
Qubit 4 Fluorometer (Thermo Fisher Scientific). RNA libraries were prepared using TruSeq®
Stranded mRNA HT Sample Prep Kit (Illumina Inc., USA) according to the manufacturer’s
protocol as previously described®. Libraries were run over 4 lanes (2 x 100 bp) on a HiSeq 2500
(IMlumina Inc.) resulting in an average of 34.4 million reads per sample. Sequence data was de-
multiplexed using bcl2fastg2 Conversion Software v2.18 (lllumina Inc.) and quality analysed
using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Transcripts from
paired-end stranded RNA-Seq data were quantified with Salmon v 0.8.2 using hg38 reference
transcripts’ 8. Count data was normalised to accommodate known batch effects and library size
using DESeq2°. Pairwise differential expression analysis was performed based on a model
using the negative binomial distribution and p-values were adjusted for multiple test correction
using the Benjamini-Hochberg procedure!®. Genes were considered differentially expressed if
the adjusted p-value was greater than 0.05 and there was at least a 1.5 fold change in expression.

miRNA target prediction was carried out with TargetScan Human, miRecords and Ingenuity



Expert Findings. Gene enrichment was carried out using Ingenuity Pathway Analysis (IPA,
Qiagen).

Accession numbers for RNA sequencing data will be provided upon provisional acceptance of

the manuscript.

Caspase 3/7 apoptosis assay

Cells were incubated in serum- and growth factor-depleted medium for 9 hours to induce
apoptosis. Apoptosis was measured using Cell Meter™ Caspase 3/7 Activity Apoptosis Assay
Kit (AAT Bioquest, ABD-22796). Fluorescence intensity was analysed in Glomax™

luminometer at Ex/Em = 490/525 nm.

NFxkB luciferase reporter assay

NF«B activity was measured in luciferase reporter assay * in the Glomax™ luminometer.

EdU Proliferation Assay

The EdU Cell Proliferation Assay Kit (EdU-594, EMD Millipore Corp, USA, 17-10527) was

used to measure cell proliferation, according to the manufacturer’s protocol. Proliferation of
ECFCs from healthy individuals and IPAH patients was evaluated in serum-reduced, growth

factor-depleted media.

Seahorse Bioenergetics Assay



Oxygen consumption (OCR) and extracellular acidification rates (ECAR) were measured in
Seahorse Extracellular Flux Analyzer using XF24 (Seahorse Bioscience, North Billerica, MA)
and Seahorse XF Mito Stress Test Kit (Agilent, 103015-100). 4 x 10 cells were plated into
each well prior to the assay. Cells cultured on the Seahorse XF Cell Culture microplates were
left untreated or were transfected with miR-150 or PTPMT1, as previously described for 24h
overexpression. The sensor cartridge was hydrated at 37°C in Seahorse XF Calibrant overnight

in a non-COz incubator.

The assay medium was prepared by supplementing Seahorse XF Base Medium with
1mM pyruvate (S8636), 2mM glutamate and glucose (G8540) and 10mM glucose (G8769),
warming it up to 37°C and adjusting pH to 7.4. All compounds were warmed up to room
temperature. 1uM oligomycin, 1pM FCCP and 0.5uM rotenone/antimycin A provided with the
kit were loaded into the appropriate ports of hydrated sensor cartridge. The cells were incubated
with assay medium for 1h before Seahorse XF Mito Stress Test. OCR and ECAR were

normalized to the protein concentration.

Immunostaining
Immunostaining of paraffin embedded lung sections was carried out as previously described®.

To stain mitochondria, HPAECs cultured on Thermanox® Plastic Coverslips (13 mm) were
washed twice in PBS, fixed in 4% formaldehyde for 15 min at room temperature, washed in
PBS and permeabilised with 0.1% Triton X-100 (Sigma-Aldrich, 234729) in PBS for 10 min.
The cells were then rinsed with PBS, blocked in 10% normal goat serum (Vector Laboratories,
S-1000) for 1 h and incubated with mouse anti-mitochondria antibodies (Abcam, ab92824)
diluted 1:100 in PBS in 5% BSA in a humidified chamber overnight. Cells were then rinsed 3

times with PBS and incubated with FITC-Goat Anti-Mouse 1gG (Jackson ImmunoResearch



Inc.,115-095-003; 1:200) with tetramethylrhodamine (TRITC)-phalloidin (1 ug/mL; Sigma-
Aldrich, UK, P1951) for 1h. Following immunostaining, cells were mounted in Vectashield
Antifade Mounting Medium containing nuclear stain DAPI (Vector Laboratories, H-1200) and
examined under the fluorescent confocal microscope (Leica, TCS SP5, Leica Biosystems,

Bretton, Peterborough).

Cardiolipin measurement

Quantification of cardiolipin in cells and tissues was carried out with Cardiolipin Assay Kit

(BioVision, cat. K944-100), according to the manufacturer’s instructions.

Mitochondrial fragmentation count and mitochondrial content

Mitochondrial were immunolabelled, as described above. Mitochondrial fragmentation (area
taken by mitochondrial particles < 2um in length)* and total mitochondrial coverage (area
taken by all mitochondria) were determined using NIP2 image software 2 . The 2um cut-off
size was optimal'! in selection of mitochondria unassociated with mitochondrial network.
Briefly, the acquired images were filtered (median), thresholded, and binarized to identify
individual mitochondrial segments and score the total area of fragmented mitochondria. This
value was normalized to the total mitochondrial area (in pixels) in each cell, to define the
individual cell’s MFC. For each intervention 20 randomly selected cells were analysed in 3

separate experiments 2,

Table S1. Sequences of specific primers used for mouse genotyping.

Gene Primer Sequence Amplicon length (bp)




MIR150 Forward  5’-GTTCAAGCAGATCATGATACTCAA-3’ 304 (WT) - 396 (Mutant)
Reverse 5’-GTCCTGGGACAGAGCAAAGATT-3’

Cre Forward  5-GCCTGCATTACCGGTCGATGCAACGA-3’ 720 (Mutant)
Reverse 5’-GTGGCAGATGGCGCGGCAACACCATT-3

Table S2. Demographic and clinical features of patients and healthy volunteers. Venous
blood samples were obtained with local ethics committee approval and informed written
consent from healthy volunteers and patients with idiopathic PAH (IPAH). Data represented

as median (range).

Control IPAH
(n=14) (n=12)
Male/Females 3/11 1/11
Age (years) 30.0 (23.0 - 45.0) 38.33(27.0-67.0)
Time from diagnosis (months) - 13.0 (0.1 - 60.0)
mPAP (mmHg) - 65.0 (28.0 - 94.0)
Six minute walk distance (m) - 396.0 (300.0 — 540.0)
I - 1
I - 3
WHO Functional Class
Il - 5)
v - 3
Treatment naive - 2
Warfarin - 4
Calcium Antagonists - 1
ER Antagonists - 7
PDES Inhibitors - 8
Prostanoids - 4
Statins - 0




mPAP, mean Pulmonary Arterial Pressure; ER, Estrogen-Receptor; PDE5, Phosphodiesterase

type 5.

Table S3. Top 26 differentially expressed genes (DEG, adjusted p-value<0.05) in miR-150

transfected HPAECs (RNA-Sequencing).

Gene ID Log2FC

PTPMT1

PERP
H3F3A
DDX3Y

AP2A2

IFIT2

EHMT2

SERPINE1
SNCA
ANKRD28
IRAK2

MLH1
KIDINS220

MAMDC2
ZNF500
DUSP5
SLC2A10

JAG1
CAPN5S
SRPRA
KCTD20

SEMA3A
SOD2
BOD1

MET

GGT1

1.329

-0.904
0.698
0.699

6.084

-0.616

2.405

-0.430
0.686
-0.620
-0.522

0.773
-0.627

-0.613
0.986
-0.572
2.272

0.457
0.917
0.468
-0.611

1.637
-0.392
0.624

0.522

1.759

Adj p-value Entrez Gene Name
protein tyrosine phosphatase,

5.48 x 107

8.88 x 10°
8.92 x 10°
9.52 x 10°

2.54 x 10*
2.54 x 10*
2.00x 10

2.13x10°
3.24x10°
7.30x10°
7.31x10%

7.31x10°3
7.42 %103

9.04 x 103
0.0156
0.0179
0.0195

0.0214
0.0284
0.0329
0.0349

0.0366
0.0369
0.0377

0.0378

0.0379

mitochondrial 1

PERP, TP53 apoptosis effector
H3 histone family member 3A
DEAD-hox helicase 3, Y-

linked

adaptor related protein
complex 2 alpha 2 subunit
interferon induced protein
with tetratricopeptide repeats 2
euchromatic histone lysine
methyltransferase 2

serpin family E member 1

synuclein alpha

ankyrin repeat domain 28

interleukin 1 receptor
associated kinase 2

mutL homolog 1

kinase D interacting substrate

220

MAM domain containing 2
zinc finger protein 500

dual specificity phosphatase 5
solute carrier family 2 member

10
jagged 1
calpain 5

SRP receptor alpha subunit

potassium channel
tetramerization domain

containing 20
semaphorin 3A

superoxide dismutase 2
biorientation of chromosomes

in cell division 1

Plasma Membrane

Extracellular Space

Plasma Membrane

Extracellular Space

Plasma Membrane

Extracellular Space

Extracellular Space

Type(s)
phosphatase

other
other
enzyme

transporter
other

transcription
regulator
other

enzyme
other
kinase

enzyme

transcription
regulator
other

other
phosphatase
transporter

growth factor
peptidase
other

other

other
enzyme
other

MET proto-oncogene, receptor Plasma Membrane kinase

tyrosine kinase

gamma-glutamyltransferase 1

Plasma Membrane enzyme
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Figure S1. Distribution of fluorescent RNA marker delivered in DACC liposomes in
mouse lung, heart, liver and kidney. sSiRNA-Cy3/DACC (Duplex1-Cy3/DACC) or (vehicle
only) were delivered to mice by iv injection and tissue distribution of fluorescent siRNA was
studied 4 hr or 24hr later. (A) Representative images and (B) a corresponding graph showing
distribution of Duplex1-Cy3/DACC in different organs, as indicated. In (A) nuclei are blue
(DAPI), while sSiRNACy3 is red. Bar=25 pm. In (B) **p<0.01, ***p<0.001, ****p<0.0001,
comparisons with 24h lung (for 24h group) or 4h lung (for 4h group), as appropriate; N=4-5.
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Figure S2. miR-150 levels are decreased in the endothelium of pulmonary hypertensive
hypoxia/Sugen mice; in situ hybridization. (A-C) negative and positive controls; (D, E)
miR-150 in pulmonary vascular endothelium in control mice and Sugen/hypoxia mice, as
indicated; (F-H) miR-150 staining in the small intrapulmonary vessels (arrows) in control
lungs; (I and J') corresponding miR-150 staining in the airway epithelium and leukocytes,
respectively. (K-M) miR-150 staining in intrapulmonary vessels of Sugen/hypoxia mice; (N
and O) corresponding miR-150 staining of the airway epithelium and leukocytes in
Sugen/hypoxia lungs, respectively. (P, Q and R show vWF, EVG and aSMA staining of the
remodelled intrapulmonary vessels in Sugen/hypoxia mice. (S) localization of leukocytes
(CD45+cells) in control lung; Bar=40um. The graph shows relative changes in miR-150
levels in endothelial/vascular tissues, airway epithelium and CD45" cells in lung tissues from
control and PH mice (3 mice/group, 10 vessels/mouse). Optical density of selected 7-10
regions of interest within the endothelial layer or 10 CD45" cells was measured with Image
Pro Plus software. Bars are means = SEM. *p<0.05, comparison with control. n=5/group
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Figure S3. Liver aspartate aminotransferase (AST) activity in mice. AST activity (nmole
glutamate/min/mL) was measured in liver tissues from untreated normoxic mice, untreated
Sugen/hypoxia mice, Sugen/hypoxia mice treated with DACC/miRNA scrambled controls
and Sugen/hypoxia mice treated with DACC/miR-150 mimic (N=8/group). AST activity is
shown as fold-change of normoxic controls. Bars are means = SEM. *p<0.05; **p<0.01,
comparison with normoxic control; one-way ANOVA with Tukey post-test.
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Figure S4. Predicted miR-150 binding sites.

(A) RNAhybrid identified 70 putative miR-150 (MIMATO0000451) predicted binding sites to
PTPMTL1 (chr11:47563600-47575461) with minimum free energy (MFE) ranges between -
20.2 kcal/mole and -38.1 kcal/mole. The top MFE event (-31.3 kcal/mole) occurred within
the promoter region of PTPMT1 (inset). (B) RNAhybrid gave in-silico predictions for 100
binding events of miR-150 to TGFB1 (chr19:41328324-41355922) with MFE ranges
between -21.7 kcal/mole and -31.3 kcal/mole. The top MFE event (-31.3 kcal/mole) occurred
within the first intron of TGFB1 (inset). Images are adapted from UCSC Genome Browser.
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Figure S5. RNA-Sequencing validation. RNA-Sequencing results (black bars) were
validated for selected miR-150-regulated genes by RT-gPCR. (A) PTPMT1, SERPINEL,
PERP, DUSP5 mRNA levels expressed as fold change of transfection control. (B) Graph
shows fold-change in PTPMT1 protein expression in HPAECs transfected with miR-150
mimic, compared with scrambled control. A corresponding representative western blot is
shown below the graph. (C) NOTCH3 and (D) c-MYB in HPAECs transfected with
scrambled miR, miR-150 mimic or inhibitor. Bars are mean fold-changes of control + SEM.
*p<0.05; ****p<0.0001, comparison with scrambled control; **p<0.0001, comparison, as
indicated. In (A) N=3, in (B) N=7, in (C, D) N=5.
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Figure S6. Expression levels of miR-150-regulated genes in vivo. (A, B) c-MYB and (C,
D) NOTCH3 mRNA evaluated by g°PCR or RNAscope in situ hybridization analysis in lungs
of healthy controls and Sugen/hypoxia mice treated, as indicated. Bars are mean fold-changes
of control + SEM. *p<0.05; ****p<0.0001, comparison with scrambled control; #p<0.05,
###1<0.001, comparisons, as indicated. N=8.
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Figure S7. Representative images of c-MYB (green) and NOTCH3 (red) mRNA staining in
mouse lungs. Transcripts were identified by the RNAscope fluorescent in situ hybridization
in lungs from normoxic and Sugen/hypoxia control mice (treated with DACC/scrambled
miRNA control) and Sugen/hypoxia mice treated with DACC/mIiR-150, as indicated. Nuclei
are stained in blue (DAPI) N=6. Image bellow the main panel shows vWF staining (red) in
healthy lung to visualise distribution of endothelial cells. Bar=50um.
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Figure S8. miR-150 supplementation reduces expression of pro-fibrotic genes in the
right ventricle of Sugen/hypoxia mice. (A-C) show expression changes in Collagen 1
(Collal), regulator of calcineurin 1 (Rcanl) and TGFB1. In graphs, bars are mean fold-
changes of control £ SEM; one-way ANOVA with Tukey post-test. ***p<0.001, comparison
with normoxia control. #p<0.05, *#p<0.01, comparisons with scrambled control. N=8
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Figure S9. Endothelial deletion of miR-150 increases collagen 1 expression in the heart.
Collal mRNA levels in the right ventricle of wildtype and miR-150iEC-KO (miR-150"")
mice in normoxia or Sugen/hypoxia, with and without tamoxifen, as indicated. Empty bars
mark miR-150-deficient animals. Bars show mean fold-changes of control £ SEM; one-way
ANOVA with Tukey post-test. #p<0.05, comparisons, as indicated. N=5-8.
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Figure S10. Transfection efficiency in HPAECs transfected with fluorescently-labelled
Cy3-pre-miR mimic (20 nM; lower panel). Transfected cells are red, whereas nuclei are
blue (DAPI). Bar=50 pum.



A B miR-150
— rem— a 62'5 HHHHE
'-f:) o220 dekkok
HPAECs Porous 3 215
GEEEEE membrane ¢ 9 1.0
size pores) 0.0 e
82 £ 2
HPASMCs 2% £ 2
8 ° o £
3 < 3
xr v
£ X
e

O
O

PTPMT1 mRNA

*kkk

Proliferation

o
n
o

*kkk

Noow
o

—

[€]]

-
o

-

o

*hkk

(2"24C to GAPDH)

PTPMT1 mRNA

o
o
o
&)

EdU incorporation
(Fold change of control)

Scrambled

control

miR-150 mimic
siPTPMT1
Scrambled
control
Scrambled
control
miR-150 mimic
siPTPMT1

miR-150 inhibitor

T
<
=)
@]
x
Q

Figure S11. Effects of miR-150 transfection and PTPMT1 silencing on smooth muscle
cell proliferation. (A) Schematic representation of non-contact co-culture of HPAECs and
HPASMCs. Endothelial cells were seeded in the top chamber, whereas smooth muscle cells
were seeded in the bottom of the plate. A porous (0.4 um pore size) membrane separated the
two cell types. (B) miR-150 expression levels in HPASMCs transfected with miR-150 mimic
or inhibitor. (C) PTPMT1 expression levels in smooth muscle cells transfected with miR-150
mimic or siPTPMT1. (D) Proliferation of HPASMCs co-cultured with HPAECs transfected
with miR-150 mimic, siPTPMT1 and miR-150 inhibitor for 48h. One-way ANOVA with
Tukey post-test. Bars are means = SEM. N =3 in (B and C) and N=5 in (D).
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Figure S12. Effects of hypoxia on PTPMT1 expression in HPAECs and HPASMCs.
PTPMT1 mRNA expression was measured in (A) HPAECs and (B) HPASMCs under
normoxic or hypoxic (24 hours) conditions. In graphs, bars are mean fold-changes of control
+ SEM; Student t-test. **p<0.01; ***p<0.001, comparison with normoxic controls, N=3.
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