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Supplementary Note 1: Architecture, variable space and cost function definitions for the optimization process 

The self-configuration algorithms proposed in this paper rely on the application and customization of optimization routines employed 

in a wide range of application fields. Optimization deals with the task of finding the optimal values for the variables of a system to 

maximize or minimize its output. An ideal optimizer should avoid stacking in local optima and explore efficiently the variable’s space 

to find the global optimum point as well as converge efficiently when this is found. 

In most of the applications and algorithms demonstrated in this paper, the system to be optimized is the general-purpose photonic 

integrated circuit (PIC) based on a waveguide mesh arrangement. We consider the PIC as a black box whose response is given by the 

full scattering matrix of the circuit. The scattering matrix contains the spectral response of every optical port combination. Although a 

real system has an amplitude and phase response, we will employ the overall amplitude response in in our application examples. As 

shown in Supplementary Figure 1, the overall system can be modified through the application of a set of electrical signals that modify 

the optical properties locally in the circuit. This set of variables is defined by the vector v. When dealing with a real system this vector 

can represent the electrical signal feeding each phase actuator or photonic actuator in general. In our results, we demonstrate some of 

the concepts employing a performance estimator that includes a model of the non-ideal performance of every component [1] as well as 

the experimental self-configuration employing a real system. In both cases, the initial, environmental conditions and the operating 

conditions of the circuit modify the system performance and are considered to be unknown and random.  
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Supplementary Figure 1 | Optimization system diagram and their application to self-configuring performance of optical processors. CF: Cost 

function, v: vector defining the configuration variables of the system for the integrated actuators, PIC: Photonic integrated circuit. The full cycle 

define an operation. 

 

In this work we apply both stochastic and derivative optimization techniques. In all cases, the optical system response is given by the 

settings applied to each phase actuator (v), the initial hardware conditions such as non-uniform loss distributions per TBU in the system 

as well as the passive conditions (Cp). The latter includes the phase offset, environmental conditions, and hardware-related non-perfect 

performance mostly given by nanometric fabrication errors. For each wavelength, we obtain the scattering matrix of the circuit that 

represents the optical response for every input and output port combination as So,i.  
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With the scattering matrix information, or a portion of it, we compute the cost function. As shown in the Supplementary Figure 1, this 

function depends on the application to be optimized. A process of cost-function engineering requires the search of a function that is 

minimized when the targeted application is achieved. Assume for example that we want to route the light from port 1 to port 8 of a 

certain circuit. A valid cost function would be the negative value of the optical power received in this optical channel S8,1 . After an 

optimization process, we would maximize the optical power inside of this optical path. Once computed the cost function, the 

optimization algorithm computes the next vector of variables for the driving system. Thus, the optimizers deal with finding the optimum 

values for the individual phase actuators in the circuit to minimize a cost function and get the desired response of the optical processor, 

even in the presence of non-ideal conditions. The full cycle of driving, and monitoring is defined as an operation along this paper. Some 

optimization algorithms require the computation of a certain number of operations per iteration, so we re-scale to number of operations 

to compare their performance. 

 

Supplementary Note 2: Pre-characterization routines 

Due to fabrication errors, a minimum change in the waveguide geometry impacts on the propagation of the optical signal. This, together 

with design errors, induces phase deviations with respect to the phases predicted during the design stage. Precisely, although theoretically 

each Tunable Basic Unit (TBU) should be in a fixed state (typically cross or bar), phase errors in the 3-dB couplers and in the waveguide 

sections of the MZI as well as its accesses introduce changes in the phase response that derive in a random coupling and phase under 

passive (non-driven) conditions. This issue implies that the electrical power required to set a TBU into cross or bar is unknown and 

different for each TBU. In addition, yield errors during fabrication can produce non ideal effects like additional optical loss across 

distinct locations of the circuit. 

Although most of the algorithms presented in this paper do not require a pre-characterization routine of the waveguide mesh arrangement, 

we also presented a set of configuration algorithms that require a close estimation of the performance of each component. This 

information is employed to make optimum configuration decisions. For example, under this category we presented algorithms based on 

pre-sets and routines performing auto-routing functions. As a first stage, both of them require information such as the insertion loss of 

every TBU, the power consumption for each coupling state and the phase shifter calibration versus electrical driving to cite a few. There 

are different methods to obtain this data automatically: 
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-Local monitor system at every TBU:  

The presence of opto-electronic readouts at every TBU port is a brute-force approach to obtain the characterization of every TBU. They 

can be used to run local algorithms that through the optical power gathered at both outputs, obtain an estimation of the coupling state of 

the unit. Although included in the list, this approach requires an excessive overhead in the electronic and control circuit, limiting the 

scalability of the overall system. 

-Self-characterization of the TBU insertion loss: 

To estimate the insertion loss of each TBU, only optical power monitors placed at the external perimeter of the waveguide mesh are 

required. In such case, pre-characterization routines can be implemented by building up a linear system of equations describing a number 

of optical interconnections greater than the number of existing TBUs. A larger number helps to reduce the statistical noise arising from 

fiber-chip coupling loss variances. The easiest way to define such system of equations automatically consists on using an auto-routing 

algorithm (whose discussion can be found in the Supplementary Note 3) to create paths connecting arbitrary pairs of outer nodes from 

the waveguide mesh. 

Once provided with a sufficiently large number of paths, we can compute or measure the optical loss per channel and translate them into 

a sparse matrix of connections of dimension MxN (being M the overall number of included paths and N representing the number of 

TBUs in the mesh) with ‘1’s in those elements within each row whose corresponding TBUs are under use to form the corresponding 

path. Supplementary Figure 2(a-c) shows an illustrative numerical example of this process. To obtain the results from Supplementary 

Figure 2(c), we have considered two different noise sources to simulate a more realistic scenario in the determination of the ILs. The 

first noise source, defined by a uniform distribution with mean µ1 = 0.005π and variance σ1 = 0.03π, describes a possible variation in 

the determination of the phase shifting values of each actuator. The second one, described by a second uniform distribution with mean 

µ2 = 0.2 and variance σ2 = 0.1, would correspond to any possible misalignment while measuring the overall IL of each path. After the 

addition of sufficiently large number of synthesized channels, we compute the difference between the estimated insertion loss for each 

individual TBU and the real value. We observe how the estimation error of the individual IL stabilizes after measuring and processing 

36+15 additional optical paths. Under this scenario, the estimation error converges to 0.18 dB approximately.  

 
Supplementary Figure 2 | Self-characterization of the TBU insertion loss: (a) system of equations to estimate the loss per TBU. (b) waveguide 

mesh arrangement involving 36 TBU and two examples of paths describing connections to the outer ports. (c) Average error bar plot in the 

estimation of each individual IL versus the number of additional synthetized channels 

 

The scalability of the method might be compromised when scaling up the waveguide mesh arrangement. Although the number of TBU 

increases faster than the number of optical ports, the number of optical paths that we can measure to perform the linear matrix inversion 

also grows exponentially, enabling the creation of the matrix. The evolution of the method and its relation to the number of unit cells in 

the circuit and is currently under study. However, preliminary results show that circuits with 80- 200 TBUs achieve the self-

characterization method but require additional time for the pair-ports matrix generation. 

 

-Self-characterization of the TBU driving calibration: 

Obtaining the calibration (electro-optical mapping) of every phase shifter from a large-scale waveguide mesh arrangement requires the 

assistance of an automated process. There are different strategies to achieve the goal: 

 

Self-characterization of the TBU electro-optical mapping based on max-min methods: This approach consists of the placement of few 

optical readouts and optical source points in the external ports of a waveguide mesh arrangement. Using a sequential routine that 
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maximize the optical power at the channels, starting from the shorter paths, it is possible to achieve the desired mapping for each TBU 

[2]. This method reduces the amount of optical readouts when compared with the brute-force approach that integrates a monitor per 

TBU.  

 

Self-characterization of the TBU electro-optical mapping based on the all-cross function: The previous approach works smoothly, only 

requiring a reduced number of ports with optical sources and other ports with a small set of readout points. However, it might require 

few full-cycle iterations to obtain a clean and precise mapping for each TBU when dealing with large-scale meshes. An alternative is 

the use of the all-cross function described in the main document and in Supplementary Note 6 as a sub-routine in the calibration and 

characterization function. The routine workflow is as follows: first, the all-cross routine is employed, perfectly defining closed light-

paths in the waveguide mesh arrangement to avoid feed-back loops all over the circuit. Then, for each optical channel, an iterative 

process starts for each actuator inside the path.  The process consists of the electrical tuning of one phase actuator while the system reads 

one optical power readout to accurately identify the driving conditions to achieve the bar state.  Also, one can monitor a set of electrical 

powers at the driver and their associated optical powers at the readout to map a function to obtain the coupling ratio curve by sampling 

and fitting a small number of points to the well-known sinusoidal MZI equation to the zeros of the function.  If the all-cross function is 

not employed at the beginning, the iterative process is less efficient, noisy and requires more iterations to succeed since the optical 

power leakage in the waveguide mesh arrangement increase the number of undesired optical paths and thus, the uncertainty of the 

calibration procedure, [2]. 

 

Self-characterization of the tuning crosstalk: When tuning one phase actuator, for example a thermo-optic actuator, the physical effect 

causing the tuning in the desired waveguide can spread to the neighbouring waveguides producing an undesired tuning effect. In the 

worst cases, even at distances larger than 10 mm the tuning crosstalk effect can be appreciated [3]. The tuning crosstalk can be modelled 

by a constant that reflects the percentage of phase shift occurred in the non-targeted waveguide compared to the experienced by the 

target waveguide [4]. Simulations and experimental works result in a crosstalk coefficient between 1 and 3% at several hundreds of 

micrometres. If extended to a system with multiple phase shifters, this model can be extended to a system of equations relating the 

effective phase shifts with the phase shifts set by the algorithm or the user. 
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Some circuits configurations have been demonstrated using open control loops requiring the pre-characterization of the tuning crosstalk 

matrix [5, 6] . However, it is not yet well studied the stability of this matrix in large-scale circuits with high-integration densities, since 

the gradient of the temperature is still present at long distances and it is also dependent on the modulation speed. 

 

Supplementary Note 3: Auto-routing algorithm 

The rationale behind this approach is to employ the well-known strategies of graph theory and pathfinding algorithms to configure 

interconnections and optical delay lines in a FPPGA core. This configuration optimizes the optical interconnection or programmed 

waveguide as a function of a given set of parameters with competing objectives such us reducing the accumulated loss, reduce the power 

consumption, reduce the number of resources employed, etc. The algorithm is fed initially with all the information gathered during a 

pre-characterisation routine as the ones described in Supplementary Note 1. In addition, it requires access to the graph emulating the 

physical interconnection of the waveguide mesh hardware. Different graphs have been proposed, extending configuration features [7] 

and reducing the customization process of the algorithms already available in the field [8]. 

Some key concepts in graph theory and their adaptation to waveguide mesh-based photonic integrated circuits. 

• Graphs, the fundamental edges of study in graph theory, are systems of nodes connected in pairs by edges. The nodes can be 

defined by the physical optical ports of the TBUs and the edges represent the inner connections between the TBU ports. 

• Weights are numerical values assigned to graph edges. The overall weight of any path inside the graph (i.e., a walk with or 

without repeated vertices and consequently edges) can be given by the sum of the weights of the edges within such path. In this 

work, the weights are defined as the performance parameter to be optimized during the creation of the optical connection or 

delay line (insertion loss, power consumption, basic unit length, basic unit delay, etc.) 

A proposed pseudocode to achieve this task can be found here [7]. As a preliminary step, the algorithm runs a process to index all the 

TDs from a list of nodes describing the circuit interconnections. This aids in impeding that a path traverses through a given TBU twice 

consecutively and showing backward direction. The algorithm then creates the graph framework from this ordered list of nodes and TDs 

and sets the accumulated distance from the initial node to itself as zero and to all the others as infinity. From then on, a shortest path tree 

with the input port as root propagates through the remaining ones in the graph by accumulating each TD prior to reaching the destination 

port. Similar to original Dijkstra’s implementation, the paths that go through the same node more than once during the process are 

discarded and the rest are stored inside the ‘paths’ variable. Once the destination port has been reached, the resulting paths and the 
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process keeps running until a fixed number of paths arrives to destination. An application example of this technique is illustrated 

hereunder in Supplementary Figure 3, in which we proceeded to synthesize an optimized optical path with respect to several of the 

aforementioned figures of merit and an imbalanced 2-TBU MZI. For this last family of circuits and optical filters in general, this 

algorithm allows an agile and optimized connection between the tunable couplers taking part of such kind of structures. 

 
Supplementary Figure 3 (a) Graph representation of a 36-TBU waveguide mesh. TBUs, actual and imaginary cells are numbered from top to 

bottom and from left to right. Graph nodes within each hexagonal cell are numbered clockwise and hereinafter referred to as C(/I)xvy, where Cx or Ix 

represents the actual (x = {1, 2, …,7}) or imaginary cell (x = {1, 2, …,12}) in which the node is located, (b) node representation where vy denotes its 

position inside a cell (y = {1, 2, …,6}), (c) internal connections of the TBU where TD: Transmission distance stands for the weight or cost to travel 

from one node to another, (d) Synthesis of an optical path, optimized with respect to the number of traversed TBUs (8), (e) Re-synthesis of previous 

optical path optimized with respect to overall power consumption, featuring a power consumption improvement of 16.57% according to experimental 

data, (f) Demonstration of self-healing and fault-tolerant capability, assuming a malfunction in TBUs H3, H12, H26 and H30, (g) Synthesis of a 2-

TBU imbalanced MZI using the auto-routing algorithm as sub-routine to configure both upper and lower arms. 

One of the main virtues of this algorithm is its capability to provide self-healing and fault-tolerant attributes to the waveguide mesh. 

Provided that a local impairment, such a TBU malfunction, takes place in a very specific part of the photonic arrangement, the algorithm 

is be able to take it into account and search for alternative paths without crossing it to arrive to destination port. To do so, the algorithm 

would need to be provided with the individual estimated IL of each TBU in a periodic basis, following the aforementioned routing from 

Supplementary Note 1. A second application example of this feature can be observed in Supplementary Figure 4, which also illustrates 

the synthesis of multiple optical channels at a time. For this example, we are using a waveguide mesh of a larger size including 81 TBUs. 

To do so, we first focus on the synthesis of the first optical interconnections and, once finished, set all the TDs corresponding to opposite 

transmission states for each of its constituting TBUs to infinity. Once finished, we can run the algorithm a second time to create new 

structures while maintaining the previous ones.  Supplementary Figure 4(b), illustrates the configuration example when some of the 

TBUs (H5, H40, H41, H50, H67 and H76) are identified as damaged during the pre-characterization stage. As observed, nothing prevents 

the algorithm to work efficiently for different waveguide mesh sizes, or even for different mesh topologies [7]. 

A potential issue arising from this implementation is the characterization of the tuning crosstalk. When the circuit contains a large 

number of photonic actuators, the auto-routing routine is not able to mitigate this effect and its performance decreases severely. A 

potential solution is the combination of the auto-routing method followed by the application of computational optimization methods 

covered in this work, considering only the optimization of the phase shifters included in the path given by the auto-router. 
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Supplementary Figure 4 | Application example of the auto-routing algorithm to an 81-TBU waveguide mesh arrangement: (a) Multiple input 

multiple output routing example, (b) the same scenario but with the identification of a selected set of TBU with high insertion loss (damaged) before 

the algorithm application. 

Supplementary Note 4: Optimization methods employed for the self-configuration routines at a glance 

In this work we demonstrated the use and customization of both stochastic and derivative optimization methods and routines for the 

self-configuration of multipurpose waveguide mesh arrangements and programmable photonic processors. The stochastic algorithms 

optimize problems employing random distributions at some point during the process. In this work we applied simple implementations 

of a genetic algorithm with scheduling and a particle swarm optimization, although both individual-based and population-based 

algorithms can be employed, as well as their evolutions. This work thus shows the self-configuration nature of a general-purpose 

waveguide mesh arrangement and sets the basis for the full exploration of advanced computational methods and optimization algorithms. 

In addition, we also explored the use of derivative methods requiring the computation of the gradient. This supplementary note explains 

briefly the hyperparameters involved for tuning the optimization methods and summarizes their implementation. This supplementary 

note aims to extend the section covering the methods and follows the diagram explained in Supplementary Note 1. We have 

implemented them employing a Python-based custom code. 

 

Non-derivative computational optimization methods:  

Genetic algorithms, also known as evolutionary algorithms, resemble natural selection and reproduction processes governed by rules 

that assure the survival of the fittest individuals in large populations [9]. Individuals (points) are associated with identity genes that 

define a fitness measure (objective function value). A set of individuals form a population, which adapts and mutates following 

probabilistic rules that utilize the cost function. In this case, our individuals are defined by v, as defined in Supplementary Note 1. For 

each generation, we define the number of points given by the first hyperparameter: population_percentage_per_weights. Each point is 

a vector v, (initially random). Once computed the fitness (or cost function) we select a set of the fittest (individuals with reduced CF). 

The selection procedure can vary for different approaches like Boltzmann selection, Tournament selection, Rank selection, Steady state 

selection to cite a few. In our case, we use the simplest approach that consist of selecting a percentage of the best individuals, given by 

the hyperparameter num_matting. Next, we combine the remaining population and obtain the same number of points as we have before 

the selection process. After the mating process, the samples will mute. Although multiple alternatives exist for the muting process, we 

employ again the simplest approach which consist of modifiying a percentage of the weights given by the hyperparameter 

num_mutations_per_weights_percent following a uniform distribution with a limit imposed by a variable that suffers an exponential 

decay scheduling and with an initial value given by the hyperparameter init_mutation_range_per_pi.  In short, this algorithm requires 

the tuning of 5 hyperparameters. 

 

Since the optimum hyperparameter selection depends on the cost function employed, and the application, for each application we 

performed a preliminary test to check the impact of each hyperparameter on the self-configuration task. This task is also helpful as a 

first exploratory search of the optimum hyperparameter combination. The hyperparameters, when indicated, are selected following the 

ranges specified in Supplementary Table 1. 

 
Supplementary Table 1 | Grid-search of the hyperparameters employed by the genetic algorithm 

Population 
(as a function 

of the number 

of weights) 

Parents 

Mating 
(as a 

function of 

the 

population) 

Number 

of 

Mutations 

Mutation 

value from 

uniform 

distribution. 
(normalized to 

л) 

Exp. 

Decay 

Mutation 

300% 50% 50%W 50% 0 
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200% 20% 10%W 10% 0.5 

100% 10% 5%W 1% 0.7 

50%   0.1%  

 

Particle swarm algorithm (PSO) is a population-based algorithm that maintains at each iteration a swarm of particles (set of points) with 

a velocity vector associated with each particle [10]. At each iteration, it generates a new set of particles from the previous swarm 

combining random and inherited parameters (inertia, cognition, and social). It is typically classified as a global-search algorithm. In our 

case, each particle position is defined by the driving vector v as described in Supplementary Note 1. The hyperparameters to be tuned 

are the number of particles in the swarm, the inertia, the cognition and the social coefficients. The inertia represents the momentum and 

speed of the particle. At each iteration, all the particles share the information regarding the position of the best positioned particle and 

its cost function. Thus, the cognition coefficient models the weight of the decision made by a particle considering his own track record. 

The social coefficient models the decision of each particle considering the best positioned particle in the group.  

The efficiency of the PSO algorithm is dependent on the hyperparameters selected, the cost function and the targeted problem. Like for 

the genetic algorithm, for each application we perform a grid-search tuning the hyperparameters and running the algorithm for 320 

combinations for each of the proposed cost functions. The hyperparameters are selected following the ranges specified in Supplementary 

Table . We selected wide ranges to ensure that we explore different combinations.  

 
Supplementary Table 2 | Grid-search of the hyperparameters employed by the particle swarm optimization algorithm 

Number of particles 

per weight 

Inertia Cognitive Social 

300%W 2 2 2 

200%W 1 1 1 

100%W 0.5 0.5 0.5 

50%W 0.1 0.1 0.1 

20%W    

 

As in the genetic algorithm, wherever specified, we performed a scheduled decrement of the inertia coefficient from the value specified 

in the grid until a fixed coefficient of 0.35, describing a linear decrement until arriving to iteration operation 1000. This scheduling 

improves the convergence to the optimum value as reported in this work. 

 

Derivative optimization methods: For the minimization of the cost function, these set of techniques employ the multivariable 

generalization of the derivative of the CF for each variable in ν [11]. The resulting vector g is the gradient of the function and it provides 

the direction tangential to the error surface at the evaluation point defined by ν: 

 ( ).=  CF
ν

g ν  (3) 

This direction is employed to advance on the opposite way to progress in the minimization of the error function. A wide range of first-

derivative optimization methods are reported in the literature [12].  

A straightforward approach for computing the derivatives of the error function is to use finite differences approximation. This can be 

done by perturbing each variable in turn, and approximating the derivatives by using one of the following expressions: 
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In (3-5) the gradient employs the evaluation of the CF in ν perturbing the position i by a small amount ε. In our case, we define ε equal 

to 0.3 10-3 rads. The rationale behind is that the finite-differences approximation is better approximated if we are close to the evaluation 

point. However, the lower limit of ε will be imposed by the resolution of our electrical drivers and the noise of the readout system. In 

(5), we see the central differences equation to get a significantly better approximation of the gradient. However, the number of 

computational steps is almost doubled when compared to (4). As the reader can infer, getting the gradient straightforwardly in a real 

waveguide mesh system, as proposed, implies performing the perturbation of one actuating variable, getting the associated CF from the 

postprocessed signal from the readout system, repeating the procedure with a negative perturbation and then computing (3). Other 

variations update and employ the updated gradient during the computation of each position of the gradient per se. 

 

Gradient descent is the simplest and more extended first-derivative optimization algorithm. It renders the next configuration state of our 

system settings by sequentially applying: 

 1 ,−= −t t
ν ν g  (6) 

where η is the learning rate or step size.  
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Gradient descent with momentum can be employed to enhance the convergence speed, and to overcome noisy gradients. It accumulates 

an exponentially decaying moving average of past gradient vectors vmo and use a proportion (αmo) of it to set the new direction. The new 

νt is  

 ( )1 , −= + −t t

mo moν ν v g  (7) 

where αmo is another hyper-parameter in the range [0,1) that determines the relation between the new gradient and the accumulated. 

Other variations like conjugate gradient descent can be employed. 

 

Root Mean Square Propagation (RMSProp) is a derivative method tailored for machine learning optimizations where the gradient 

magnitude is different for each variable. Thus, it employs only the sign of the gradient and adapts over time the step size individually 

for each variable dimension. It can be classified as a global search algorithm. 

 

Adaptive moment estimation (Adam) is an optimization algorithm that also adapts the parameter learning rates individually. However, 

rather than using exclusively the average first moment (the mean) as in RMSProp, Adam also makes use of the average of the second 

moments of the gradients (the uncentered variance). 

 

Supplementary Note 5: Self-configuration of optical beamsplitter 1x8 channels 

In this example, the aim is to configure a set of phase actuators in the waveguide mesh arrangement to program the operation of a 

beamsplitter with one specified input port and 8 specified output ports to achieve equally splitting the input port optical power. This 

functionality is particularly interesting for multiple signal processing schemes and subsystems, like finite impulse response filters and 

beamforming networks [13] [14] [15]. The proposed cost functions are presented in Supplementary Equation 8, where we have 

incorporated two features dealing with the error between the average optical power budget between the eight channels and the expected 

value and with the average ripple in the targeted channels [11]. For comparison, we consider two different Cost Functions (CF1,2
1x8):  

 

( )( )

( )( )

( )( )

1 2

1 22
2

.1 10 ,6
.

1

1
(1 8) (1 8)

1 2

2

10 ,6

.
2

2 102

10 ,6

1 / 8, 1 / 8,
1, 1

10log 10 , 0.3120
log 1 ,

0.69

max 10log
max1, 20log 1

min 10log

chsop
chs

op

x x

op

op chs

op

c c
c c

f H H
f

N
CF CF

H
H

f f
NH

= =
= − = −

 = +   −  = − 
   

   


 
 
  = = −
 
− 
 





.

1 .

,
min

chs

chsH








   −
   
   

  


 (8) 

 

where op references the optical ports under use by this configuration. Note that, in this case, we are not employing the information 

coming from the signals from the non-targeted ports to reduce the number of reads by a practical readout system. In both cases, we 

consider the average signal in the targeted optical channels and the ripple at the channel. This is an example of a cost function that 

employs spectral information, meaning that if low-speed diodes are employed a laser sweeping multiple wavelengths would be required 

in a real system implementation. Alternatively, a filtered WDM spectrum could be photodetected at each spectral channel, increasing 

the complexity of the system. The use of extra features and the consideration of non-used or secondary ports is particularly interesting 

for larger-scale waveguide meshes. Supplementary Figure 5 illustrates both the labelled waveguide mesh employed in this example 

together with a schematic view of the power splitting from port 12 to channels 6,4, 3, 2, 1, 24, 23 and 21. A similar example as the CF1 

was addressed in a recent publication [11]. 

 
Supplementary Figure 5 (a) Labelled schematic of the waveguide mesh arrangement under test. (b) black box system with the targeted 

performance: Routing between channels defined by the port pairs with input 12 and outputs 21, 23, 24, 1, 2, 3, 4, 6. 
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To compare between different cost functions and models, that can make the optimization results quite non-intuitive, during the process 

we define and keep track of two output features at every iteration. The first one, referred as Output Feature 1 (OF1) computes the mean 

optical loss at each channel and is normalized to -10 dB. The second one, (OF2) captures the mean ripple at the 8 targeted channels (dB).  

 

Data analysis for the different advanced optimization methods for the Optical beamsplitter configuration: 

 

• Optical beamsplitter 1x8 channels self-configuration employing a Genetic Algorithm 

The efficiency of the genetic algorithm is dependent on the hyperparameters selected, the cost function and the targeted problem. The 

summarized explanation of the algorithm employed in this work can be found in Supplementary Note 4. In order to test the performance 

and to find the best ranges for the hyperparameters for the optical beamsplitter problem, we performed a grid-search tuning the 

hyperparameters and run the algorithm for 409 trials for each of the two proposed cost functions. The results were tracked and saved for 

posterior analysis and postprocessing in a datasheet. The hyperparameters were selected following the ranges specified in Supplementary 

Table 1, ensuring wide-enough ranges to explore different combinations. For each hyperparameter combination we run an independent 

self-configuration process, where the passive conditions of the mesh are selected from a random distribution and remains unknown 

during the whole process. Finally, to ensure a fair comparison between the different combination of hyperparameter, a maximum number 

of 3000 operations is allowed during the iterative process, independently of the size of the population selected. 

 

CF1x8
1: 

Our first analysis consists of computing the correlation matrix of the datasheet including the data gathered during the self-configuration 

process. It includes the final cost function, the output features and the values of the hyperparameters. As a result, it returns a coefficient 

describing the linear correlation of the data. Although restrictive to linear correlations, it is a good first-search indicator. For example, 

Supplementary Table  suggests that the init mutation range per pi and the mutation_decay value have a higher negative correlation with 

the targeted cost function minimization. A deeper analysis of the data reveals that the optimum value for the mutation_decay coefficient 

is related to the init_mutation range per pi, suggesting that if it starts being too small, the decay is counterproductive and the process 

get stacked into local minima points. 

 
Supplementary Table 3 | Correlation matrix of the datasheet after the grid-search application of a self-configuration routine based on the genetic 

algorithm approach. 

(CF1x8
1) CF OF1 OF2 

CF    1.000000 0.958451 0.649870 

OF1                                        0.958451 1.000000 0.637895 

OF2   0.649870 0.637895 1.000000 

mutation_decay 0.155327 0.152923 0.010581 

parents_mating_per_population_percent     -0.057200 -0.023768 -0.034353 

mutationpermating -0.108323 -0.173077  -0.131097 

parents_mating_per_num_weights_percent -0.204237 -0.182081 -0.034353 

population_per_num_weights_percent -0.270537 -0.260325 -0.119533 

num_mutations_per_num_weights_percent -0.304063 -0.347558 -0.175940 

mutation_decay vs range -0.371618 -0.378442 -0.305843 

init_mutation_range_per_pi -0.448689 -0.460422 -0.300384 

 

To delve into the actual performance of the different combinations, Supplementary Figure 6 and Supplementary Figure 7, illustrate the 

histogram of the complete datasheet and the datasheets including only the combinations of hyperparameters that achieve a performance 

closer to the targeted one, respectively. The second datasheet includes thus the best results accomplishing OF1 better than 3 dB and OF2 

better than 2 dB. From the data, we infer that the init_mutation_range_per_pi value should be close to 50%. A lower value limits the 

exploration capability of the algorithm in favor to the exploitation capability, increasing the probability to get stacked in a local minimum. 

In addition, for larger values of init_mutation_range_per_pi, the best mutation_decay is 0.5. The value of 

num_mutations_per_num_weights_percent should be close to 50%. The parents_mating_per_num_weights_percent should be close to 

10 and 20 %.  

From the data we obtain that the best ranges are: 

 
Supplementary Table 4 | Selection of the best hyperparameter combinations after the grid-search for the application of a genetic algorithm in the self-

configuration of a 1x8 optical beamsplitter. 

(CF1x8
1) Best performance ranges 

mutation_decay 0.5 
parents_mating_per_num_weights_percent 20% 

population_per_num_weights_percent any 
num_mutations_per_num_weights_percent 50% 
init_mutation_range_per_pi 50% 

 



Page 10 of 51 

 

 
Supplementary Figure 6 | Optical beamsplitter 1x8 grid search results with genetic algorithm for CF1x8

1 : Histogram including all datasheets. 

 

 
Supplementary Figure 7 | Optical beamsplitter 1x8 grid search results with genetic algorithm for CF1x8

1: Histogram including the best 

performance datasheets. 

 
From this preliminary analysis, the 2.6 % of the samples achieve the targeted metrics for the output features simultaneously. This low 

convergence reflects both the dependence of the hyperparameter values with the completion of the task and that the hyperparameter 

ranges selected are too broad.  We limited the number of operations to 3000 for every trial, so slower convergency samples might be 

considered as failed. It is worth nothing that each operation implies a single configuration of the waveguide mesh and the extraction of 

the amplitude scattering matrix at the 8 output channels. 
 

CF1x8
2: 

 

We repeat the previous experiment but employing a CF1x8
2. The results of the correlation of the datasheet are covered in Supplementary 

Table : 
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Supplementary Table 5 | Correlation matrix of the datasheet after the grid-search application of a self-configuration routine based on the genetic 

algorithm approach 

(CF1x82) CF OF1 OF2 

CF    1.000000 0.915892 0.327019 

OF1                                        0.915892 1.000000 0.513217 

OF2   0.327019 0.513217 1.000000 

mutation_decay 0.077110 0.085830 0.074630 

parents_mating_per_population_percent     -0.007362 -0.061426 0.026494 

mutationpermating -0.110021 -0.065654  -0.040172 

parents_mating_per_num_weights_percent -0.148215 -0.216105 -0.046298 

population_per_num_weights_percent -0.227142 -0.269435 -0.078157 

num_mutations_per_num_weights_percent -0.273857 -0.244912 -0.108319 

mutation_decay vs range -0.451101 -0.375154 -0.067322 

init_mutation_range_per_pi -0.527120 -0.475107 -0.141418 

 

To delve into the actual performance of the different combinations, Supplementary Figure 8 and Supplementary Figure 9, illustrate the 

histogram of the complete datasheet and the datasheet, respectively. As in CF1x8
1, from the data, we infer that the 

init_mutation_range_per_pi value should be close to 50%. Again, for larger values of init_mutation_range_per_pi, the best 

mutation_decay is 0.5. The value of num_mutations_per_num_weights_percent should be close to 50%. The 

parents_mating_per_num_weights_percent should be close to 10 and 20 %. From the data we obtain that the best ranges, presented in 

Supplementary Table .  Note that the best hyperparameters are similar for the ones selected for the CF1x8
1. 

 
Supplementary Table 6 | Selection of the best hyperparameter combinations after the grid-search for the application of a genetic algorithm in the self-

configuration of a 1x8 optical beamsplitter. 
(CF1x8

2) Best performance ranges 

mutation_decay 0-0.6 (proportional to init mut range) 

parents_mating_per_num_weights_percent 20-25% 

population_per_num_weights_percent 200-300% 

num_mutations_per_num_weights_percent 50% 

init_mutation_range_per_pi 10-50% 

 

 
Supplementary Figure 8 | Optical beamsplitter 1x8 grid search results with genetic algorithm for CF1x8

2: Histogram including all datasheets. 

 
In this case, a 7.39 % of the samples achieve the targeted metrics for both output features simultaneously. Although results are better 

than the ones obtained from CF1x8
1, they reflect again both the dependence of the hyperparameter values with the completion of the task 

and that the hyperparameter ranges selected are too broad. Again, we limited the number of operations to 3000. With this example, it 

can be appreciated that the selection of an optimum cost function is essential to optimize the self-configuration performance and to relax 

the impact of the selected hyperparameters. 
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Supplementary Figure 9 | Optical beamsplitter 1x8 grid search results with genetic algorithm for CF1x8

2: Histogram including the best 

performance datasheets. 

 

Now, to show the statistical success rate of the algorithm, we launch 100 trials using the same hyperparameters (as specified in 

Supplementary Table I) and change the initial offsets of the TBUs for each trial.  

 
Supplementary Table I | Selection of the best hyperparameter combinations after the grid-search for the application of a genetic algorithm in the self-

configuration of a 1x8 optical beamsplitter to be used in the statistical test 
(CF1x8

2) Best performance ranges 

mutation_decay 0.5 

parents_mating_per_num_weights_percent 25% 

population_per_num_weights_percent 250% 

num_mutations_per_num_weights_percent 50% 

init_mutation_range_per_pi 50% 

 

The statistical results are plotted in Supplementary Figure 10. Here, we can infer from the trend that in all cases, a larger number of 

operations would improve the results, both reducing the optical loss of the channel and their ripples. With 3000 operations, the 25% of 

the data have OF1 better than 3 dB and ripples better than 3 dB. In addition, whereas 78% of the data achieves the target proposed for 

the OF1, the average ripples in the channel requires more tuning. Solutions to improve the efficiency of the algorithm ranges from 

increasing the number of operations to performing cost function engineering considering a higher weight for the ripples. Nevertheless, 

100% of the solutions present a result very close to the global optimum. At this point, once closed to the global minimum, a third 

approach consist of launching a second iteration with an optimization routine with exploitation capabilities like a derivative based 

approach or the simplex method. 

 
Supplementary Figure 10 | Optical beamsplitter 1x8 grid statistical results for fixed hyperparameter selection with genetic algorithm for 

CF1x8
2: Evolution of the output features (OF1: mean of normalized output channels power of the beamsplitters, OF2: Mean ripple at the output 

channels). Progress (left) and histogram at last iteration (right) The datasheet is composed of 100 independent experiments with different waveguide 

mesh initial conditions. 

 

Conclusions on the GA in the 1x8 beamsplitter example 

We have applied different combinations of hyperparameters to two cost functions describing the operation of a 1x8 optical beamsplitter. 

We show that the success rate is dependent on the hyperparameter and the cost function selection. However, the best behaved 
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hyperparameters ranges are maintained between cost functions. In addition, we repeated 100 times a configuration test, varying the 

initial conditions (loss distribution and phase offsets) in the waveguide mesh arrangement showing a success rate of 25% for a given 

output feature metrics targeting average deviations better than 3 dB and average ripples in the channel better than 3-dB, always 

employing less than 3000 operations. 

The efficiency and final performance achieved by the self-configuring algorithm could be improved by using different decrement 

schedules for the decay function or employing a cost function that includes the non-targeted optical ports leaked power. Also, the GA 

employed is a simple version of the method. Different selection methods and elitism strategies can be programed to achieve faster 

convergence to the global optimum. Moreover, although the optimum performance is not achieved in some cases, the trends shows that 

a larger number of operations would improve the current result. Finally, the use of the algorithm result in a configuration vector v closer 

to the global optimum of the function, and an algorithm with exploitation abilities can be sequentially employed with the resulting 

position as an starting point, as we will see for the gradient descent for the simplex method [11]. 

 

• Optical beamsplitter 1x8 channels self-configuration employing a Particle Swarm Optimization (PSO) algorithm: 

The efficiency of the PSO algorithm is dependent on the hyperparameters selected, the cost function and the targeted problem. Like the 

previous case, we perform a grid-search tuning the hyperparameters and running the algorithm for 320 trials for each of the two proposed 

cost functions. The hyperparameters are selected following the ranges specified in Supplementary Table . We selected wide ranges to 

ensure that we explore different combinations.  

 

CF1x8
1: 

Once computed the full datasheet, we compute the correlation matrix. It includes the final cost function, the output features and the 

values of the hyperparameters and returns a coefficient describing the linear correlation of the data as a good first-search indicator. 

Precisely, Supplementary Table  suggests that in order to minimize the cost function and the output feature 1 and 2, one should employ a 

moderately large inertia coefficient, a moderate cognitive coefficient, and number of particles. Finally, the social value should be 

moderately large, within the range tested.  
Supplementary Table 8 | Correlation matrix after the reconfiguration example 

(CF1x8
1) CF OF1 OF2 

CF    1.000000 0.953957 0.464912 

OF1                                        0.953957 1.000000 0.545596 

OF2   0.464912 0.545596 1.000000 

inertia 0.783003 0.726994 0.243692 

cognitive -0.043652 -0.040700 0.037724 

particles_per_num_weights_percent -0.148211 -0.165540 -0.167069 

social -0.161279 -0.122487 -0.090509 

 

To delve into the actual performance of the different combinations, Supplementary Figure 11 and Supplementary Figure 12, illustrate 

the histogram of the complete datasheet and the datasheets featuring the targeted performance, respectively. The second datasheet 

includes thus the best results accomplishing OF1 better than 3 dB and OF2 better than 3 dB. From the data, we infer that the 

init_mutation_range_per_pi value should be close to 50%. A lower value limits the exploration capability of the algorithm in favor to 

the exploitation capability, increasing the probability to get stacked in a local minimum. In addition, for larger values of 

init_mutation_range_per_pi, the best mutation_decay is 0.5. The value of num_mutations_per_num_weights_percent should be close 

to 50%. The parents_mating_per_num_weights_percent should be close to 10 and 20 %.  

From the data we obtain that the best ranges are: 

 
Supplementary Table 9 | Selection of the best hyperparameter ranges 

(CF1x8
1) Best performance ranges 

Number of particles per weight % 20-100% 

Inertia coefficient 0.5 

Cognitive coefficient 0.5-1 
Social coefficient 1-2 
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Supplementary Figure 11 | Optical beamsplitter 1x8 grid search results with genetic algorithm for CF1x8

1 : Histogram including all datasheets. 

 
Supplementary Figure 12 | Optical beamsplitter 1x8 grid search results with genetic algorithm for CF1x8

1: Histogram including the best 

performance datasheets. 

 
In this case, it results that the 5.0% of the samples have succeed in the self-configuration task. This reflects, again, both the dependence of the 

hyperparameter values with the completion of the task and that the hyperparameter ranges selected are too broad.  We limited the number of operations 

to 3000 for every trial, so slower convergency samples might be considered as failed. It is worth nothing that each operation implies a single 

configuration of the waveguide mesh and the extraction of the amplitude scattering matrix at the 8 output channels. 

 

CF1x8
2: 

 

Once computed the full datasheet of every trial, we compute the correlation matrix. It includes the final cost function, the output features 

and the values of the hyperparameters. As a result, it returns a coefficient describing the linear correlation of the data as a good first-

search indicator. Precisely, Supplementary Table  suggests that in order to minimize the cost function and the output feature 1 and 2, 

one should employ a moderately high inertia coefficient, and a moderate number of particles. Finally, the social value should be 

moderately small, within the range tested. 
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Supplementary Table 10 | Correlation matrix after the application of the PSO algorithm for the case CF1x8

2 

(CF1x8
2) CF OF1 OF2 

CF    1.000000 0.960125 0.359904 

OF1                                        0.960125 1.000000 0.397768 

OF2   0.359904 0.397768 1.000000 

inertia 0.773356 0.716420 0.184801 

cognitive -0.011251 -0.032298 -0.025226 

particles_per_num_weights_percent -0.175712 -0.208913 0.054592 

social -0.126041 -0.093567 -0.100469 

 

To delve into the actual performance of the different combinations, Supplementary Figure 13 and Supplementary Figure 14, illustrate 

the histogram of the complete datasheet and the datasheets featuring the targeted performance, respectively. The second datasheet 

includes thus the best results accomplishing OF1 better than 3 dB and OF2 better than 2 dB. From the data, we infer that the 

init_mutation_range_per_pi value should be close to 50%. A lower value limits the exploration capability of the algorithm in favor to 

the exploitation capability, increasing the probability to get stacked in a local minimum. In addition, for larger values of 

init_mutation_range_per_pi, the best mutation_decay is 0.5. The value of num_mutations_per_num_weights_percent should be close 

to 50%. The parents_mating_per_num_weights_percent should be close to 10 and 20 %.  

From the data we obtain that the best ranges are: 

 
Supplementary Table 11 | Selection of the best hyperparameter values 

(CF1x8
2) Best performance ranges 

Number of particles per weight % 50-200% 

Inertia coefficient 0.5 

Cognitive coefficient 0.5-1 
Social coefficient 1-2 

 

 
Supplementary Figure 13 | Optical beamsplitter 1x8 grid search results with genetic algorithm for CF1x8

2: Histogram including all datasheets. 
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Supplementary Figure 14 | Optical beamsplitter 1x8 grid search results with genetic algorithm for CF1x8

2: Histogram including the best 

performance datasheets. 
 

In this case, the preliminary analysis shows that 4.3 % of the samples have succeed in the self-configuration task, reflecting again both 

the dependence of the hyperparameter values with the completion of the task and that the hyperparameter ranges selected are too broad.  

We limited the number of operations to 3000 for every trial. It is worth nothing that each operation implies a single configuration of the 

waveguide mesh and the extraction of the amplitude scattering matrix at the 8 output channels. 

 

Now, to show the statistical success rate of the algorithm, we will launch 100 trials using the same hyperparameters and changing the 

initial offsets of the TBUs at each experimental trial.  

 
 Supplementary Table II | Selection of best hyperparameters employed in the statistical analysis. 

(CF1x8
2) Best performance 

ranges 

Number of particles per weight % 200% 

Inertia coefficient 0.5 

Cognitive coefficient 0.5 

Social coefficient 1.0 

 

From this statistical analysis we can see that 89% of the trials have obtained an OF1 better than 3dB. Maintaining this performance, a 

31% of the trials achieve an OF2 better than 3dB. The trends suggest that a greater number of operations would improve the statistical 

result. However, we see that the improvement rate is reduced for OF2, suggesting that some of the samples might be closed to a local 

minimum. 

 
Supplementary Figure 15 | Optical beamsplitter 1x8 grid statistical results for fixed hyperparameter selection with PSO algorithm for 

CF1x8
2: Evolution of the output features (OF1: mean of normalized output channels power of the beamsplitters, OF2: Mean ripple at the 

output channels). Progress (left) and histogram at last iteration (right) The datasheet is composed of 100 independent experiments with different 

waveguide mesh initial conditions. 
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Conclusions on the PSO in the 1x8 example 

We applied different combinations of hyperparameters to two cost functions describing the operation of a 1x8 optical beamsplitter. We 

show that the “success rate” is dependent on the hyperparameter selection. However, the best behaved hyperparameters ranges are 

maintained between both cost functions. In addition, we repeated 100 times a configuration test, varying the initial conditions (loss 

distributions and phase offsets) in the waveguide mesh arrangement showing a success rate of 32% always employing less than 3000 

operations. 

The efficiency of the algorithm could be improved by using advanced versions of the plain PSO. Moreover, although the optimum 

performance is not achieved in some cases, the use of the algorithm result in a position much closer to the global optimum of the function, 

and an algorithm with exploitation abilities can be sequentially employed with the resulting position as an starting point, as we will see 

for the gradient descent and to the simplex method [11]. Compared to the genetic algorithm applied to the same application example, 

the PSO algorithm achieves a 7% more of success rate for the selected best configuration. A better convergence speed and less sensitivity 

to the hyperparameters can be achieved if parameters like the inertia are configured adaptatively to decrease during the optimization 

process. 

 

• Optical beamsplitter 1x8 channels self-configuration employing a gradient-descent with momentum algorithm: 

The gradient descent algorithm is the simplest approach of optimization methods that require the computation of the gradient (the 

derivative of the cost functions for each variable in the search-space). Here we illustrate its application to the two cost functions 

engineered for the self-configuration of the optical beamsplitter 1x8. This algorithm, as described in Supplementary Material 5 requires 

the selection of two hyperparameters. In order to illustrate how their selection affects to the minimization process we perform a grid 

search to find the best values for the learning rate (η) and the momentum (αmo).  We divided the grid as: η ∈ [5e-2 1e-1 5e-1 1] and αmo 

∈ [0 0.2 0.4 0.6 0.8 0.9].  

 

From Supplementary Figure 16, we can see that the cost function final values, the average optical power at the selected output channels 

displayed at Output Feature 1, and their average ripple in dBs displayed at Main Feature 2, are acceptable (<1, around -1dB, <1.5 dB, 

respectively) for most of the points where αmo is greater than 0.4. However, the optimum number of iterations to convergence is achieved 

for αmo ≥ 0.8 and η around 1e-1, resulting in a number of 43-50 iterations, 0.4-0.8-dB average ripples, and -10.2 to -10.4 dBm average 

output power. Per iteration, the algorithm performs 72 operations, ranging between 6192 and 7200 operations for the best cases. These 

numbers can potentially by decreased by half if partial non-central derivatives are employed. 

 

CF1x8
2: 

 
Supplementary Figure 16 | Optical beamsplitter 1x8 grid search results with gradient descent with momentum for CF1x8

2 : Cost, Output 

Feature considering the average at the targeted outputs in dBm, Output Feature 2 considering the ripple in the channel in dB, and the number of 

iterations to converge. A maximum number of 100 iterations is allowed and then associated to not convergence. The red circles show the computed 

points. 

 

Considering the aforementioned example at αmo = 0.8 and η = 2e-1. The αmo is progressively raised each iteration by an amount of 0.05 

until reaching the targeted value to enhance the convergence and avoid noisy starts. 
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Supplementary Note 6: Self-configuration of all-cross waveguide meshes. 
All-cross function aims to configure every phase actuator to set every TBU to their cross-state. This function is particularly interesting 

for both calibration and characterization as well as for setting an optimized initial point for some of the optimization methods described 

in this work and enhance their convergence. 

The cost function is just an example of a broad range of applications involving arbitrary routing of the optical signals between the optical 

ports. This particular case is associated to the minimization process of a mathematical function that involves the readouts corresponding 

to the optical channels that are configured when all the TBUs in the arrangement are in cross-state. For example, in Supplementary 

Figure 17, the optical channels are described by the following port pairs: 12-23, 14-21, 10-1, 8-3, 13-6, 15-4, 17-2, 19-24, and 11-16, 9-

18,7-20, 5-22. Note that the last set of 4 port pairs is redundant and could be deleted from the cost function as they do not incorporate 

additional TBUs. In addition, one could incorporate extra features to the cost function to enhance the convergence of the process or 

reduce the number of iterations, however it comes at the cost of additional number of measurements or signal processing. Few examples 

are the monitoring of the spectral response of those channels to incorporate the observed ripples to the cost function or the monitoring 

of a set of undesired paths. Although not incorporated in the following CF definition, they should be contemplated as a solution for the 

future scalability of large-scale waveguide mesh arrangements. Finally, the selection of the cost function is essential to enhance and, in 

some cases, enable the convergence of the optimization process. 

The cost function is described as follows: 
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where N is the number of optical channels incorporated in the optimization process and |Hchs| the maximum absolute value of the 

electric field measured for each optical channel listed before. 

To perform an intuitive analysis of the achieved performance, we monitor and define the Output Feature 1 as the average power 

transmission response in the targeted optical channels defining the all-cross operation. It is expressed in logarithmic units. 

 

Data analysis for the different advanced optimization methods: 

 

• All-cross self-configuration employing a Genetic Algorithm 

The efficiency of the genetic algorithm is dependent on the hyperparameters selected, the cost function and the targeted problem. In 

order to test the performance and to find the best ranges for the hyperparameters for the all-cross configuration problem, we perform a 

grid-search tuning the hyperparameters and running the algorithm for 409 trials the CFall-cross
1.  The hyperparameters are selected 

following the ranges specified in Supplementary Table 1. We selected wide ranges to ensure that we explore different combinations of 

hyperparameters. 

 

CFall-cross
1: 

 

We repeat the correlation analysis between the cost function and the output feature and the hyperparameters. It computes the correlation 

matrix of the datasheet including the data gathered during the self-configuration process. In this case, results gathered in Supplementary 

Table  suggest that in order to minimize the cost function and maximize the Output Feature 1, one should employ a moderately large 

 
Supplementary Figure 17 | (a) Labelled schematic of the waveguide mesh arrangement under test. (b) black box system with the targeted 

performance: (a) Labelled schematic of the waveguide mesh arrangement under test. (b) black box system with the targeted performance: 

Routing between channels defined by the port pairs 12-23, 14-21, 10-1, 8-3, 13-6, 15-4, 17-2, 19-24, and 11-16, 9-18,7-20, 5-22. Note: They 

represent direct connections without crossings or splitting. 
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init mutation range per pi value, num_mutations_per_num_weights_percent and population_per_num_weights_percent value. Finally, 

the mutation_decay value should be moderately small, within the range tested and is proportional to the init_mutation_range_per_pi 

value.. 

 
Supplementary Table 13 | Correlation matrix after the reconfiguration of CFall-cross

1 

(CFall-cross
1) CF OF1 

CF    1.000000 -0.973491 

OF1                                        -0.973491 1.000000 

mutation_decay 0.083603 -0.103660 

parents_mating_per_population_percent     -0.038304 0.017483 

mutationpermating -0.214166 0.207822 

parents_mating_per_num_weights_percent -0.156005 0.146814 

population_per_num_weights_percent -0.210828 -0.260325 

num_mutations_per_num_weights_percent -0.386104 0.374420 

mutation_decay vs range -0.365893 0.342917 

init_mutation_range_per_pi -0.428195 0.406466 

 

To delve into the actual performance of the different combinations, Supplementary Figure 18 and Supplementary Figure 19, illustrate 

the histogram of the complete datasheet and the datasheets featuring an output feature value better than 3-dB, respectively. From the 

data, we infer that the init_mutation_range_per_pi value should be close to 50%. A lower value limits the exploration capability of the 

algorithm in favor to the exploitation capability, increasing the probability to get stacked in a local minimum. In addition, for larger 

values of init_mutation_range_per_pi, the best mutation_decay is 0.5. The value of num_mutations_per_num_weights_percent should 

be close to 50%. The parents_mating_per_num_weights_percent should be close to 10 and 20 %.  

 
Supplementary Table 14 | Selection of the best hyperparameter ranges. 

(CFall-cross
1) Best performance ranges 

mutation_decay 0.2-0.5 
parents_mating_per_num_weights_percent 25% 

population_per_num_weights_percent 50-200% 
num_mutations_per_num_weights_percent 50% 
init_mutation_range_per_pi 20-50% 

 

 
Supplementary Figure 18 | All-cross routing function grid search results with genetic algorithm for CFall-cross

1 : Histogram including all 

datasheets. 
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Supplementary Figure 19 | All-cross routing function grid search results with genetic algorithm for CFall-cross

1: Histogram including the best 

performance datasheets. 
        

For these tests, the 3.7 % of the samples have succeed in the self-configuration task. This reflects both the dependence of the 

hyperparameter values with the completion of the task and that the hyperparameter ranges selected are too broad.  We limited the number 

of operations to 3000 for every trial, so slower convergency samples might be considered as failed. It is worth nothing that each operation 

implies a single configuration of the waveguide mesh and the extraction of the amplitude scattering matrix at the 12 optical channels. In 

order to test the statistical variability of the method we run 100 experiments with different initial conditions as phase offsets and loss 

distributions of the waveguide mesh arrangement, employing the hyperparameters of Supplementary Table .  

 
Supplementary Table 15 | Selection of the best hyperparameter ranges to be employed in the statistical analysis. 

(CFall-cross
1) Best performance ranges 

mutation_decay 0.5 
parents_mating_per_num_weights_percent 25% 

population_per_num_weights_percent 200% 
num_mutations_per_num_weights_percent 50% 
init_mutation_range_per_pi 50% 

 

As illustrated in Supplementary Figure 20 the 95% of the samples show an Output Feature better than 3 dB. In addition, both the 

percentage and the mean would improve if we increase slightly the number of operations, as suggested by the trend. 

 
Supplementary Figure 20 | All-cross function statistical results for fixed hyperparameter selection with genetic algorithm for CFall-cross

1: 

Evolution of the output features (OF1: mean of normalized output channels power of the beamsplitters, OF2: Mean ripple at the output 

channels). Progress (left) and histogram at last iteration (right) The datasheet is composed of 100 independent experiments with different waveguide 

mesh initial conditions. 
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Conclusions on the GA in the all cross self-configuration example 

We applied different combinations of hyperparameters to one cost functions describing the operation of a routing function requiring all 

the programmable units being in cross state. We show that the success rate is dependent on the hyperparameter selection. In addition, 

we repeated 100 times a configuration test, varying the initial conditions or phase offsets in the waveguide mesh arrangement showing 

that 95% achieves an average error in their optical channels of less than 3-dB, always employing less than 3000 operations.  

 

• All-cross self-configuration employing a Particle Swarm Optimization (PSO) algorithm:  

The efficiency of the PSO algorithm is dependent on the hyperparameters selected, the cost function and the targeted problem. Like the 

previous case, we perform a grid-search tuning the hyperparameters and running the algorithm for 320 trials employing the cost function. 

The hyperparameters are selected following the ranges specified in Supplementary Table 1. We selected wide ranges to ensure that we 

explore different combinations.  

 

CFAll-cross
1: 

Once computed the full datasheet of every trial, we compute the correlation matrix. It includes the final cost function, the output features 

and the values of the hyperparameters. As a result, it returns a coefficient describing the linear correlation of the data as a good first-

search indicator. Precisely, Supplementary Table  suggests that in order to minimize the cost function and the output feature, one should 

employ a moderate inertia coefficient, a moderately high number of particles. Finally, the social value should be moderately high, within 

the range tested. 

 

Supplementary Table 16 | Correlation matrix after the reconfiguration of CFAll-cross
1 

(CFAll-cross
1) CF and OF1 OF2 

CF    1.000000 -0.985750 

OF1                                        1.000000 -0.985750 

OF2   -0.985750 1.000000 

inertia 0.490296 -0.474098 

cognitive 0.006863 0.006605 

particles_per_num_weights_percent -0.113016 0.113350 

social -0.269188 0.280533 

 

To delve into the actual performance of the different combinations, Supplementary Figure 21 illustrates the histogram of the complete 

datasheet and the datasheets featuring the targeted performance, respectively. The second datasheet includes thus the best results 

accomplishing OF1 better than 3 dB. From the data, we infer that hyperparameters obtaining the best results are the following: 

 

Supplementary Table 17 | Selection of the best hyperparameter ranges 

(CFAll-cross
1) Best performance ranges 

Number of particles per weight % 100% 

Inertia coefficient 0.5 

Cognitive coefficient 1.0 
Social coefficient 1.0-2.0 

 

 

From the trials, it results that 7.28% of the samples have succeed in the self-configuration task. This reflects both the dependence of the 

hyperparameter values with the completion of the task and that the hyperparameter ranges selected are too broad.  We limited the number 

of operations to 3000 for every trial, so slower convergency samples are considered as failed. It is worth nothing that each operation 

implies a single configuration of the waveguide mesh and the extraction of the amplitude scattering matrix at the 12 output channels. 

Compared to the genetic algorithm the PSO achieves the double efficiency. However, the comparison should not be understood as 

straightforward since the hyperparameter spaces in both cases is different. 

In order to test statistically the success rate for a fixed set of best-performing set of hyperparameters, we test the method 100 times with 

variable initial conditions for the waveguide mesh arrangement. We employ the following combination expressed in Supplementary Table 

18. 



Page 22 of 51 

 

 
Supplementary Figure 21 | All cross grid search results with genetic algorithm for CFall-cross

1: Histogram including all datasheets.(left) and the 

best cases (right) 

        

Supplementary Table 18 Selection of the best hyperparameter ranges employed in the statistical analysis. 

 
(CFallcross

1) Selected values 

Number of particles per weight % 150% 

Inertia coefficient 0.5 

Cognitive coefficient 0.8 
Social coefficient 1.0 

 

As illustrated in Supplementary Figure 22 the 70% of the samples show an Output Feature better than 3 dB. In addition, both the 

percentage and the mean would improve if we increase slightly the number of operations, as suggested by the trend. 

 

 
Supplementary Figure 22 | All-cross function statistical results for fixed hyperparameter selection with PSO algorithm for CFall-cross

1: 

Evolution of the output features (OF1: mean of normalized output channels power of the output channels, OF2: Mean ripple at the output 

channels). Progress (left) and histogram at last iteration (right) The datasheet is composed of 100 independent experiments with different waveguide 

mesh initial conditions. 

 

Conclusions on the PSO in the all cross self-configuration example 

We applied different combinations of hyperparameters to one cost function describing the operation of a routing function requiring all 

the programmable units being in cross state. We show that the success rate is dependent on the hyperparameter selection. In addition, 

we repeated 100 times a configuration test, varying the initial conditions or phase offsets in the waveguide mesh arrangement showing 

a success rate of 70% always employing less than 3000 operations. For this particular case, and hyperparameter combination the genetic 

algorithm outperforms the PSO. In both cases the configuration of the device is very close to the ideal value and either employing more 

iterations or improving the cost functions to consider spectral feature, and leaking power would improve the convergence rates. In 

addition, this can be employed as the starting point of a gradient-descent based optimization procedure or a Nelder-Mead method that 

have easier exploitation capabilities of the nearest minimum point. A better convergence speed and less sensitivity to the 

hyperparameters can be achieved if parameters like the inertia are configured adaptatively to decrease during the optimization process. 
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• All-cross self-configuration employing a gradient-descent with momentum algorithm: 

The efficiency of the gradient descent with momentum algorithm is dependent on the two hyperparameters selected, the cost function 

and the targeted problem. Like in the previous case, we perform a sweep over a wide range for each hyperparameter to illustrate how 

their selection affects to the minimization process. Thus, we perform a grid search to find the best values for the learning rate (η) and 

the momentum (αmo).  We divided the grid as: η ∈ [1 1e1 5e1 1e0] and αmo ∈ [0 0.2 0.4 0.6 0.8 0.9]. 

 

CFall-cross
1: 

The resulting sweep is plotted in Supplementary Figure 23. Here we can see that the final cost function value and the average optical 

power at the selected output channels are acceptable (<0.2 and -1dB, respectively) for most of the points where αmo is greater than 0.4. 

However, the optimum number of iterations to convergence is achieved for αmo ≥ 0.5 and η ≥ 50, resulting in a number of 5-6 iterations. 

At each iteration we have computed the gradient of v, implying a total of 750 – 900 operations. 

 

 
Supplementary Figure 23 | Example results of the grid-search of the optimization process of the CF (1) and the Gradient Descent algorithm. 

Cost, Main Feature considering the average at the targeted outputs in dBm and the number of iterations to converge. A maximum number of 60 

iterations is allowed and then associated to not convergence. The red circles show the computed points. 

 

As an illustrative example, we analyse in Supplementary Figure 24 the optimization process considering the aforementioned example 

and αmo = 0.5 and η = 50. The αmo is progressively raised each iteration by an amount of 0.05 until reaching the targeted value to enhance 

the convergence and avoid noisy starts. 

 

 

 

  
Supplementary Figure 24 | Resulting log-file of the grid-search of the optimization process of the CF (1) and the Gradient Descent algorithm 

with αmo = 0.5 and η = 50. Initial spectral response of the desired and undesired optical channels, final spectral response of the desired and undesired 
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optical channels, Cost Function value per iteration, statistical results of the driving phases per iteration, coupling factor per iteration (not employed in 

the optimization process), common phase of each TBU per iteration (not employed in the optimization process), and initial and final histograms of 

the coupling factor and common phase value of each TBU and norm of the gradient.. Complementary resulting log-file of the grid-search of the 

optimization process of the CF (1) and the Gradient Descent algorithm with αmo = 0.5 and η = 50 including the features related to the application. 

Absolute value of the scattering matrix elements related to the targeted optical channels and their evolution for each iteration, related optical power 

per iteration. 

 

In the previous figure, we can see visual metrics that allows to understand the progress of the optimization process. First, Supplementary 

Figure 24(a-b) illustrates the initial and final spectral responses obtained from the scattering matrix. We can see that the initial state is a 

unitary random scattering matrix and the final response shows the flat response of the targeted all-cross channels. (c) illustrates the cost 

function and the features values during the optimization process. The first feature f1 is proportional to the optical power at the targeted 

channels, whereas the second feature refers to the average ripple in the targeted channels. 
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Supplementary Note 7: Self-configuration of optical filters: 
 

The design and configuration of optical filters as application specific photonic integrated circuits has been covered in multiple papers 

and books [13]. There, a circuit architecture is chosen and build up with optical splitters, combiners and waveguides. In this 

supplementary note, we demonstrate the self-configuration of optical filters in the general-purpose waveguide mesh arrangement. This 

application targets the suppression of a given spectral band while maintaining the minimum losses in the passband. The general-purpose 

waveguide mesh arrangement can be configured to perform as a filter relying on pre-characterization routines and pre-sets. However, 

having a self-configuration method is a promising capability to configure filters on demand. Also, letting an automated function select 

between thousands of parameters is a good solution for scalable systems and can potentially deal with the mitigation of non ideal effects 

like optical crosstalk, tuning crosstalk, power consumption savings, logical footprint savings, and optical loss improvements. 

For the definition of the cost function, it is possible to consider many features, as the insertion loss of the pass band, the extinction ratio 

of the filter, the roll off, the optical power at the non-targeted ports, etc. They are illustrated in Supplementary Figure 25. Additionally, 

one can define the targeted spectral mask of the filter and define a cost function feature considering the error between the obtained trace 

and the mask at each iteration. Here we demonstrate the self-reconfiguration capability employing only the mean square error with the 

spectral mask, although multiple objectives could be added to the cost function to be optimized. The cost function employed is described 

by the following equation: 

 
Supplementary Figure 25 | Optical filter performance scheme for the construction of the cost function CFO.Filter
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where Nλ is the number of wavelength points, Mλ is the value of the spectral mask at each wavelength point, and S4,1 is the value of the 

scattering matrix at the optical channel defined by ports 4 and 1 at a given wavelength.  Note that this operation is equivalent to the 

average of the distance between the mask and the measured trace depicted in red in the previous figure. 

For the comparison between methods and future cost functions, we analyze also the evolution of two output features, dealing with the 

insertion loss in the passband (OF1) and with the extinction ratio of the filter (OF2). 

 

 

Data analysis for the different advanced optimization methods: 

 

• Optical filter self-configuration employing a Genetic Algorithm 

The efficiency of the genetic algorithm is dependent on the hyperparameters selected, the cost function and the targeted problem. In 

order to test the performance and to find the best ranges for the hyperparameters for the Optical Filter self-configuration, we perform a 

grid-search tuning the hyperparameters and running the algorithm for 409 trials to minimize the CFOptical filter.  The hyperparameters are 

selected following the ranges specified in Supplementary Table 1. We selected wide ranges to ensure that we explore different 

combinations of hyperparameters. 

 

CFOptical filter 
1: 

 

We repeat the correlation matrix analysis of the datasheet including the data gathered during the self-configuration process. In this case, 

results shown in Supplementary Table  suggest that in order to minimize the cost function, one should employ a large init mutation 

range per pi value, a num_mutations_per_num_weights_percent a moderate population_per_num_weights_percent value. Finally, the 

mutation_decay value should be moderately small, within the range tested. 
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Supplementary Table 19 | Correlation matrix after the reconfiguration employing CFOptical filter 
1 

(CFall-cross
1) CF OF1 OF2 

CF    1.000000 0.603358 -0.607061 

OF1                                        0.603358 1.000000 -0.378884 

OF2 -0.607061 -0.378884 1.000000 

mutation_decay -0.000787 0.023269 -0.113220 

parents_mating_per_population_percent     -0.054180 -0.029678 0.150988 

mutationpermating -0.067246 -0.093016 0.042401 

parents_mating_per_num_weights_percent -0.132101 -0.051165 0.195070 

population_per_num_weights_percent -0.212540 -0.150821 0.188196 

num_mutations_per_num_weights_percent -0.203432 -0.242716 0.218610 

mutation_decay vs range -0.222523 -0.136275 0.097295 

init_mutation_range_per_pi -0.174769 -0.156635 0.137048 

 

To delve into the actual performance of the different combinations, Supplementary Figure 26 and Supplementary Figure 27, illustrate 

the histogram of the complete datasheet and the datasheets featuring the targeted performance, respectively. The second datasheet 

includes thus the best results accomplishing OF1 better than 5 dB and OF2 better than 18 dB. From the data, we infer that the 

init_mutation_range_per_pi value should be, as in the previous applications of the GA algorithm, close to 50%. A lower value limits 

the exploration capability of the algorithm in favor to the exploitation capability, increasing the probability to get stacked in a local 

minimum. In addition, for larger values of init_mutation_range_per_pi, the best mutation_decay is 0.5. The value of 

num_mutations_per_num_weights_percent should be close to 50%. The parents_mating_per_num_weights_percent should be close to 

10 and 20 %. 

  
Supplementary Table 20 | Selection of best performing parameters 

(CFall-cross
1) Best performance ranges 

mutation_decay 0.2-0.5 
parents_mating_per_num_weights_percent 25% 

population_per_num_weights_percent 50-200% 
num_mutations_per_num_weights_percent 50% 
init_mutation_range_per_pi 20-50% 

 

 

 
Supplementary Figure 26 | Optical filter routing function grid search results with genetic algorithm for CFOptical filter 

1: Histogram including 

all datasheets. 
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Supplementary Figure 27 | Optical filter routing function grid search results with genetic algorithm for CFOptical filter 

1: Histogram including the 

best performance datasheets. 
        

A 5.55 % of the samples have achieved the targeted values during the self-configuration task. This reflects both the dependence of the hyperparameter 

values with the completion of the task and that the hyperparameter ranges selected are too broad.  We limited the number of operations to 3000 for 

every trial, so if the experiment does not converge is considered as failed. It is worth nothing that each operation implies a single configuration of the 

waveguide mesh and the extraction of the amplitude scattering matrix at only one optical channel defined by the optical ports 4 and 1. In order to test 

the statistical variability of the method we run 100 experiments with different initial conditions as phase offsets and loss distributions of the waveguide 

mesh arrangement, employing the hyperparameters from Supplementary Table .  The results are included in Supplementary Figure 28. 

 

Supplementary Table 21 | Selection of best parameters employed for the statistical analysis. 

(CFall-cross
1) Best performance ranges 

mutation_decay 0.5 
parents_mating_per_num_weights_percent 25% 

population_per_num_weights_percent 200% 
num_mutations_per_num_weights_percent 50% 
init_mutation_range_per_pi 50% 

 

 
Supplementary Figure 28 | Optical filter function statistical results for fixed hyperparameter selection with GA algorithm for CFO.Filter

1: 

Evolution of the output features (OF1: Insertion loss of the passband(dB), OF2: Extinction Ratio (dB). Progress (left) and histogram at last 

iteration (right) The datasheet is composed of 100 independent experiments with different waveguide mesh initial conditions. Statistical illustration 

of the circuit. 
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We can then verify the spectral response statistically plotting the mean, standard deviation and interval of 95% confidence, as shown in 

Supplementary Figure 29. In this particular hyperparameter selection the 25% of the trials achieved the targeted metrics (OF1 better 

than 5 dB and OF2 better than 18 dB). The mask is accomplished notably, considering that achieving the targeted spectral response 

might require a high-order filter that can be achieved by cascading more components and thus requiring a larger-scale circuit. To achieve 

the targeted insertion loss while maintaining the conditions fixed for the stopband and the passband in terms of flatness, and bandwidth. 

We believe that a large-scale waveguide mesh architecture will offer more freedom to combine and split the light and thus achieve more 

challenging optical filter design demands. 

 
Supplementary Figure 29 | Optical filter function statistical results for fixed hyperparameter selection with GA algorithm for CFO.Filter

1: 

Statistical results considering the spectral response after the self-configuration of the filter. The datasheet is composed of 100 independent 

experiments with different waveguide mesh initial conditions. 

 

Conclusions on the GA in the optical filter self-configuration example 

We applied different combinations of hyperparameters to one cost function describing the operation of an optical filter defined by a 

spectral mask. We show that the success rate is dependent on the hyperparameter selection. In addition, we repeated 100 times a 

configuration test, varying the initial conditions or phase offsets in the waveguide mesh arrangement showing a success rate of 25% 

always employing less than 3000 operations. The convergence trends suggest that a greater number of operations would achieve better 

results, 100% of the results are very close to the global optimum. 

 

• Optical filter self-configuration employing a Particle Swarm Optimization (PSO) algorithm: 

As we saw for the previous examples, the efficiency of the PSO algorithm is dependent on the hyperparameters selected, the cost function 

and the targeted problem. We perform again a grid-search tuning the hyperparameters and running the algorithm for 320 trials for each 

of the proposed cost function. The hyperparameters are selected following the ranges specified in Supplementary Table  to ensure that 

we explore different combinations. Note that in this cases all the hyperparameters are fixed. A better convergence speed and less 

sensitivity to the hyperparameters can be achieved if parameters like the inertia are configured adaptatively to decrease during the 

optimization process. 

 

CFO.Filter
1: 

Supplementary Table  includes the correlation matrix of the datasheet containing the self-configuration examples. It suggests that in 

order to minimize the cost function and the output feature 1 and maximize output feature 2, one should employ a moderate inertia 

coefficient, and a moderately large number of particles. Regarding the coginitive and social coefficient, their linear relation is not well 

defined, although the social value has a larger linear dependency than the cognitive value within the range tested. 

 
Supplementary Table 22| Correlation matrix after the reconfiguration of CFO.Filter

1 

(CF1x8
1) CF FO1 FO2 

CF    1.000000 0.825119 -0.474592 

FO1                                        0.825119 1.000000 -0.397155 

FO2   -0.474592 -0.397155 1.000000 

inertia 0.685360 0.584035 -0.714336 

cognitive -0.027732 0.000538 0.038607 

particles_per_num_weights_percent -0.141062 -0.086131 0.112652 

social -0.070270 -0.047905 0.113850 

 

To delve into the actual performance of the different combinations, Supplementary Figure 30 and Supplementary Figure 31, illustrate 

the histogram of the complete datasheet and the datasheets featuring the targeted performance, respectively. The second datasheet 
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includes thus the best results accomplishing OF1 better than 4.5 dB and OF2 better than 18 dB. From the data, we infer that the ideal 

values are the ones summarized in the next Supplementary Table. 
Supplementary Table 23 | Selection of best performance hyperparameters 

(CF1x8
1) Best performance ranges 

Number of particles per weight % 200% 

Inertia coefficient 0.5 

Cognitive coefficient 0.5-1 
Social coefficient 1-2 

 

 
Supplementary Figure 30 | Optical filter grid search results with PSO algorithm for CFO.Filter

1 : Histogram including all datasheets. 

 
Supplementary Figure 31 | Optical filter grid search results with PSO algorithm for CFO.Filter

1: Histogram including the best performance 

datasheets. 
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In this case, the 6.25% of the samples completed successfully the self-configuration task. This only reflects both the dependence of the 

hyperparameter values with the completion of the task and that the hyperparameter ranges selected are too broad.  We limited the number 

of operations to 3000 for every trial, so slower convergence samples might be considered as failed. It is worth nothing that each operation 

implies a single configuration of the waveguide mesh and the extraction of the amplitude scattering matrix at only one output channel. 

In order to test statistically the success rate for a fixed set of “optimum” hyperparameters, we test the method 100 times with variable 

initial conditions for the waveguide mesh arrangement. The results plotted in Supplementary Figure 32 and Supplementary Figure 33 

illustrate that 71% of the samples achieve the targeted performance. In addition, the trends suggest that all the trials are close to the 

global optimum and a large number of operations would meet the requirements.  

 
Supplementary Figure 32 | Optical filter function statistical results for fixed hyperparameter selection with PSO algorithm for CFO.Filter

1: 

Evolution of the output features (OF1: Insertion loss of the passband(dB), OF2: Extinction Ratio (dB). Progress (left) and histogram at last 

iteration (right) The datasheet is composed of 100 independent experiments with different waveguide mesh initial conditions. 

 

We can then verify the spectral response statistically consider the final configuration for each trial. The mask is accomplished notably, 

and it shows that the device finds challenging achieving the targeted insertion loss while maintaining the conditions fixed for the 

stopband and the passband in terms of flatness, and bandwidth. We believe that a large-scale waveguide mesh architecture will have 

more freedom to combine and split the light and thus achieve more challenging optical filter design demands. 

 
Supplementary Figure 33 | Optical filter function statistical results for fixed hyperparameter selection with PSO algorithm for CFO.Filter

1: 

Statistical results considering the spectral response after the self-configuration of the filter. The datasheet is composed of 100 independent 

experiments with different waveguide mesh initial conditions. 

 

The flexibility of the self-configuration approach is demonstrated with the following application examples. In all of them, we maintained 

the hyperparameters employed in the previous example. For each figure, the datasheet employed is specified. Every trial is statistically 

independent from each other and we consider random an unknown offset value for each TBU. In all of them, ports 1 and 4 are employed. 

First, Supplementary Figure 34 includes the spectral responses and progress for different spectral masks. The first three examples 

maintain the targeted free spectral range, corresponding to a 2-TBU difference or cavity. The resolution (understood as the number of 

samples of the spectral response) is low. We can see how the modification of the four points at -10 dB from the first, second and third 

subfigure, modify the passband and stopband responses. The four example targets a different free spectral range, related to a 4-TBU 

difference or cavity length. It finds the challenge of spectral filters when trying to optimize the extinction ratio in a single frequency 
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while maintaining a flat passband with low insertion loss. In this case, a mean ripple of less than 2 dB is produced to achieve a narrow 

stopband. 

 

 

 

 

 
Supplementary Figure 34 | Optical filter function statistical results for fixed hyperparameter selection with PSO algorithm for CFO.Filter

1: 

Spectral response, Evolution of the output features (OF1: Insertion loss of the passband(dB), OF2: Extinction Ratio (dB). Each datasheet is 

composed of 20 independent experiments with different waveguide mesh initial conditions. 

 
The great advantage of multipurpose meshes is that we can, maintaining the same inputs and outputs as in the previous example, 

configure additional spectral masks with different free spectra range. The following examples illustrated in Supplementary Figure 35, 

configure different masks while maintaining a free-spectral range associated to 6-TBU interferometric lengths. 
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Supplementary Figure 35 | Optical filter function statistical results for fixed hyperparameter selection with PSO algorithm for CFO.Filter

1: 

Spectral response, Evolution of the output features (OF1: Insertion loss of the passband(dB), OF2: Extinction Ratio (dB). Each datasheet is 

composed of 20 independent experiments with different waveguide mesh initial conditions. 
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The first example is a mask that resembles the reflexion response of a ring resonator with the notch centred at normalized frequency 

equal to 0, and achieves an average extinction ratio of 22 dB, and an average insertion loss of 4 dB after the self-configuration process. 

The spectral mask is achieved notably. The second example targets a more selective filter. In this case, the mask reduces the passband 

region and increase the stopband range. The extinction ratio specifications are reduced to 16 dB. The remaining examples continue both 

reducing the passband range and increasing the stopband region to find a more selective filter. To meet the specifications the self-

configuration routine returns a filter with higher insertion loss. In the last two cases the trends of the progress lines suggest that a large 

number of iterations would improve the system performance in both output features. 

 

As shown in Supplementary Figure 36, we can change the mask to alternative free spectral ranges including 8, 6, 10 -BUL interferometric 

paths. When more periods are obtains, it is necessary to either increase the number of wavelength points or reduce the frequency range 

where the mask is evaluated to ensure that we have enough resolution to resolve the spectral response. 

 

 

 
Supplementary Figure 36 | Optical filter function statistical results for fixed hyperparameter selection with PSO algorithm for CFO.Filter

1: 

Spectral response, Evolution of the output features (OF1: Insertion loss of the passband(dB), OF2: Extinction Ratio (dB). The datasheet is 

composed of 20 independent experiments with different waveguide mesh initial conditions. 

 

• Optical Filter self-configuration on waveguide mesh arrangements with non-ideal components: 

The scalability of multipurpose waveguide mesh arrangement to higher integration densities is currently severely restrained by several 

factors arising from physical hardware constraints and the precise control and configuration of several hundreds of variables. One of the 

advantages of programmable multipurpose waveguide meshes is, however, their potential management of non-ideal fabrication and 

design defects in the circuit in an automated way. The main non-ideal effects are the uneven distribution of optical loss all over the 

circuit, the optical crosstalk and parasitic effects, and the dynamic crosstalk coming from the undesired tuning mechanism effects in 

neighbouring photonic components [1] [3] [16]. Some of these effects can be mitigated by using pre-characterization routines and 

modelling the effects to counter-act them in during the configuration stage. However, obtaining the full characterization of some of 

them, for example the tuning-crosstalk, is a time-consuming and difficult task that get worse for large-scale circuits. For example, 

obtaining the tuning crosstalk matrix that computes the crosstalk coefficient between N phase actuators all over the circuit requires the 
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computation of N2 coefficients. Moreover, it is still not clear if these coefficients are dependent on the number of phase actuators that 

are enabled at a given slot of time, and if other areas of the circuit are affected by this effect. 

As explained in Supplementary note 4, the self-configuration routines proposed in this work, assumes these non-ideal effects as part 

of the system behaviour and consider their effects during the optimization task. Both passive effects like non-uniform loss distribution 

all over the circuit, optical crosstalk, and active defects like environmental conditions fluctuations or dynamic tuning crosstalk are 

considered. In the following examples, we demonstrate the application of the aforementioned routines to non-ideal circuits providing 

fault-tolerant, self-healing and error-mitigation capabilities. 

 

Tuning crosstalk:  

When tuning one phase actuator, for example a thermo-optic actuator, the physical effect causing the tuning in the desired waveguide 

can spread to the neighbouring waveguides producing an undesired tuning effect. In the worst cases, even at distances larger than 10 

mm the tuning crosstalk effect can be appreciated [3]. The tuning crosstalk can be modelled by a constant that reflects the percentage of 

phase shift occurred in the non-targeted waveguide compared to the experienced by the target waveguide [4]. Simulations and 

experimental works result in a crosstalk coefficient between 1 and 3% at several hundreds of micrometers. If extended to a system with 

multiple phase shifters, this model can be extended to a system of equations relating the effective phase shifts with the phase shifts set 

by the algorithm or the user. 
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To test the algorithm, we perform two statistical test. The first one does not include the thermal crosstalk while the second one is affected 

by it. In the latter, we load to the performance model [1] a severe crosstalk matrix where the crosstalk coefficients are obtained from a 

uniform distribution from 0 to 5%. Moreover, the crosstalk matrix does not contemplate the mitigation of the crosstalk with the distance, 

making overall a more challenging configuration scenario. As shown in Supplementary Figure 37 the differences are inappreciable, as 

the self-configuration routine consider the dynamic tuning crosstalk effect during the optimization procedure.  

 

 

Supplementary Figure 37 | Optical filter function statistical results for fixed hyperparameter selection with PSO algorithm for CFO.Filter
1: 

Spectral response, Evolution of the output features (OF1: Insertion loss of the passband (dB), OF2: Extinction Ratio (dB). The datasheet is 

composed of 20 independent experiments with different waveguide mesh initial conditions. Upper example: no crosstalk, Lower example: crosstalk 

5% 

 



Page 35 of 51 

 

We can repeat the same trial with a different structure. In this case, we change the mask and perform the test without crosstalk, with a 

crosstalk of 5% and with a crosstalk of 10%.  Highlighting again that these scenarios are by far, more challenging that the ones 

experienced by a real system, the average performance of the self-configuration routine is remarkably good. These results open the 

possibility for employing waveguide mesh arrangements with much higher integration density, reducing the distance between 

components [11]. 

 

 

 

Supplementary Figure 38 | Optical filter function statistical results for fixed hyperparameter selection with PSO algorithm for CFO.Filter
1: 

Spectral response, Evolution of the output features (OF1: Insertion loss of the passband (dB), OF2: Extinction Ratio (dB). The datasheet is 

composed of 20 independent experiments with different waveguide mesh initial conditions. Upper example: no crosstalk, Middle example: crosstalk 

5%, Lower example: crosstalk 10% 

 
Fault-tolerant and self-healing effects: 

In some cases, the fabrication defects or derive of components can decrease the performance of the components integrated in the circuit, 

even destroying completely one section of the circuit. Whereas these fabrication and design yields can completely discard a whole die 

in application specific photonic integrated circuits, mesh arrangements offer potential fault-tolerant and self-healing capabilities. This 

approach comes from the architecture of these circuits, which rely on the repetition and interconnection of simple components. The 

availability of spare components and sections in the circuit enable the use of alternative circuits when some parts of the circuit are 

damaged. To illustrate a demonstration example, we show in Supplementary Figure 39 the waveguide mesh arrangement under use. In 

this case, we configure the filter specified by the spectral mask specified in the figure. Given the demanded FSR one could expect that 
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the cells numbered as 1,2, 3 and 4 have more probabilities to perform as a coupled cavity and define the targeted mask. In the next 

example, we decrease the performance of TBUs A6, B6 and C6 by imposing 30 dB insertion loss to each one. After running the statistical 

test again, the self-configuration process is able to provide alternative structures. Indeed, we can see that it is able to maintain notably 

the demanded response, probably employing the cavities 5 and less likely 6. 

 

 

 

Supplementary Figure 39 | Optical filter function statistical results for fixed hyperparameter selection with PSO algorithm for CFO.Filter
1: 

Spectral response, Evolution of the output features (OF1: Insertion loss of the passband(dB), OF2: Extinction Ratio (dB). The datasheet is 

composed of 20 independent experiments with different waveguide mesh initial conditions. (up) mesh with good performance, (down) mesh with 

TBUs A6, B6, C6 featuring additional 30 dB insertion loss. 

 

Check the Supplementary Note 10 for the analysis of the impact on the FSR deviations on the self-configuration process and an 

alternative way to define more complex cost-functions. 

 

Supplementary Note 8: Description of the laboratory set-up 

In this subsection, we describe the laboratory set-up under use in the experiments and further reflect on the importance of choosing 

appropriately the cost function, this time in a realistic scenario. 
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Supplementary Figure 40 sketches the 30-TBU waveguide mesh under use in our experiments (See details [3, 24]). Apart from it, our 

measurement set-up consists of a synchronized tunable laser source, a Multichannel Electronic Driver Array (MEDA) subsystem based 

on a table-top multichannel current source along with an optical spectrum analyser (OSA) as an optical monitor with custom routines in 

Python being run on a standard personal computer thus completing the entire closed-feedback loop along with a processing unit. This 

set-up allows us to achieve a spectral resolution of 1 pm and to ensure a minimum of 50 points per period for the shortest-FSR structure, 

thus resolving the spectral traces -mostly periodic filters whose FSRs are inherently limited to a set of architecture-dependent discretized 

values (which range in our case from 297 to 50 pm)- with more precision. 

 

Prior to our first experiment, we synthesized the optical path connecting ‘in’ and ‘out’ ports appearing in Supplementary Figure 40(a) 

from a pre-defined current setting. Then, we performed a current sweep on TBUs H11 and H16 to draw the plot contours appearing in 

Supplementary Figure 41 and Supplementary Figure 42, in which their height values are expressed by means of the cost functions 

defined in Supplementary Figure 40(c). All such functions apply a brute maximization of the optical signal’s output power in its central 

wavelength (CF1-3) or averaging over its whole spectrum (CF4-6). At the same time, CF1,4 are expressed in dB, while CF2,5 and CF3,6 

appear in linear units.  

In both Supplementary Figure 41 and Supplementary Figure 42 we observe no significant differences between choosing the central 

element of the spectrum or averaging over all the samples captured by the OSA. As observed, representing the output power in linear 

units leads to more pronounced slopes compared to the smoothed ones obtained through conversion to logarithmic scale. Intuitively, 

this should help to speed up convergence for first-order optimization algorithms, as the calculated gradients at each point will present 

much larger norms. 

 
Supplementary Figure 40 | (a) Sketch of our experimental set-up, consisting of a MEDA subsystem based on a table-top multichannel 

current source (supplying thirteen independent channels) along with an Optical Spectrum Analyser  (OSA) as an optical monitor with 

custom routines in Python being run on a standard personal computer. (b) Labelled schematic of the waveguide mesh arrangement under 

test and a synthesized optical path traversing TBUs H3, H6, H11, H16, H22 and H26. (c) List of cost functions (CF) under use to generate the 

contour plots from Supplementary Figure 41 and Supplementary Figure 42. 
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Supplementary Figure 41 | Contour plots of TBUs H11 and H16 using I (in mA) as a variable in the synthesis of the optical path from 

Supplementary Figure 40(a) for the cost functions defined in Supplementary Figure 40(b). 

 

 
Supplementary Figure 42 | Contour plots of TBUs H11 and H16 using I2 (in mA2) as a variable in the synthesis of the optical path from 

Supplementary Figure 40(a) for the cost functions defined in Supplementary Figure 40(b). 
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Supplementary Note 9: Experimental synthesis of optical circuits in a 30-TBU waveguide mesh 

Here we report the synthesis of many optical paths in the same waveguide mesh than for previous section, starting from the same input 

and output nodes. This time we operate over 13 TBUs: H3, H6, H7, H10, H11, H12, H13, H16, H17, H21, H22, H23 and H26. Operating 

over such a large number of TBUs will allow us not only to effectively connect input and output ports, but also to reduce leakage by 

impeding light to be recirculated by surrounding TBUs. Both actions combined will lead to a maximization of the optical power at the 

output. In all cases, the starting point has been ‘all-passive’, meaning that all actuators were initially set to 0 mA. Supplementary Figure 

43 illustrates some of the obtained results using both the current (I) and as optimization variable for derivative methods and PSO 

algorithm. The reason behind choosing optimizing over I rather than over I2 lies on the fact that powering over two the space of variables 

has the effect of ‘stretching’ the values from the hyperparameter space, making more difficult to find appropriate coefficients for 

finishing the process successfully. For the choice of the cost function for derivative methods, we simply aimed to maximize the average 

output power in linear units between input and output optical ports (CF 5 from Supplementary Figure 41).  

 
Supplementary Figure 43 | Experimental results of the synthesis of a 6-TBU optical path in our waveguide mesh using derivative 

optimization methods and PSO algorithm. (a) Experimental traces obtained from our optical spectrum analyser at the end of each process. 

A trace obtained from the use of current presets is also attached for comparison, (b) Evolution of the average output power measured in each 

trace with the number of operations for derivative optimization methods, (c) Evolution of the average MSE between the synthesized path 

and the one obtained through current presets with the number of iterations for PSO algorithm. An iteration includes the individual evaluation 

of each particle (operation) prior to the update of their velocities, and therefore of their positions.  

 

In our second experiment, we proceeded to synthesize a 2-TBU MZI by monitoring the set of TBUs highlighted in yellow appearing in 

Supplementary Figure 44(a). The TBU highlighted in purple (H16) works under ‘dual-drive’ configuration, meaning that we are driving 

current into both of its upper and lower phase shift actuators to provide us independent control of its phase and amplitude response, 

something that will ultimately allow us to tune at pleasure both the extinction ratio and the wavelength notch of our filter. After being 

provided with the spectral mask of our MZI filter by using its corresponding preset of currents, we performed a set of experiments using 

PSO algorithm whose results are shown in Supplementary Figure 44(b,c). There, we can observe how the transmission spectrums of the 

new filters closely match that from the one obtained using current presents –as a matter of fact, one of them even features a slightly 

larger ER of around 30 dB. In all these experiments –and also during the following ones- we set an adaptive inertia parameter which 

lowered down progressively from 1 to 0.35. We also include a limitation of 40 mA (in absolute value) in the velocity of each particle’s 

actuator to avoid strong variations in the particle’s positions -especially at the beginning of the process, when this value of inertia is still 

very large. Each particle’s actuator position has been also bounded between 0 and 200 mA to avoid any potential damage affecting the 

chip. The elapsed time for each experiment was of around two hours, due to the slow sweep of the laser employed (10 sec per operation). 

Next, we repeated the same procedure on a 6-TBU ORR, whose results appear in Supplementary Figure 45. Again, we obtained an ER 

of around 30 dB for this configuration. 

 

Next, we aimed to reproduce a 10-TBU ORR by using the highlighted arrangement from Supplementary Figure 46. To do so, we 

increased the number of samples of our trace to 301 from the 101 used in our previous experiments prior to the execution of the algorithm, 

as we are dealing with a filter with smaller FSR –and therefore with a more ‘challenging’ spectrum to be captured by our optical spectrum 

analyser. We did not appreciate any positive impact from this on the final average MSE results of our synthesized filters with respect to 

the corresponding spectral mask, again obtained through an already known pre-set of currents. As observed in Supplementary Figure 

46(b,c), results suggest that further increasing the number of operations would lead to a better matching between the obtained spectrum 

and the filter mask, which still features around 20 dB and a similar insertion loss in the passband for both synthesized structures. 

Speeding up the configuration of filters process can be done by employing broadband sources or faster tunable lasers. 

 

Finally, we synthesized the 4-TBU MZI using the set of TBUs highlighted in yellow illustrated in Supplementary Figure 47. Unlike 

with previous experiments, this time we employed a self-made spectral mask in the same manner than with our simulations using the 

following expression: 
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𝐻(𝜆) = 20 log10 (|cos (𝜋
𝜆

𝐹𝑆𝑅
− 𝛿)|) (S10) 

in which both the FSR and the wavelength 𝜆 are expressed in nm. Phase variation 𝛿 does represent any arbitrary shift of the spectral 

response of our filter –which as mentioned shortly backwards, can be achieved through dual drive operation–, and it is set in our case to 

0 rad. In addition, we flattened both passband and eliminated band regions (-1.5 dB in the passband and -28 dB in the stopband) of our 

mask to provide a slightly modified spectrum from the one that can be actually achieved using the set of TBUs at our disposal. Such flat 

spectral response would resemble more to the one provided by a higher-order filter rather than to the one supplied by our first-order 

MZI. In any case, we can observe from the figure how the algorithm ‘does its best’ to match the filter response to the spectral mask 

provided by the end user as much as it can. In accordance to simulated results in this work, the degree of similarity between both spectra 

is expected to increase if more electrical channels to drive a larger number of cell units are at our disposal. We performed this 

measurement on a different chip than the one used in Supplementary Figures 44-46, whose grating design was centred at 1570 nm rather 

than at 1585 nm. Looking at the variation of the measured MSE (Fig. 47c), it can be observed that it does not vary quite significantly 

compared to those from figs. 44-46. This happens due to the use of a larger number of sampling points during the experiment (501, in 

contrast to the 101 and 301 used in Supplementary Figures 44-45 and in Supplementary Figure 46 respectively). As a result, there is a 

much larger number of points close to the spectrum passband that contribute to reduce the average error, especially at early stages of 

the algorithm with the filter notches have not still been formed. Fig. 47(d), which illustrates the variation of the CF value with the 

number of operations, provides in this case a better insight of the performance of the algorithm under this scenario. Check the 

Supplementary Note 10 for the analysis of the impact on the FSR deviations on the self-configuration process. 

 
Supplementary Figure 44 | Experimental results of the synthesis of a 2-TBU unbalanced MZI in our waveguide mesh using PSO algorithm. 

(a) Schematic of the 30-TBU waveguide mesh. TBUs under use for the experiment appear highlighted in yellow and purple (dual-drive 

configuration), (b) Final experimental traces obtained after executing the algorithm. The spectral mask of the filter was obtained through current 

presets, (c) Evolution of the average MSE provided by the algorithm with the number of operations.  
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Supplementary Figure 45 | Experimental results of the synthesis of a 6-TBU ORR in our waveguide mesh using PSO algorithm. (a) 

Schematic of the 30-TBU waveguide mesh. TBUs under use for the experiment appear highlighted in yellow and purple (dual-drive configuration), 

(b) Final experimental traces obtained after executing the algorithm. The spectral mask of the filter was obtained through current presets, (c) 

Evolution of the average MSE provided by the algorithm with the number of operations. 

 

 

Supplementary Figure 46 | Experimental results of the synthesis of a 10-TBU ORR in our waveguide mesh using PSO algorithm. (a) 

Schematic of the 30-TBU waveguie mesh. TBUs under use for the experiment appear highlighted in yellow and purple (dual-drive configuration), 

(b) Final experimental traces obtained after executing the algorithm. The spectral mask of the filter was obtained through current presets, (c) 

Evolution of the average MSE provided by the algorithm with the number of operations. 
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Supplementary Figure 47 | Experimental results of the synthesis of a 4-TBU imbalanced MZI in our waveguide mesh using PSO algorithm. 

(a) Schematic of the 30-TBU waveguide mesh. TBUs under use for the experiment appear highlighted in yellow and purple (dual-drive 

configuration), (b) Final experimental traces obtained after executing the algorithm. The spectral mask of the filter was obtained through a self-

made spectral mask using the formula described in supplementary equation 10, (c) Evolution of the average MSE provided by the algorithm with 

the number of operations, (d) Evolution of the CF value with the number of iterations. 

 
Supplementary Note 10: Main challenges for large-scale programmable photonic circuits. 
 

Physics and engineering limit the future scalability of programmable photonic circuits employing a very large number of photonic 

actuators (>100-1000), waveguide loss and back reflection (discussed in Supplementary Note 7), and heater performance hamper the 

evolution of the technology.  The scalability analysis of waveguide mesh arrangements was covered in [16, 21]. Here we extend the 

discussion for each of the main relevant scalability limits: 

 

Fabrication defects, design deviation and other passive parasitic effects: 

The high refractive index contrast of a silicon waveguide that makes it possible to confine light in a small volume, makes its behavior 

also very sensitive to small imperfections. Nanometer-scale geometry variations can already affect the circuit performance, limiting the 

scale of integration. These are mainly arising due to variations of the silicon thickness at the wafer-level and from deviations during the 

waveguide width patterning. On one hand, sidewall roughness can give rise to backscattering inside the waveguide, resulting in unwanted 

transmission fluctuations [1, 17]. On the other hand, small deviations of a few nanometers can lead to undesired changes in the light 

propagation properties, originating undesired phase deviations. This impacts over the performance of components like beam splitters, 

which are fundamental blocks of the programmable unit cells. 

From a pure hardware perspective, several structures and mitigation techniques have been proposed and demonstrated as standalone 

components to reduce the impact of uniformity and risk of defects, and tuning crosstalk. For example, it has been demonstrated that the 

use of adiabatic directional couplers leads to better tolerances to waveguide geometry deviations [18]  and that the use of ridge waveguide 

directional couplers with optimum geometry can cancel the effects due to  width, gap and thickness deviations [19].  As far as thermal 

crosstalk is concerned, some demonstrations applied additional deep lateral air trenches [20] and optimized the architectural PIC design 

to facilitate the use of thermal crosstalk cancellation techniques [6]. 

 

As discussed in the main document and in the Supplementary Note 7 (Self-healing effects), the automated configuration methods 

reported in this paper overcome and mitigate the aforementioned defects, by finding optimal paths and avoiding the interaction with 

deteriorated waveguides or unit cells Future large-scale circuits will benefit from both fabrication-tolerant hardware and the self-healing 

attributes of the proposed configuration routines.   
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Power consumption, thermal crosstalk, and robustness of phase shifters: 

Novel phase tuning mechanisms and architectures need to be optimized and developed to achieve low power consumption, low tuning 

crosstalk and robust phase actuators. The heater evolution trend in silicon on insulator shows a mitigation of the thermal tuning crosstalk 

and a reduction of the overall electrical power of the tuning elements. Beyond being beneficial for the overall power consumption of the 

circuit, it reduces the circuit complexity of the control electronics required for driving purposes. The current state of the technology is 

maturing to more robust driving and phase tuning actuators, but further improvements are required to achieve the consolidation of the 

technology. A good example of the trends followed by thermo-optic actuators in silicon photonic is the following: 

• The simplest and original architecture is limited to proof-of-concept devices that employ a metal layer for both routing and 

heating (100 mW/pi, 450 µm-long to avoid electromigration and short life-times). Note this is the one employed in this paper, 

[3] 

• Next, mature foundries have optimized the Joule-effect heater achieving better efficiencies and lengths through the 

improvement of their material qualities, processes, and thermo-optic waveguide geometries (30 mW/pi, 100 um), [22]. 

• In the last 5-8 years, additional techniques like the use of deep-trenches / isolation trenches, si-doped heaters are opening the 

path to better efficiencies (< 1mW/pi, 100 um) and a reduction of the driving circuitry complexity. With better efficiencies, the 

temperature of the heater can be reduced. In particular electromigration limits are inversely proportional to the electrical current 

density and the temperature [20]. 

To further reduce the power consumption, alternative phase tuning mechanisms are currently being explored in many research centers 

and universities. These include non-volatile tuning effects based on phase change materials, mems, and electro-optic effects. Together 

with thermo-optic effects, the technology needs to mature in terms of robustness. In order to provide insights for the robustness of our 

demonstrator, we performed resistance variation tests driving the heaters for 1000 cycles of 0-pi and measured resistance variations 

lower than 1% (in this case the source of the variation is unknown but likely coming from the vibration of the electrical probes employed 

in the test due to PAD material expansion with temperature). However, we are aware that a slight increment in the heater current (beyond 

the 2pi, leads to irreversible defects in the structure. Similar and deeper efforts need to be done by researchers and industry to provide 

data and tests of the technology maturity and readiness for industrialization and future commercialization.  

In short, with state-of-the-art thermo-optic waveguides, improved efficiency is leading to a reduction of the electrical current demands 

and an increment of robustness during their dynamic operation (lower current densities lead to the mitigation of the electro-migration 

effect). However, greater efforts are required to quantify and qualify the robustness of phase tuning technology in general. 

Reconfiguration speed and enhanced convergence of automated functions: 

Reconfiguration speed: 

Some of the automated configuration routines presented in this paper require a compilation time to configure the circuit for a certain 

functionality. Although some applications could be configured in run-time, the presented circuits perform signal processing after a slot 

of time dedicated to configuration. Most final applications would benefit from a reduction of the time consumed during the 

reconfiguration by increasing the speed and reducing the number of operations (processing, driving, and monitoring cycles). 

In particular, one of the operations of the iterative configuration procedure could be divided as follows (See Supplementary Notes 1 and 

4): 

 

Supplementary Figure 48 | Division of the different stages in one of the operations of the self-configuration methods proposed in this work. 

For each operation one can compute the next configuration settings based on the current setting and the readout monitoring data. This 

task requires the manipulation of the said signals and the execution of the optimization algorithm as described in Supplementary Notes 

1 and 4. Next, we translate and transmit the next variables to the driving electronic circuitry.  On a physical level, the response of the 

heater-based thermo-optic is limited to 2.2 µs, 5.6 and 65.5 µs for Ti-based heaters, silicon-doped heaters and Ti-based heaters with 
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under-etched waveguides, respectively [22]. Finally, the readout operation is done followed by an analog to digital operation and a 

transmission of the data to the logic unit for the next operation. 

While processing times of the algorithm depend on the size of the array of variables (number of driving signals) and the hardware 

employed, the overall time is in the µs regime for vectors between 10 to 1000 variables and current electronic processors performance.  

In contrast, a significant delay can be imposed by the transmitted data between the logic unit, the driving circuitry, and the monitoring 

circuitry. To avoid a bottleneck in the internal transmission of data required by each operation, different protocols can be employed. For 

example, USB 2.0 allows theoretic rates up to 480 Mbit/s and USB 3.0 allows theoretic rates up to 4.8 Gbit/s, that would enable 

transferring the data for 1000 channels (driving of phase actuators) in 100 µs and 10 µs, respectively. Alternative protocols like 

PCIExpress can 3.x, 4.0, 5.0 or 6.0 provides better transfer rates up to few GB/s. 

Moreover, some functions require the readout from different wavelength points (see example of optical filter). In this case, the system 

can employ either a tunable laser, a set of fixed lasers at different wavelengths or a broadband source plus a tunable passband filter. In 

most cases, the tuning speed is similar to the tuning of the phase shifter in the programmable photonic circuit.  

All in all, applying some margins, we could assume that the total delay of an “operation” (setting computation, driving and monitoring) 

can be potentially done in the 20-200 µs regime (5-50 kHz). In general, moving to MHz or GHz regime, would require the use of 

alternative tuning mechanisms and the design and development of dedicated integrated electronics circuitry. Having said this in practice, 

with the exception of a handful of applications (most notably optical packet switching) there is not need for the reconfiguration speed 

to match the speed inherent in the dynamic properties of the optical signal. 

Improved convergence: 

Regarding the number of operations, further programming strategies and optimization methods can be employed. In this paper we 

suggested the combination of auto-routing algorithms and advance optimization methods to reduce the number of variables (driving 

phases) to be optimized during the self-configuration process. In addition, we are currently investigating alternative approaches to 

enhance the process convergence efficiency.  

• Explore the use and combinations of different optimization methods: There is no free lunch in search and optimization 

algorithms and our underpinning work suggests that the use of orchestrated global search and local search algorithms can 

improve future scalability and convergence rates by one order of magnitude. 

• Combine the autorouting algorithm and the optimization methods. Once the autorouting algorithm or the loading of dynamic 

(relative positioned) preset configurations is selected, we can perform the optimization method only on the variables selected 

by the first phase. This will reduce the overall number of variables and thus the search space without compromising the circuit 

flexibility.  

 

• Select a portion of the system where optimization will be performed (only including certain areas or distances to minimize the 

number of variables and thus search space. We can select the two targeted optical ports. An autorouting algorithm can then 

select the shortest path between ports. Next, we can perform the advanced optimization methods (to the targeted function) only 

optimizing the programmable unit cells that are at a certain interconnection (logical) distance from that short-path. 

• Employing Principal Component Analysis (PCA) algorithms to eliminate variables (phase shifters) with negligible impact 

during the optimization process to progressively reduce the number of variables during the optimization process. 

 

As a further motivation and demonstration of the previous points, with the following example we can demonstrate the impact of the 

number of tuning variables on the operations required to achieve convergence. Precisely, we will configure a simple 1x2 beamsplitter 

following a simple cost function that includes the 50:50 splitting and the ripple in the optimization. The output feature 1 and output 

feature 2 are also defined to monitor the performance, average power at the outputs and average ripple, respectively. Supplementary 

Figure 49 (a) includes in red a path connecting the input with the two outputs. An autorouting example or a manual inspection of an 

advanced user would determine that these 10 TBUs (H6, H9, H16, H17, H15, H14, H13, H19, H23, H28) are enough (key) to build up 

the desired 1x2 splitter function. For the test, we perform the self-configuration method employing a PSO with the same hyperparameters 

as the one selected in the configuration of the optical filter example. First, we can include for the optimization process a single phase 

shifter for each of the selected TBUs, including 10 variables in the optimization process. We can define convergence as the point where 

the cost function becomes stable and the output features are around 4.2 dB and better than 0.5 dB, respectively. As illustrated in Fig. 49 

(b), a fast configuration in less than 900 operations can be achieved. Next, we repeat the test including more tuning variables by 

employing the dual-drive configuration or by using additional unit cells. For the additional cells, we can employ sets of cells that are at 

a logical interconnection distance to the key path (in red), defining a set of unit cells at distance 1, 2 and 3. For comparison purposes, in 

Fig. 49 (b), we can see that convergence is achieved for the single-drive case of 34 variables (distance 3) at iteration 1500. In this case, 
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this application can be achieved without dual-drive mode as no-interferometry is fully required to achieve the targeted operation. If we 

include the dual-drive variables, we measured 1500 and 3000 approximated operations for the cases with 20 (key) and 68 (distance 3) 

variables, respectively. This proves the impact of the number of variables with the convergence rates.   

Since these numbers can vary depending on the starting points and the passive phase offset of each unit cell, we ran a set of 30 

independent examples with arbitrary phase offset distributions, including the different cases. The results are shown in Fig. 49 (c). Here 

we can observe an interesting behaviour. First, due to the cost function definition, the scenario where we optimize a reduced number of 

unit cells lead to sub-optimal results for the loss in the channel. Since we are considering 0.15-average loss per unit cell (See methods), 

we would expect an approximate optical power of 3 dB + 1.2 dB at the outputs. In a general case, the scenario with 10 unit cells (key) 

achieves faster convergence but suboptimal results (since it is not able to find alternative or improved paths). The more variables we 

include, the better performance we achieve on average and the slower convergence we achieve. We must highlight that the final 

performance is good for all cases. These results motivate the search of future methods of large scale circuits where the optimization is 

performed on a subset of the arrangement with reduced distance to the “key” cells selected by a basic auto-routing algorithm and the 

search of alternative optimizers. 

 

Supplementary Figure 49 | Number of variables vs convergence test: (a) waveguide mesh arrangement with the targeted circuit and TBUs 

highlighted by distance to the fundamental circuit. (key), (b) convergence test results for 1 case, illustrating the cost function and output 

feature 1 (average optical power at outputs, and output feature 2 (mean ripple at outputs). (c) convergence test for 30 independent samples 

per case. 

In short, to further increase the reconfiguration speed of programmable photonic circuits, faster tuning methods would be required. 

However, in order to ensure the scalability of the circuits they must provide low loss (< 0.1 dB), low footprint and simple control 

electronics. In addition, achieving bit-rate reconfiguration times is not a strict requirement for a wide range of present and future 

applications. The range of applications of programmable photonics spans applications which are either analog in nature or do not require 

real-time digital signal processing.  

Regarding the convergence rates of the proposed methods, the number of variables introduced during the optimization processes impacts 

on the performance and convergence rates of the system. Smarter strategies will be required to enable the self-configuration of large 

scale meshes at reasonable computation times and resources. As proposed in this work, the combination of both approaches (auto-

routing, and optimization methods) can be employed to minimize the number of variables. Other techniques like alternative algorithms, 

combination with PCA, or dynamic variable selections can be employed to address future scalability limits. However, we believe that 

in the nearest future, the strongest limits will be coming from the evolution of the photonic (optical loss) and electronic (interfacing) 

hardware. 

Resolution of the arbitrary responses of the reconfigurable optical filter 

The unit cell length and the mesh interconnection topology set the rules of the interferometric structures that can be programmed.  

In principle, as comprehensively detailed elsewhere [23], the hexagonal mesh is constrained to cavities of 6, 10, 12, 14, 16 TBUs and 

interferences of 2, 4, 6, 8, .. TBUs. In addition, other structures like delay lines, phase shifters, Sagnac loops, multiport interferometers, 

can be programmed as well. Employing different the FSRs would require the use of additional high performance blocks like Bragg 

gratings, higher-Q filters and larger FSR filters connected to the waveguide mesh arrangement. 
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Thus, the degree of arbitrary filter’ shapes that can be done depends on the frequency region of interest and span, the hardware employed 

(shape and basic unit length) and the targeted application. In principle the combination of a large scale mesh with smaller TBUs can 

finally become an reconfigurable box of interferences with finer resolution and extended possibilities. However, reducing the size/length 

of the unit cell is a challenge that need to be addressed and that comes with additional trade-offs. 

• Accumulated loss: the creation of large circuits involving a greater number of TBUs lead to more accumulated loss. This comes 

with the fact that the loss of the unit cell is dominated by the loss of the 3-dB couplers. If one need to program a cavity of 1 

millimeter, we would require 6 TBUs with 166 um-TBUs or 20 TBUs if they measure 50 um. The second option goes through 

28 directional couplers more than the first one. Even assuming 0.1 dB/coupler, we would be adding 2.8 dB more loss to our 

cavity, without considering additional bend-loss, phase-shifter loss (if any). 

• Reducing the size/length of the TBU increase the integration density, which might find technology limits for the tuning crosstalk 

effect and the electrical interfacing of such a high-number of electrical connections. 

 

Supplementary Figure 50 illustrates the relation between the Basic Unit Length and the achievable maximum Free Spectral Ranges for 

the different mesh topologies, assuming a silicon on insulator technology with a group index of 4.18. 

 

 
Supplementary Figure 50 | Comparative of maximum achievable Free Spectral Ranges for different waveguide mesh topologies assuming a 

silicon on insulator waveguide with 4.18 group index. 

 

 

All in all, with the current state-of the art, the reconfigurable optical core based on waveguide mesh arrangements limits the circuits to 

discretized values determined by the length of the tunable basic unit. Increasing the resolution and reducing this limit, will require the 

miniaturization of the unit cell. With current state of the art, it can be achieved a reduction to around 100 um, employing suspended 

heaters of 30 um, ultra-short 3-dB couplers of 15 um and small transitions and access waveguides. To the best of our knowledge, these 

had not been reported yet and represent a future technology challenge. 

 

The second key challenge that appears due to the minimization is the tuning crosstalk and the electrical interfacing of the phase shifters. 

In this paper, we demonstrated a solution for the first issue, as that even a severe 10% arbitrary tuning crosstalk can be addressed with 

the self-configuration methods proposed. For the packaging and electrical interfacing, additional technology efforts are required and 

expected during the next years. 

 

Addressing FSR variations in interferometric structures 

When synthesizing simple periodic interferometric structures, we expect a spectral response defined by a fixed (and single) free spectral 

range value. This does not seem to be the case of configs. 1 and 7 achieved by auto-routing technique in Fig.2 from main text, where 

distances between power notches are not equal. After a careful analysis, we believe that the rationale behind FSR deviations in this and 

other examples can be explained on account of the following facts: 

• Accidental synthesis of spurious optical paths: during the creation of any interferometric structure, we may be synthesizing 

additional undesired paths (i.e., interferometric structures) that introduce interferences with alternative FSR. Taking the 

synthesis of the aforementioned config. 1 as an example (ORR10), we could experience a contribution from an undesired MZI4 

(TCs: H12, H22; short path: H16; long path: H11, H10, H15, H20, H21). Only a small deviation of the coupling factor from 

the TCs would suffice to introduce such deviation. Other structures are possible as well, since we used presets (from a pre-

calibration stage) without including any re-adjustment or optimization of the resulting structure. In the case of Fig. 2 (main 

text), as we are using the auto-routing self-configuration scheme, tuning crosstalk is being neglected. 
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• Group index variation: this issue is known to produce different FSRs at different wavelengths. However, such variation is 

quite soft and continuous in wavelength, and is typically appreciated in large wavelength spans. Indeed, this effect is behind 

the technique of measuring the group index vs wavelengths employing different structures such as unbalanced MZIs. In our 

case, the group index of the programmed waveguides employing unit cells might be subject of variations versus wavelength, 

since a large portion of the circuit is experiencing a change in their refractive indexes. However, again, this FSR change would 

be appreciated for a larger span than the one shown in the examples, and would show a softer and continuous FSR variation 

with wavelength. This effect could be discarded in this case with a 0.3 nm span. 

• System resolution: As mentioned in Supplementary Note 9, measuring interferometric structures with small FSRs does require 

a considerable measurement resolution. If not enough points are employed, we might not be able to resolve the spectral trace 

optimally. As shown in Supplementary Figure 51, this scenario can lead to having a trace where those points closer to the notch 

are shifted, producing their own contribution to the FSR error. In config. 1 (main text), for example, we used approximately 50 

points per FSR and the system resolution is 1 pm, which points to a maximum resolution related deviation of up to +/- 2 pm 

range approximately -in such case, both notches of a period would suffer a maximum deviation of 1 pm in opposite directions. 

Again, this is a low-probability, low-impact issue for this precise example. 

 

Supplementary Figure 51 | Example of notch mismatch due to insufficient system resolution 

 

• Synchronization issues: During the experiments, we employed a Laser ANDO + OSA ANDO synchronized tunable laser 

source system to achieve high-resolution and employ the existing synchronization commercial toolbox as motivated in 

Supplementary Note 9. However, sometimes, during few measurements we experienced that the OSA employed interrupts the 

measurement for different causes (fixing synchronization issues with the laser unit, fixing synchronization issues with the PC, 

liberate memory, transmit and perform internal data management, etc). During that time, the photonic system sometimes can 

behave dynamically altering the system’s performance. This dynamic behavior occurs due to the non-optimal overall thermal 

management implemented for the system (Peltier-cell + Thermal Control Unit + suboptimal thermal holder that allows a 

residual thermal propagation between the heatsink and the chip holder) and with less impact, from the actual phase shifters and 

tuning crosstalk. When the system continued the measurements, from the previous wavelength point and a few seconds later, 

the overall chip temperature produced a slight shift on the spectral response, modifying locally the FSR of the notch nearby. 

Although all the aforementioned possibilities can occur at the same time, we believe that the last one (synchronization issues during 

undesired dynamic behavior) is the one having a stronger impact in this work. To further study it, apart from previous measurements, 

we extracted the position of the notches (analytical and measured) of the different measurements included employing the auto-routing 

self-configuration (Fig. 2 main text) for its comparison, as represented below in Supplementary Figure 52. We observe that, indeed, 

there is only a significant difference (larger than 1 pm, the resolution of our OSA) in configs. 1 and 7. In all remaining scenarios, any 

other difference lies below or around such number. Note that current examples employ information from a pre-calibrated process and 

neglect the behaviour of the optical and tuning crosstalks. 
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Supplementary Figure 52 | Distances (in pm) between analytic and experimental filters’ notches from Fig.2 of main text. In all cases (except 

for configs. 1 and 7) every notch distance lies below 1 pm, the system resolution of our OSA. Note that the y-axis has a different span for each figure. 

For all experimental configurations employing optimization based self-configuration (Figure 5 main text and Supplementary Figures 44, 

45 and 46 from this supplementary material), the difference between final results employing almost any configuration and the spectral 

masks used to achieve them is also hardly noticeable. Precisely, as we used 101 points and a span of 0.5 nm to represent the first two 

ones, their spectral resolution is therefore of 5 pm. In those cases, only results depicted in green in Supplementary Figure 44 differ in 

one unit in x-axis (5 pm) from those from the spectral mask at 1584.95 nm, while the rest of them -and of the remaining experiments- 

match exactly with the mask notch point. In the third circuit, whose spectral resolution was of 301 points, we found only one notch 

mismatch of 1.67 pm (again, one unit in x-axis) at 1585.045 nm. Note that the last example in Fig 5 Main text corresponds to the ORR10 

that showed the FSR deviation in one of its notches. In this case the result is matching the expected FSR. 

To mitigate all previously mentioned events, several solutions can be provided: 

- Auto-routing based self-configurations would benefit from a posterior fine tuning to match the targeted functionality and further 

correct tuning and optical crosstalks) or by including optical crosstalk and tuning crosstalk during the pre-characterization. 

Since after the auto-routing we achieved a solution valid or close to the optimal working configuration, the use of local-search 

algorithms should also provide a faster final solution. 

- The optimization process could and should repeat the measurement if a sync issue is detected. This would alleviate the 

synchronization issues. Although synchronization issues are given sporadically by our current synchronized TLS-system, a 

future tunable laser + array of power detectors could potentially experience similar synchronization errors. 

- If we assume that the FSR misalignment is coming from the spurious path, group index variation, or resolution issue cause, 

additional/different features can be incorporated to the cost function to further alleviate /optimize/minimize the deviation of 

the FSR. This can be done following the principles of [11], where some features like the Extinction Ratio or the IL are 

incorporated to the cost function. In this case, at each operation, we can post process the spectral trace to extract the Extinction 

Ratio of the peaks separated by a specific FSR (withing a certain margin).  Solutions to mitigate similar issues and/or potentially 

improve the convergence of different applications can range to infinite possibilities of cost-function tailoring, where additional 

features are considered and added. We expect that this work will motivate application specific experts (optical filter designers, 
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optical beamformer designers, optical switching designers, …) to tailor and propose alternative cost functions to achieve faster 

reconfigurations with higher final quality. As a final example consider the mentioned case of the optical filter. The cost function 

to minimize could be represented as: 

 

1

,

. . .( , ),

mask ER Ripple

mask

CF f f f

f c m s e mask trace

= + +

= 
 

Where m.s.e is the mean square error between the mask and the spectral trace, fER search for the peaks separated a certain FSR 

(within a margin) and maximizes their ER, and fRipple search for the peaks within the passbands and minimize the ripples. Note 

that every feature comes with a weight (c1, c2, c3, …) that helps the designer to equalize or priorate some features before 

others. In addition, a feature considering the minimization of the sum of power at a few strategic output ports can lead to the 

minimization of the spurious path problems, as they generate undesired optical power splitting that circulates all over the mesh. 

Consider that the features to be incorporated also depends on the type of the filter (passband, stopband, etc, …). Finally, a 

feature that can potentially improve the convergence of the self-configuration process is the minimization of the optical power 

at certain residual ports. This helps to focus most of the energy to the desired output ports. 

 

- Once the structure is close to the targeted value (as in the examples in the paper) one could additionally employ fitting 

techniques to the targeted analytical function to alleviate any measurement resolution related issue. 
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Supplementary Note 11. Examples of recent demonstrations of reconfigurable waveguide mesh arrangements  

 

Supplementary Table 24:  Experimental demonstrators of feed-forward meshes/ multiport interferometers [16] TBU: Number of TBU, PS: Number 

of phase shifters, OP: Number of optical ports, P: Power Consumption, RT: Response Time, CL: Fiber-chip coupling losses, E: edge-coupling, V: 

vertical-coupling 

 

Year Authors TBU PS OP 
dB 

/TBU 
TE Foundry 

P (mW) 

/ π 

RT 

(us) 
Topology 

Size 

(mmxmm) 

PS 

density 

(1/mm2) 

CL/facet  

(dB) 

Chip-

couplers 

2016 
Carollan, 

et. al 
15 30 12 TBD TO 

Silica on 

silicon 
400 TBD Triangular 100x40 0.007 0.5 E 

2016 
Ribeiro, 

et. al. 
9 18 8 1 TO Silicon 15 250 Triangular 1x3 6.000 TBD V 

2017 
Anoni, et. 

al. 
6 12 8 1 TO Silicon 10 10 Triangular 3.7 x 1.4 2.320 TBD V 

2017 
Harris, et. 

al. 
88 176 52 TBD TO Silicon 10 8 Trapezoid 2.1 x 4.3 19.050 3.5 E 

2018 
Mennea, 

et. al 
30 120 40 4.20 TO 

Silica on 

silicon 

10 V 

(PWM) 
TBD Rectangular 3.05x1.9(x3) 20.710 0.8 E 

2018 
Caterina 

et al.  
64 128 16 0.27 TO 

Silicon 

nitride 
3.35 V TBD 

Triangular 

(double) 
16x16 TBD 0.500 2.9 E 

2019 
Zhou, et. 

al.  
20 48 8 TBD TO Silicon 27 TBD 

Triangular 

SVD 
1.3 x 7.5 4.920 3.5 V 

2019 
Zheng et 

al  
10 18 10 0.63 TO 

Silicon 

nitride 
330 >1000 Rectangular 11x3 0.550 3.5 E 

 

Supplementary Table 25: Experimental demonstrators of feed-forward / feed-backward (General-Purpose) meshes/ multiport interferometers [16] 

TBU: Number of TBU, PS: Number of phase shifters, OP: Number of optical ports, BUL: Basic Unit Length, BUD: Basic Unit Delay, TE: Tuning 

effect, TO: Thermo-optic, P: Power Consumption, RT: 

Year Authors TBU PS OP dB/ 

TBU 

BUL 

(um)*1 

BUD 

(ps)*2 

TE Foundry P 

(mW) 

/pi 

RT 

(us) 

Topology TBU Size 

(mmxmm

) 

TBU 

density 

(1/mm2

) 

C (CL) 

2015 Zhuang, et. 

al., 

7 14 4 TBD 3450 19.7 TO Silicon 

nitride 

300 TBD Square MZI 3.5x8.5 0.235 E(TBD) 

2016 Pérez, et. 

al., 

30 60 24 0.59 975 13.5 TO SOI 110 TBD Hexagonal MZI 15x15 0.133 V(6.5) 

2017-

2020 

Pérez, et. 

al.[25] 

40 80 30 TBD 1315 8.4 TO Silicon 

nitride 

290 TBD Hexagonal MZI 11x5.5 0.661 E (3.5) 

2018 Pérez, et. 

al. 

5 10 8  TBD 1178 TBD TO Silicon 

nitride 

300 TBD Triangular DD-

DC 

7x2.5 0.285 E (3.5) 
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