Supporting Information

Divergent Synthesis of Monosubstituted and Unsymmetrial 3,6-Disubstituted Tetrazines from Carboxylic Ester Precursors

Yixin Xie,^[a] Yinzhi Fang,^[a] Zhen Huang,^[c] Amanda M. Tallon,^[a] Christopher W. am Ende,*^[b] and Joseph M. Fox*^[a]

Table of Contents

1.	General Consideration	S2
2.	Optimization	S3-S4
3.	Stability of Tetrazines	S5-S6
4.	Stopped-Flow Kinetics of Tetrazines 5b, 6c, 5l, 6a and 4f	S6-S11
5.	Differential Scanning Calorimetry (DSC) and Synthesis of Methyl Thiocarbohydrazide lodide Salt 2	S12
6.	Synthesis of Oxetane Esters 1	S13-S20
7.	Synthesis of Thiomethyltetrazines 3	S21-S28
8.	Synthesis of 3-Monosubstituted Tetraiznes 4	S29-S32
9.	Synthesis of Unsymmetrical Tetrazines 5 via Ag-mediated Pd-catalyzed Liebeskind Coupling	S33-S36
10.	Synthesis of Vinylether- Substituted Tetrazines 6 via Cu-mediated Liebeskind Coupling	S37-S41
11.	Synthesis of MAGL Tetrazine Probes	S42-S44
12.	Stopped-Flow Kinetics of MAGL Tetrazines Probes	S45
13.	MAGL Probe Expeirment	S46-S48
14.	References	S48
15.	NMR Spectrum	S49-S230

General Considerations Experimental Procedures

All reactions were conducted in flame dried round-bottom flasks. All reactions using microwave heating was conducted in 5 mL microwave reaction tubes. All optimization reactions were conducted in 4 mL sealed vials. Silica gel chromatography was performed on Silicycle Siliaflash irregular P60 silica gel (40-63 µm, 60 Å) or on Yamazen reverse phase prepacked Universal Column C18-silica gel (40-60 µm, 120 Å). Automated column chromatography was performed on a Teledyne Isco Combiflash Rf. Commercially available chemicals were purchased from Sigma-Aldrich, Combi-Blocks, Acros Organics, Alfa Aesar and TCI Chemicals. Solvents were purchased from Thermo Fisher Chemical, Acros Organics and Millipore Sigma. Anhydrous dichloromethane was freshly prepared by an alumina column solvent purification system. Anhydrous tetrahydrofuran was freshly distilled from sodium/benzophenone. Deuterated solvents were purchased from Cambridge Isotope. A Bruker AV400 was used to record NMR spectra (¹H: 400 MHz, ¹³C: 101 MHz). Chemical shifts are reported in ppm. Multiplicities are reported as follow: singlet (s), doublet (d), triplet (t), quartet (q), pentet (pent), sextet (sext), heptet (hept), multiplet (m), 'broad' (br), and 'apparent' (app). ¹³C NMR resonances are proton decoupled and an APT pulse sequence was used to determine type of carbon as follows: quaternary and methylene (C or CH₂) carbons appear 'up' and methine and methyl (CH or CH₃) carbons appear 'down'. High resolution mass spectra were obtained using a Waters GCT Premier. Infrared spectra were taken on a Nicolet Magna IR 560 spectrometer. Stopped-flow kinetics were obtained using a Applied Photophysics Ltd. SX 18MV-R stopped-flow spectrophotometer.

Optimization

 Table S1. Optimization of synthesizing 3-monosubstituted tetrazines.

All reactions were conducted with 0.04 mmol scale of **3n** at concentration of 0.1 M THF (entry 9 is in 0.1 M toluene). Oxidation of dihydrotetrazine was accomplished by adding PIDA (1 equiv.) and stirring at room temperature for 1 h. Yield was calculated by NMR with benzyl benzoate as internal standard.

Entry	Catalyst	Reductant	Temperature	Time	Conversion (%)	NMR Yield (%)
1	5%wt Pd/C (10 mol%)	HSiEt ₃ (4 equiv.)	r.t.	24 h	3	Trace
2	5%wt Pd/C (10 mol%)	hydrogen	r.t.	24 h	3	Trace
3	5%wt Pd/C (10 mol%)	HSiEt₃ (4 equiv.)	70 °C	3 h	94	52
4	PdCl ₂ (10 mol%)	HSiEt ₃ (4 equiv.)	70 °C	3 h	97	69
5	Pd(OAc) ₂ (10 mol%)	HSiEt₃ (4 equiv.)	70 °C	3 h	96	59
6	PdCl ₂ (ACN) ₂ (10 mol%)	HSiEt ₃ (4 equiv.)	70 °C	3 h	95	61
7	[PdCl(allyl)]2 (10 mol%)	HSiEt₃ (4 equiv.)	70 °C	3 h	90	58
8	Pd(acac) ₂ (10 mol%)	HSiEt ₃ (4 equiv.)	70 °C	3 h	86	49
9	Ni(cod) ₂ (10 mol%)	HSiEt ₃ (4 equiv.)	70 °C	2 h	2	0
10	NiCl ₂ (10 mol%)	HSiEt ₃ (4 equiv.)	70 °C	2 h	1	0
11	PdCl ₂ (10 mol%)	HSiEt ₃ (6 equiv.)	70 °C	3 h	100	51
12	PdCl ₂ (10 mol%)	HSiEt ₃ (3 equiv.)	70 °C	3 h	88	80
13	PdCl ₂ (10 mol%)	HSiEt ₃ (3 equiv.)	45 °C	20 h	90	83
14	PdCl ₂ (10 mol%)	HSiEt ₃ (3 equiv.)	45 °C	30 h	73	66
15	PdCl ₂ (10 mol%)	HSiEt ₃ (3 equiv.)	r.t.	30 h	61	57

Table S1. Optimization of synthesizing 3-monosubstituted tetrazines.

All reactions were conducted with 0.04 mmol scale of **3n** and 2 equiv. of α -tributylstannyl ethylvinylether. Yields were calculated by NMR with benzyl benzoate as an internal standard. PIDA (1 equiv.) was added after reactions with CuBr•SMe₂ due to tetrazine reduction under these conditions.

Entry	Catalyst	Cu	Solvent (conc. of 3n)	Temperature	Time	NMR
						yield (%)
1	Pd ₂ (dba) ₃ (10 mol%)	CuTc (2 equiv.)	THF (0.1 M)	70 °C	30 min	10
	PPh3 (40 mol%)					
2	Pd(PPh ₃) ₄ (20 mol%)	CuTc (2 equiv.)	THF (0.1 M)	70 °C	30 min	16
3	Pd(PPh ₃) ₄ Cl ₂ (20 mol%)	CuTc (2 equiv.)	THF (0.1 M)	70 °C	30 min	14
4	Pd(dppf)Cl ₂ (20 mol%)	CuTc (2 equiv.)	THF (0.1 M)	70 °C	30 min	11
5	Pd(OAc) ₂ (20 mol%)	CuTc (2 equiv.)	THF (0.1 M)	70 °C	30 min	0
	PPh ₃ (40 mol%)					
6	Pd(PPh ₃) ₄ (20 mol%)	CuBr·SMe ₂ (2.2 equiv.)	dioxane (0.1 M)	50 °C	14 h	25
7	Pd(PPh ₃) ₄ Cl ₂ (20 mol%)	CuBr·SMe ₂ (2.2 equiv.)	dioxane (0.1 M)	50 °C	14 h	24
8	Pd(PPh ₃) ₄ (20 mol%)	CuBr·SMe ₂ (3 equiv.)	THF (0.1 M)	50 °C	14 h	24
9	Pd(PPh ₃) ₄ (20 mol%)	CuBr·SMe ₂ (2.2 equiv.)	THF (0.1 M)	50 °C	14 h	24
10	Pd(PPh ₃) ₄ (20 mol%)	CuTc (2 equiv.)	THF (0.1 M)	70 °C	3 min	30
11	Pd(PPh ₃) ₄ (20 mol%)	CuTc (2 equiv.)	THF (0.1 M)	r.t.	1 h	17
12	Pd(PPh ₃) ₄ (20 mol%)	CuTc (2 equiv.)	dioxane (0.1 M)	70 °C	6 min	35
13	Pd(PPh ₃) ₄ (20 mol%)	CuTc (1.5 equiv.)	dioxane (0.1 M)	70 °C	10 min	27
14	Pd(PPh ₃) ₄ (20 mol%)	CuTc (2 equiv.)	dioxane/hexane 1/1 (0.1 M)	70 °C	30 min	15
15	Pd(PPh ₃) ₄ (20 mol%)	CuMeSal (2 equiv.)	dioxane (25 mM)	70 °C	5 min	34
16	Pd(PPh ₃) ₄ (20 mol%)	CuTc (2 equiv.)	dioxane (25 mM)	70 °C	3 min	48
17	Pd(PPh ₃) ₄ (20 mol%)	CuTc (2 equiv.)	dioxane (10 mM)	70 °C	8 min	50
18	Pd(PPh ₃) ₄ (20 mol%)	CuTc (2 equiv.)	dioxane (5 mM)	70 °C	15 min	55
19	Pd(PPh ₃) ₄ (20 mol%)	CuTc (2 equiv.)	dioxane (2 mM)	70 °C	30 min	35
20	Pd(PPh ₃) ₄ (15 mol%)	CuTc (2 equiv.)	dioxane (5 mM)	70 °C	15 min	58
21	Pd(PPh ₃) ₄ (15 mol%)	CuTc (2 equiv.)	dioxane (5 mM)	100 °C	16 min	61
22	Pd(PPh ₃) ₄ (15 mol%)	CuTc (2 equiv.)	dioxane (5 mM)	100 °C	18 min	58
23	Pd(PPh ₃) ₄ (15 mol%)	CuTc (2 equiv.)	dioxane (5 mM)	100 °C	20 min	57

Tetrazine stability in PBS buffer in ambient light at 25°C

Solutions (3 mL) of tetrazine **5b**, **5l** and **6c** (400 μ M) were prepared in PBS buffer (pH 7.4) in vials and stored in ambient light at 25 °C. Tetrazine concentrations were determined by recording the absorbance at 518 nm (**6c**) and 520 nm (**5b** and **5l**) in cuvettes in day 0, 1, 3 and 5. A solution of **6a** (50 μ M) was prepared in PBS buffer (pH 7.4) in vials and stored in ambient light at room temperature. Tetrazine concentration was determined by recording the absorbance at 520 nm in cuvettes at day 0, 1, 3 and 5. Results show **5b**, **5l**, **6c** and **6a** have 1.8%, 1.7%, 3.9% and 0.8% decomposition per day respectively.

Figure S1A. Stability of tetrazine 5b, 5l, 6c and 6a in PBS buffer in ambient light at 25 °C

Tetrazine stability in Opti-MEM media in ambient light at 25°C

Solutions (10 mL) of tetrazine **5b** and **6c** (400 μ M) were prepared in Opti-MEM media in vials and stored in ambient light at 25 °C. 2 mL of solution was extracted by 2 mL of Et₂O in different time point. Tetrazine concentrations were determined by recording the absorbance of Et₂O at 545 nm. Results show **5b** and **6c** have 6.7% and 10.8% decomposition per day respectively.

Figure S1B. Stability of tetrazine 5b and 6c in Opti-MEM media in ambient light at 25 °C

Stopped-flow kinetic analysis of terazines 5b, 6b, 6h, 6e and 4f with *eq*-5-hydroxy-*trans*-cyclooctene in PBS buffer at 25°C

Solutions (5 mL) of tetrazines **5b**, **6c**, **5l**, **6a** and **4f** (0.050 mM) was prepared in PBS buffer (pH 7.4). Solutions (10 mL) of *eq*-5hydroxy-*trans*-cyclooctene (0.50, 0.60, 0.70, 0.80 mM) were prepared in PBS buffer (pH 7.4). The reactions between tetrazines and *trans*-cyclooctene were measured under pseudo-first order conditions using SX 18MV-R stopped-flow spectrophotometer (Applied Photophysics Ltd.). Each solution of tetrazine and *trans*-cyclooctene were injected in equal volumes via 3 mL syringes into the stopped-flow instrument at 25 °C, resulting in final concentration of 0.025 mM of tetrazines and 0.25, 0.30, 0.35, 0.40 mM *trans*cyclooctene. The reaction was monitored by the decay of absorbance associated with the tetrazines (**5b** at 263 nm, **6c** at 268 nm, **5l** at 274 nm, **6a** at 296 nm, **4f** at 266 nm). Reaction were repeated in triplicate. With Prism software, an observed rate constant, k_{obs}, was obtained by nonlinear regression. Second order rate constants, k₂, were calculated by linear regression between k_{obs} and final concentration of *trans*-cyclooctene.

Figure S2A Pseudo-first order stopped-flow kinetics of tetrazine **5b** and eq. 5-hydoxy-*trans*-cyclooctene. The plot shows the decay of absorbance at 263 nm measured by a stopped-flow instrument (red curve). The nonlinear regression calculation by prism software is fitted as black curve. Triplicate k_{obs} results are show on plot of k_{obs} across four different concentrations of trans-cyclooctene. Second-order rate constant k_2 was calculated by prism software, indicating relative rate, k_{rel} , of **5b** as 1.0.

Figure S2B Pseudo-first order stopped-flow kinetics of tetrazine **6c** and eq. 5-hydoxy-*trans*-cyclooctene. The plot shows the decay of absorbance at 268 nm measured by a stopped-flow instrument (red curve). The nonlinear regression calculation by prism software is fitted as black curve. Triplicate k_{obs} results are show on plot of k_{obs} across four different concentrations of *trans*-cyclooctene. Second-order rate constant k_2 was calculated by prism software, indicating relative rate, k_{rel} , of **6c** as 4.2.

Figure S2C Pseudo-first order stopped-flow kinetics of tetrazine **5I** and eq. 5-hydoxy-*trans*-cyclooctene. The plot shows the decay of absorbance at 274 nm measured by a stopped-flow instrument (red curve). The nonlinear regression calculation by prism software is fitted as black curve. Triplicate k_{obs} results are show on plot of k_{obs} across four different concentrations of *trans*-cyclooctene. Second-order rate constant k_2 was calculated by prism software, indicating relative rate, k_{rel} , of **5I** as 0.35.

Figure S2D Pseudo-first order stopped-flow kinetics of tetrazine **6a** and eq. 5-hydoxy-*trans*-cyclooctene. The plot shows the decay of absorbance at 296 nm measured by a stopped-flow instrument (red curve). The nonlinear regression calculation by prism software is fitted as black curve. Triplicate k_{obs} results are show on plot of k_{obs} across four different concentrations of *trans*-cyclooctene. Second-order rate constant k_2 was calculated by prism software, indicating relative rate, k_{rel} , of **6a** as 10.

Figure S2E Pseudo-first order stopped-flow kinetics of tetrazine **4f** and eq. 5-hydoxy-*trans*-cyclooctene. The plot shows the decay of absorbance at 266 nm measured by a stopped-flow instrument (red curve). The nonlinear regression calculation by prism software is fitted as black curve. Triplicate k_{obs} results are show on plot of k_{obs} across four different concentrations of *trans*-cyclooctene. Second-order rate constant k_2 was calculated by prism software, indicating relative rate, k_{rel} , of **4f** as 8.0.

Differential Scanning Calorimetry (DSC)

DSC data of S-methylisothiocarbonohydrazidium iodide (2) was obtained on a Mettler-Toledo Differential Scanning Calorimeter 3+. Samples were loaded into a goldplated high-pressure pan, held at 30°C for 10 minutes, then a gradient of 30°C to 400 °C at 5 °C/min. Appropriate precautions should be followed when handling compound 2, as this compound is flagged as potentially shock and explosive positive by the Pfizer-modified Yoshida correlation. Quoting Sperry et al.,^[1] "The Yoshida correlations are mathematical equations used to predict a material's potential to exhibit impact sensitivity and explosivity as a function of its DSC... Yoshida correlations are meant to be very conservative to ensure that all compounds that have the potential to be either shock-sensitive and/or explosive are flagged. Pfizer (as well as many other pharmaceutical companies) has taken the Yoshida correlations and applied an additional degree of conservatism to further reduce the likelihood of any false negatives so that all materials that could exhibit impact sensitivity or explosivity are thoroughly studied before their use in large-scale manufacture of active pharmaceutical ingredients (APIs) begins."

Figure S3 DSC result of methyl thiocarbohydrazide iodide salt (2)

Synthesis of methyl thiocarbohydrazide iodide salt (2)

Compound **2** was prepared according to literature protocol.^[2] A dry round bottom flask was charged with thiocarbohydrazide (500 mg, 4.71 mmol, 1 equiv.), methyl iodide (323 μ L, 5.18 mmol, 1.1 equiv.) and ethanol (15 mL, 0.3 M). After refluxing at 80 °C for 3 h, reaction mixture was cooled down and hexane was added. After cooling down in freezer (-20 °C) overnight, the reaction mixture was filtered, solid was washed with cold ethanol:hexane 1:1 and drying under vacuum, a white solid (700 mg, 2.82 mmol, 60%) was collected and used directly without further purification.

General protocol for the synthesis of oxetane esters

A dry round-bottom flask was charged with 3-methyl-3-oxetanemethanol (1.1 equiv.), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl, 1.2 equiv.) and DMAP (0.10 equiv.). The flask was outfitted with a septum-fitted gas inlet adapter and then evacuated and filled with nitrogen. Anhydrous CH_2Cl_2 or DMF was added to the flask via syringe. The flask was cooled by an ice bath (0 °C), and the carboxylic acid (1 equiv.) was added. After stirring under nitrogen at 0 °C for 15 min and at r.t overnight, the reaction mixture was diluted with CH_2Cl_2 . The solution was washed with saturated sodium bicarbonate solution, water and brine, and the organics were dried over sodium sulfate and concentrated by rotary evaporation. The residue was purified by flash column chromatography on silica gel.

(3-methyloxetan-3-yl)methyl 2-(benzyloxy)acetate (1a)

The general protocol was followed with benzyloxyacetic acid (1196 mg, 11.83 mmol), 3-methyl-3-oxetanemethanol (1329 mg, 13.02 mmol), EDC (2721 mg, 14.20 mmol), DMAP (144.5 mg, 1.183 mmol) in CH₂Cl₂ (24 mL, 0.25 M). A colorless oil (2783 mg, 11.12 mmol, 94%) was obtained after column chromatography (Hexane:EA 100:0 to 75:25). ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.67 (m, 5H), 4.64 (s, 2H), 4.50 (d, *J* = 6.0 Hz, 2H), 4.38 (d, *J* = 6.0 Hz, 2H), 4.26 (s, 2H), 4.15 (s, 2H), 1.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.56 (C), 137.01 (C), 128.60 (CH), 128.15 (CH), 128.12 (CH), 79.50 (CH₂), 73.45 (CH₂), 68.99 (CH₂), 67.01 (CH₂), 39.12 (C), 21.18 (CH₃). IR (KBr), υ/cm^{-1} 3064, 3031, 2962, 2872, 1750, 1455, 1257, 1197, 1127, 981, 740, 699. HRMS [M+H]⁺ m/z calcd. for [C₁₄H₁₉O₄]⁺ 251.1283, found 251.1278.

(3-methyloxetan-3-yl)methyl 4-((tert-butoxycarbonyl)amino)benzoate (1b)

The general protocol was followed with 4-(Boc-amino)benzoic acid (1899 mg, 8.01 mmol), 3-methyl-3-oxetanemethanol (900 mg, 8.81 mmol), EDC (1843 mg, 9.62 mmol), DMAP (97.8 mg, 0.801 mmol) in CH₂Cl₂ (16 mL, 0.5 M). A white solid (2468 mg, 7.68 mmol, 96%) was obtained after column chromatography (Hexane:EA 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (app d, *J* = 8.8 Hz, 2H), 7.43 (app d, *J* = 8.8 Hz, 2H), 6.74 (s, 1H), 4.64 (d, *J* = 6.0 Hz, 2H), 4.45 (d, *J* = 6.0 Hz, 2H), 4.37 (s, 2H), 1.53 (s, 9H), 1.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.29 (C), 152.26 (C), 143.09 (C), 131.09 (CH), 124.12 (C), 117.52 (CH), 81.42 (C), 79.80 (CH₂), 68.95 (CH₂), 39.45 (C), 28.41 (CH₃), 21.46 (CH₃). IR (KBr), υ/cm^{-1} 3375, 3100, 3060, 2971, 2886, 1724, 1678, 1600, 1543, 1411, 1324, 1240, 1159, 1115, 863, 767. HRMS [M+H]⁺ m/z calcd. for [C₁₇H₂₄O₅N]⁺ 322.1654, found 322.1646.

(3-methyloxetan-3-yl)methyl 4-(((tert-butoxycarbonyl)amino)methyl)benzoate (1c)

The general protocol was followed with Boc-(4-aminophenyl)acetic acid (2010 mg, 8.01 mmol), 3-methyl-3-oxetanemethanol (900 mg, 8.82 mmol), EDC (1834 mg, 9.62 mmol), DMAP (97.8 mg, 0.801 mmol) in CH_2Cl_2 (16 mL, 0.25 M). A white solid (2520 mg, 7.52 mmol, 94%) was obtained after column chromatography (Hexane:EA 100:0 to 75:25). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (app d, *J* = 8.2 Hz, 2H), 7.36 (app d, *J* = 8.2 Hz, 2H), 4.95 (s, 1H), 4.64 (d, *J* = 6.0 Hz, 2H), 4.46 (d, *J* = 6.0 Hz, 2H), 4.38 (s, 2H), 4.37 (s, 2H),

1.46 (s, 9H), 1.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.46 (C), 156.02 (C), 144.75 (C), 130.11 (CH), 128.97 (C), 127.36 (CH), 79.97 (C), 79.75 (CH₂), 69.12 (CH₂), 44.44 (CH₂), 39.42 (C), 28.52 (CH₃), 21.44 (CH₃). IR (KBr), ν/cm^{-1} 3386, 3008, 2981, 2946, 2880, 1717, 1689, 1517, 1289, 1275, 1246, 1170, 1110, 983, 756. HRMS [M+H]⁺ m/z calcd. for [C₁₈H₂₆O₅N]⁺ 336.1811, found 336.1804.

(3-methyloxetan-3-yl)methyl 4-nitrobenzoate (1d)

The general protocol was followed with 4-nitro-benzoic acid (1191 mg, 7.12 mmol), 3-methyl-3-oxetanemethanol (800 mg, 7.84 mmol), EDC (1638 mg, 8.55 mmol), DMAP (86.9 mg, 0.712 mmol) in CH₂Cl₂ (35 mL, 0.2 M). A white solid (1520 mg, 6.05 mmol, 85%) was obtained after column chromatography (Hexane:Acetone 10:0 to 9:1). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (app d, *J* = 9.0 Hz, 2H), 8.21 (app d, *J* = 9.0 Hz, 2H), 4.61 (d, *J* = 6.1 Hz, 2H), 4.47 (d, *J* = 6.1 Hz, 2H), 4.44 (s, 2H), 1.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.70 (C), 150.68 (C), 135.26 (C), 130.82 (CH), 123.71 (CH), 79.49 (CH₂), 69.92 (CH₂), 39.32 (C), 21.24 (CH₃). IR (KBr), υ/cm^{-1} 3010, 3000, 2961, 2874, 1715, 1708, 1607, 1525, 1344, 1280, 1263, 979, 847, 719. HRMS [M+H]⁺ m/z calcd. for [C₁₂H₁₄O₅N]⁺ 252.0872, found 252.0863.

(3-methyloxetan-3-yl)methyl 4-methoxybenzoate (1e)

The general protocol was followed with 4-nitro-benzoic acid (608 mg, 3.56 mmol), 3-methyl-3-oxetanemethanol (400 mg, 3.92 mmol), EDC (819 mg, 4.27 mmol), DMAP (43.5 mg, 0.356 mmol) in CH₂Cl₂ (16 mL, 0.25 M). A colorless oil (576 mg, 2.40 mmol, 61%) was obtained after column chromatography (Hexane:Acetone 10:0 to 9:1). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (app d, *J* = 8.9 Hz, 2H), 6.93 (app d, *J* = 8.9 Hz, 2H), 4.64 (d, *J* = 5.9 Hz, 2H), 4.45 (d, *J* = 5.9 Hz, 2H), 4.36 (s, 2H), 3.86 (s, 3H), 1.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.41 (C), 163.63 (C), 131.79 (CH), 122.38 (C), 113.82 (CH), 79.78 (CH₂), 68.82 (CH₂), 55.59 (CH₃), 39.43 (C), 21.45 (CH₃). IR (KBr), υ/cm^{-1} 3078, 2962, 2871, 1717, 1607, 1512, 1256, 1168, 1103, 982, 770. HRMS [M+H]⁺ m/z calcd. for [C₁₃H₁₇O₄]⁺ 237.1127, found 237.1120.

(3-methyloxetan-3-yl)methyl 4-bromobenzoate (1f)

The general protocol was followed with 4-bromobenzoic acid (604 mg, 3.03 mmol), 3-methyl-3-oxetanemethanol (340 mg, 3.33 mmol), EDC (690 mg, 3.64 mmol), DMAP (37.0 mg, 0.303 mmol) in CH₂Cl₂ (15 mL, 0.20 M). A white solid (812 mg, 2.85 mmol, 95%) was obtained after column chromatography (Hexane:EA 10:0 to 95:5). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (app d, *J* = 8.6 Hz, 2H), 7.62 (app d, *J* = 8.6 Hz, 2H), 4.65 (d, *J* = 6.0 Hz, 2H), 4.49 (d, *J* = 6.0 Hz, 2H), 4.42 (s, 2H), 1.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.96 (C), 131.97 (CH), 131.28 (CH), 128.87 (C), 128.50 (C), 79.69 (CH₂), 69.37 (CH₂), 39.40 (C), 21.40 (CH₃). IR (KBr), υ/cm^{-1} 3065, 2963, 2873, 1721, 1590, 1484, 1398, 1263, 1174, 1104, 1012, 982, 848, 756. HRMS [M+H]⁺ m/z calcd. for [C₁₂H₁₄O₃Br]⁺ 285.0126, found 285.0120.

methyl ((3-methyloxetan-3-yl)methyl) terephthalate (1g)

The general protocol was followed with monomethyl terephthalate (1440 mg, 8.01 mmol), 3-methyl-3-oxetanemethanol (900 mg, 8.82 mmol), EDC (1840 mg, 9.62 mmol), DMAP (97.9 mg, 0.801 mmol) in CH₂Cl₂ (32 mL, 0.25 M). A white solid (1956mg, 7.40 mmol,

93%) was obtained after column chromatography (Hexane:EA 10:0 to 8:2). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (app s, 4H), 4.65 (d, *J* = 6.0 Hz, 2H), 4.48 (d, *J* = 6.0 Hz, 2H), 4.43 (s, 2H), 3.96 (s, 3H), 1.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.36 (C), 165.90 (C), 134.27 (C), 133.74 (C), 129.79 (CH), 129.75 (CH), 79.71 (CH₂), 69.58 (CH₂), 52.67 (CH₃), 39.43 (C), 21.42 (CH₃). IR (KBr), υ /cm⁻¹ 3012, 2964, 2936, 2871, 1732, 1716, 1506, 1436, 1395, 1279, 1249, 1125, 1105, 1016, 979, 726. HRMS [M+H]⁺ m/z calcd. for [C₁₄H₁₇O₅]⁺ 265.1076, found 265.1067.

(3-methyloxetan-3-yl)methyl 4-cyanobenzoate (1h)

The general protocol was followed with 4-cyanobenzoic acid (608 mg, 3.56 mmol), 3-methyl-3-oxetanemethanol (400 mg, 3.92 mmol), EDC (920 mg, 4.27 mmol), DMAP (43.5 mg, 0.356 mmol) in CH₂Cl₂ (16 mL, 0.25 M). A white solid (795 mg, 3.44 mmol, 86%) was obtained after column chromatography (Hexane:EA 10:0 to 9:1). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (app d, *J* = 8.5 Hz, 2H), 7.77 (app d, *J* = 8.5 Hz, 2H), 4.62 (d, *J* = 6.0 Hz, 2H), 4.48 (d, *J* = 6.0 Hz, 2H), 4.44 (s, 2H), 1.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.04 (C), 133.78 (C), 132.48 (CH), 130.28 (CH), 118.05 (C), 116.78 (C), 79.60 (CH₂), 69.86 (CH₂), 39.40 (C), 21.34 (CH₃). IR (KBr), υ/cm^{-1} 3051, 2960, 2927, 2873, 2231, 1725, 1610, 1461, 1406, 1377, 1280, 1264, 1118, 1107, 981, 766. HRMS [M+H]⁺ m/z calcd. for [C₁₃H₁₄O₃N]⁺ 232.0974, found 232.0964

(3-methyloxetan-3-yl)methyl 6-methoxypicolinate (1i)

The general protocol was followed with 6-methoxypyridine-2-carboxylic acid (640 mg, 4.18 mmol), 3-methyl-3-oxetanemethanol (472 mg, 4.62 mmol), EDC (962 mg, 5.02 mmol), DMAP (50.9 mg, 0.418 mmol) in CH₂Cl₂ (20 mL, 0.2 M). A colorless oil (833 mg, 3.50 mmol, 84%) was obtained after column chromatography (Hexane:EA 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 7.72 - 7.63 (m, 2H), 6.93 (dd, *J* = 7.2, 2.0 Hz, 1H), 4.64 (d, *J* = 6.0 Hz, 2H), 4.44 (d, *J* = 6.0 Hz, 2H), 4.42 (s, 2H), 4.00 (s, 3H), 1.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.17 (C), 164.01 (C), 145.21 (C), 139.10 (CH), 118.69 (CH), 115.59 (CH), 79.70 (CH₂), 69.51 (CH₂), 53.69 (CH₃), 39.44 (C), 21.35 (CH₃). IR (KBr), υ/cm^{-1} 3078, 2957, 2872, 1740, 1721, 1595, 1574, 1470, 1415, 1329, 1274, 1140, 1028, 985, 825, 770. HRMS [M+H]⁺ m/z calcd. for [C₁₂H₁₆O₄N]⁺ 238.1079, found 238.1073.

(3-methyloxetan-3-yl)methyl isonicotinate (1j)

The general protocol was followed with 4-picolinic acid (985 mg, 8.01 mmol), 3-methyl-3-oxetanemethanol (900 mg, 8.82 mmol), EDC (1840 mg, 9.62 mmol), DMAP (97.9 mg, 0.801 mmol) in CH₂Cl₂ (16 mL, 0.5 M). A yellow oil (1410 mg, 6.80 mmol, 85%) was obtained after column chromatography (Hexane:EA 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 8.78 (app d, *J* = 6.0 Hz, 2H), 7.85 (app d, *J* = 6.0 Hz, 2H), 4.61 (d, *J* = 6.0 Hz, 2H), 4.46 (d, *J* = 6.0 Hz, 2H), 4.43 (s, 2H), 1.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.50 (C), 151.16 (CH), 137.39 (C), 123.23 (CH), 79.86 (CH₂), 70.16 (CH₂), 39.66 (C), 21.59 (CH₃). IR (KBr), υ/cm^{-1} 3034, 2935, 2873, 1730, 1678, 1562, 1408, 1387, 1287, 1124, 1092, 981, 759. HRMS [M+H]⁺ m/z calcd. for [C₁₁H₁₄O₃N]⁺ 208.0974, found 208.0969.

methyl ((3-methyloxetan-3-yl)methyl) succinate (1k)

The general protocol was followed with monomethyl succinate (1159 mg, 9.821 mmol) was added into mixture of 3-Methyl-3oxetanemethanol (1103 mg, 10.80 mmol), EDC (2254 mg, 11.79 mmol), DMAP (120.0 mg, 0.9821 mmol) in CH₂Cl₂ (20 mL, 0.5 M). A colorless oil (1992 mg, 9.167 mmol, 94%) was obtained after column chromatography (Hexane:EA 100:0 to 75:25). ¹H NMR (600 MHz, CDCl₃) δ 4.50 (d, *J* = 6.0 Hz, 2H), 4.37 (d, *J* = 6.0 Hz, 2H), 4.18 (s, 2H), 3.69 (s, 3H), 2.70 – 2.66 (m, 2H), 2.65 – 2.62 (m, 2H), 1.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.79 (C), 172.44 (C), 79.62 (C), 69.01 (CH₂), 52.04 (CH₃), 39.16 (CH₂), 29.12 (CH₂), 28.94 (CH₂), 21.25 (CH₃). IR (KBr), υ/cm^{-1} 2958, 2874, 1739, 1438, 1356, 1216, 1159, 981. HRMS [M+H]⁺ m/z calcd. for [C₁₀H₁₇O₅]⁺ 217.1076, found 217.1068.

tert-butyl ((3-methyloxetan-3-yl)methyl) succinate (11)

The general protocol was followed with mono-tert-butyl succinate (1861 mg, 10.68 mmol) was added into mixture of 3-Methyl-3-oxetanemethanol (1200 mg, 11.75 mmol), EDC (2457 mg, 12.82 mmol), DMAP (130.5 mg, 1.068 mmol) in CH₂Cl₂ (21 mL, 0.5 M). A colorless oil (2538 mg, 9.788 mmol, 92%) was obtained after column chromatography (Hexane:EA 100:0 to 75:25). ¹H NMR (400 MHz, CDCl₃) δ 4.52 (d, *J* = 6.0 Hz, 2H), 4.38 (d, *J* = 6.0 Hz, 2H), 4.19 (s, 2H), 2.64 - 2.61 (m, 2H), 2.58 - 2.54 (m, 2H), 1.44 (s, 9H), 1.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.71 (C), 171.56 (C), 80.97 (C), 79.72 (CH₂), 68.97 (CH₂), 39.20 (C), 30.37 (CH₂), 28.20 (CH₃), 21.31 (CH₃). IR (KBr), υ/cm^{-1} 2973, 2935, 2873, 1732, 1459, 1393, 1367, 1248, 1149, 983, 848. HRMS [M+H]⁺ m/z calcd. for [C₁₃H₂₃O₅]⁺ 259.1545, found 259.1539.

methyl ((3-methyloxetan-3-yl)methyl) malonate (1m)

The general protocol was followed with monomethyl malonate (942 μ L, 8.99 mmol) was added into mixture of 3-Methyl-3-oxetanemethanol (1010 mg, 9.89 mmol), EDC (2070mg, 10.8 mmol), DMAP (110 mg, 0.899 mmol) in CH₂Cl₂ (18 mL, 0.5 M). A colorless oil (1237 mg, 6.11 mmol, 68%) was obtained after column chromatography (Hexane:EA 10:0 to 8:2). ¹H NMR (400 MHz, CDCl₃) δ 4.50 (d, *J* = 6.0 Hz, 2H), 4.37 (d, *J* = 6.0 Hz, 2H), 4.23 (s, 2H), 3.74 (s, 3H), 3.43 (s, 2H), 1.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.93 (C), 166.65 (C), 79.47 (CH₂), 69.65 (CH₂), 52.70 (CH₃), 41.33 (CH₂), 39.16 (C), 21.15 (CH₃). IR (KBr), υ/cm^{-1} 2959, 2875, 1737, 1438, 1338, 1277, 1202, 1151, 1024, 979. HRMS [M+H]⁺ m/z calcd. for [C₉H₁₅O₅]⁺ 203.0919, found 203.0913.

(3-methyloxetan-3-yl)methyl 2-((tert-butoxycarbonyl)amino)acetate (1n)

The general protocol was followed with Boc-glycine (1964 mg, 11.21 mmol) was added into mixture of 3-Methyl-3-oxetanemethanol (1259 mg, 12.33 mmol), EDC (2579 mg, 13.45 mmol), DMAP (137.0 mg, 1.121 mmol) in CH₂Cl₂ (22 mL, 0.5 M). A colorless oil (2613 mg, 10.07 mmol, 90%) was obtained after column chromatography (Hexane:EA 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 5.06 (s, 1H), 4.49 (d, *J* = 6.1 Hz, 2H), 4.37 (d, *J* = 6.1 Hz, 2H), 4.24 (s, 2H), 3.93 (d, *J* = 5.7 Hz, 2H), 1.44 (s, 9H), 1.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.67 (C), 155.82 (C), 80.21 (C), 79.55 (CH₂), 69.59 (CH₂), 42.43 (CH₂), 39.16 (C), 28.41 (CH₃), 21.17 (CH₃). IR (KBr), υ/cm^{-1} 3355, 2972, 2935, 2875, 1755, 1717, 1523, 1457, 1366, 1284, 1252, 1166, 1055, 985. HRMS [M+H]⁺ m/z calcd. for [C₁₂H₂₂O₅N]⁺ 260.1498, found 260.1492.

(S)-1-tert-butyl 4-((3-methyloxetan-3-yl)methyl) 2-((tert-butoxycarbonyl)amino)succinate (10)

The general protocol was followed with N-Boc-L-aspartic acid 1-tert-butyl ester (1502 mg, 5.19 mmol) was added into mixture of 3-Methyl-3-oxetanemethanol (583 mg, 5.71 mmol), EDC (1194 mg, 6.23 mmol), DMAP (63.4 mg, 0.519 mmol) in CH₂Cl₂ CH2CL2(10 mL, 0.5 M). A colorless oil (1608 mg, 4.21 mmol, 81%) was obtained after column chromatography (Hexane:EA 100:0 to 80:20). ¹H NMR (400 MHz, CDCl₃) δ 5.56 (d, *J* = 8.4 Hz, 1H), 4.54 – 4.42 (m, 3H), 4.40 (d, *J* = 6.1 Hz, 2H), 4.24 (d, *J* = 11.1 Hz, 1H), 4.14 (d, *J* = 11.1 Hz, 1H), 2.98 (dd, *J* = 16.8, 4.7 Hz, 1H), 2.85 (dd, *J* = 16.8, 4.8 Hz, 1H), 1.45 (s, 9H), 1.43 (s, 9H), 1.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.20 (C), 170.05 (C), 155.57 (C), 82.55 (C), 80.02 (C), 79.63 (C), 79.58 (CH₂), 69.17 (CH₂), 50.64 (CH), 39.19 (C), 37.11 (CH₂), 28.45 (CH₃), 28.04 (CH₃), 21.19 (CH₃). IR (KBr), υ/cm^{-1} 3357, 2976, 2935, 2875, 1738, 1501, 1458, 1392, 1367, 1251, 1154, 984, 848. HRMS [M+H]⁺ m/z calcd. for [C₁₈H₃₂O₇N]⁺ 374.2179, found 374.2173.

(S)-1-tert-butyl 5-((3-methyloxetan-3-yl)methyl) 2-((tert-butoxycarbonyl)amino)pentanedioate (1p)

The general protocol was followed with N-Boc-L-glutamic acid 1-tert-butyl ester (3023 mg, 9.972 mmol) was added into mixture of 3-Methyl-3-oxetanemethanol (1120 mg, 10.96 mmol), EDC (2291 mg, 11.97 mmol), DMAP (121.8 mg, 0.9972 mmol) in CH₂Cl₂ (18 mL, 0.25 M). A colorless oil (3287 mg, 8.476 mmol, 85%) was obtained after column chromatography (Hexane:EA 100:0 to 75:25). ¹H NMR (400 MHz, CDCl₃) δ 5.10 (d, *J* = 8.1 Hz, 1H), 4.49 (d, *J* = 6.0 Hz, 2H), 4.37 (d, *J* = 6.0 Hz, 2H), 4.22 - 4.13 (m, 3H), 2.51 - 2.35 (m, 2H), 2.21 - 2.12 (m, 1H), 1.94 - 1.84 (m, 1H), 1.45 (s, 9H), 1.42 (s, 9H), 1.32 (s, 3H), peak at 4.85, 4.04 ppm due to minor rotamer. ¹³C NMR (101 MHz, CDCl₃) δ 173.03 (C), 171.42 (C), 155.53 (C), 82.36 (C), 79.92 (C), 79.66 (CH₂), 68.98 (CH₂), 53.40 (CH), 39.13 (C), 30.27 (CH₂), 28.41 (CH₃), 28.19 (CH₂), 28.09 (CH₃), 21.28 (CH₃). IR (KBr), υ/cm^{-1} 3361, 2976, 2935, 2874, 1739, 1716, 1517, 1455, 1392, 1367, 1251, 1156, 1050, 982. HRMS [M+H]⁺ m/z calcd. for [C₁₉H₃₄O₇N]⁺ 388.2335, found 388.2328.

(3-methyloxetan-3-yl)methyl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate (1q)

The general protocol was followed with biotin (219 mg, 0.896 mmol) was added into mixture of 3-Methyl-3-oxetanemethanol (100 mg, 0.986 mmol), EDC (220 mg, 1.08 mmol), DMAP (10.9 mg, 0.0896 mmol) in CH₂Cl₂ (9 mL, 0.1 M). A white solid (242 mg, 0.736 mmol, 82%) was obtained after column chromatography (CH₂Cl₂:Acetone 100:0 to 50:50). ¹H NMR (400 MHz, CDCl₃) δ 6.10 (s, 1H), 5.54 (s, 1H), 4.61 – 4.42 (m, 3H), 4.37 (d, *J* = 6.0 Hz, 2H), 4.29 (app dd, *J* = 7.8, 4.6 Hz, 1H), 4.13 (s, 2H), 3.20 - 3.09 (m, 1H), 2.90 (dd, *J* = 12.8, 5.0 Hz, 1H), 2.72 (d, *J* = 12.8 Hz, 1H), 2.39 (t, *J* = 7.5 Hz, 2H), 1.85 – 1.61 (m, 4H), 1.54 – 1.38 (m, 2H), 1.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.91 (C), 163.68 (C), 79.65 (CH₂), 68.53 (CH₂), 62.04 (CH), 60.20 (CH), 55.58 (CH), 40.70 (CH₂), 39.16 (C), 33.97 (CH₂), 28.52 (CH₂), 24.97 (CH₂), 21.35 (CH₃). IR (KBr), v/cm⁻¹ 3214, 2931, 2871, 1735, 1702, 1461, 1269, 1170, 981, 634. HRMS [M+H]⁺ m/z calcd. for [C₁₅H₂₅O₄N₂S]⁺ 329.1535, found 329.1528.

(*R*)-(3-methyloxetan-3-yl)methyl 4-((3*R*,5*R*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-3-hydroxy-10,13-dimethylhexadecahydro-1*H*-cyclopenta[a]phenanthren-17-yl)pentanoate (1r)

The general protocol was followed with lithocholic acid (203 mg, 0.537 mmol) was added into mixture of 3-Methyl-3-oxetanemethanol (220 mg, 2.15 mmol), EDC (124 mg, 0.65 mmol), DMAP (6.56 mg, 0.0537 mmol) in CH₂Cl₂ (4.3 mL, 0.12 M). A white solid (243 mg, 0.526 mmol, 98%) was obtained after column chromatography (Hexane:Et₂O 100:0 to 80:20). ¹H NMR (400 MHz, CDCl₃) δ 4.52 (d, *J* = 5.9 Hz, 2H), 4.38 (d, *J* = 5.9 Hz, 2H), 4.15 (s, 2H), 3.69 - 3.56 (m, 1H), 2.40 (ddd, *J* = 15.4, 10.0, 5.1 Hz, 1H), 2.27 (ddd, *J* = 15.4, 9.4, 6.6 Hz, 1H), 2.00 - 1.92 (m, 1H), 1.90 - 0.95 (m, 29H), 0.98 - 0.88 (m, 6H), 0.63 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.55 (C), 79.76 (CH₂), 71.99 (CH), 68.64 (CH₂), 56.60 (CH), 56.03 (CH), 42.86 (CH₂), 42.19 (CH), 40.52 (CH), 40.28 (C), 39.19(C), 36.55 (C), 35.95 (CH), 35.48 (CH), 35.45 (CH₂), 34.69 (CH₂), 31.28 (CH₂), 31.12 (CH₂), 30.66 (CH₂), 28.34, (CH₂) 27.31 (CH₂), 26.54 (CH₂), 24.33 (CH₂), 23.51 (CH₃), 21.38 (CH₃), 20.94 (CH₂), 18.37 (CH₃), 12.18 (CH₃). IR (KBr), υ/cm^{-1} 3412, 2934, 2866, 1738, 1450, 1377, 1247, 1163, 1034, 982, 736. HRMS [M+H]⁺ m/z calcd. for [C₂₉H₄₉O₄]⁺ 461.1631, found 461.3625.

(3-methyloxetan-3-yl)methyl 6-(1-((5-(trifluoromethyl)pyridin-2-yl)oxy)cyclopropanoate (1s)

The general protocol was followed with 6-(1-((5-(trifluoromethyl)pyridin-2-yl)oxy)cyclopropanoic acid (241 mg, 1.02 mmol) was added into mixture of 3-Methyl-3-oxetanemethanol (114 mg, 1.12 mmol), EDC (233 mg, 1.22 mmol), DMAP (12.4 mg, 0.102 mmol) in CH₂Cl₂ (5 mL, 0.2 M). A white solid (288 mg, 0.869 mmol, 89%) was obtained after column chromatography (CH₂Cl₂:MeOH 100:0 to 90:10). ¹H NMR (600 MHz, CDCl₃) δ 8.45 - 8.41 (m, 1H), 7.81 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.88 (app d, *J* = 8.7 Hz, 1H), 4.31 (d, *J* = 6.0 Hz, 2H), 4.22 (d, *J* = 6.0 Hz, 2H), 4.18 (s, 2H), 1.71 - 1.64 (m, 2H), 1.36 - 1.29 (m, 2H), 1.14 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.58 (C), 165.22 (C), 144.93 (q, *J*_{C-F} = 43.7 Hz, CH), 136.17 (q, *J*_{C-F} = 31.3 Hz, CH), 123.89 (q, *J*_{C-F} = 269.7 Hz, C), 121.24 (q, *J*_{C-F} = 33.0 Hz, C), 111.22 (CH), 79.33 (CH₂), 69.39 (CH₂), 57.97 (CH₂), 39.21 (C), 20.93(CH₃), 16.77 (CH₂). IR (KBr), υ/cm^{-1} 3021, 2965, 2875, 1738, 1613, 1580, 1493, 1396, 1330, 1289, 1159, 1127, 1079, 984, 837. HRMS [M+H]⁺ m/z calcd. for [C₁₅H₁₇O₄NF₃]⁺ 332.1110, found 332.1102.

(S)-(3-methyloxetan-3-yl)methyl 2-((tert-butoxycarbonyl)amino)-3-(pyridin-4-yl)propanoate (1r)

The general protocol was followed with (S)-2-((tert-butoxycarbonyl)amino)-3-(pyridin-4-yl)propanoic acid (236 mg, 0.899 mmol) was added into mixture of 3-Methyl-3-oxetanemethanol (101 mg, 0.989 mmol), EDC (207 mg, 1.08 mmol), DMAP (11.0 mg, 0.0899 mmol) in CH₂Cl₂ (6.5 mL, 0.2 M). A white solid (267 mg, 0.761 mmol, 86%) was obtained after column chromatography (CH₂Cl₂:MeOH 100:0 to 95:5). ¹H NMR (400 MHz, CDCl₃) δ 8.55 (app d, *J* = 6.1 Hz, 2H), 7.12 (app d, *J* = 6.1 Hz, 2H), 5.11 (d, *J* = 8.2 Hz, 1H), 4.74 - 4.50 (m, 1H), 4.42 (dd, *J* = 6.1, 2.5 Hz, 2H), 4.38 (dd, *J* = 6.1, 3.6 Hz, 2H), 4.26 (d, *J* = 11.1 Hz, 1H), 4.18 (d, *J* = 11.1 Hz, 1H), 3.16 (dd, *J* = 13.9, 6.2 Hz, 1H), 3.06 (dd, *J* = 13.9, 6.8 Hz, 1H), 1.43 (s, 9H), 1.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.70 (C), 155.06 (C), 150.04 (CH), 145.32 (C), 124.61 (CH), 80.49 (C), 79.44 (CH₂), 69.99 (CH₂), 53.84 (CH), 39.07 (CH₂), 38.02 (C), 28.36 (CH₃), 21.07 (CH₃). IR (KBr), υ/cm^{-1} 3194, 2972, 2874, 1745, 1710, 1604, 1539, 1366, 1274, 1250, 1216, 1168, 980. HRMS [M+H]⁺ m/z calcd. for [C₁₈H₂₇O₅N₂]⁺ 351.1920, found 351.1912.

(3-methyloxetan-3-yl)methyl 2-(1-phenyl-5-(trifluoromethyl)-1H-pyrazol-4-yl)acetate (1u)

The general protocol was followed with (1-phenyl-5-trifluoromethyl-1H-pyrazol-4-yl)-acetic acid (250 mg, 0.927 mmol) was added into mixture of 3-Methyl-3-oxetanemethanol (104 mg, 1.02 mmol), EDC (213 mg, 1.11 mmol), DMAP (11.3 mg, 0.0927 mmol) in CH₂Cl₂ (4.6 mL, 0.2 M). A colorless oil (285 mg, 0.805 mmol, 87%) was obtained after column chromatography (CH₂Cl₂:MeOH 100:0 to

90:10). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.54 – 7.36 (m, 5H), 4.50 (d, *J* = 6.0 Hz, 2H), 4.39 (d, *J* = 6.0 Hz, 2H), 4.25 (s, 2H), 3.76 (s, 2H), 1.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.39 (C), 141.19 (CH), 139.48 (C), 129.95 (q, *J*_{C-F} = 37.6 Hz, C), 129.37 (CH), 129.15 (CH), 126.08 (CH), 120.31 (q, *J*_{C-F} = 268.2 Hz, C), 116.33 (C), 79.56 (CH₂), 69.58 (CH₂), 39.18 (C), 29.98 (CH₂), 21.18 (CH₃). IR (KBr), υ/cm^{-1} 3066, 2965, 2876, 1743, 1598, 1504, 1473, 1399, 1311, 1247, 1183, 1092, 1058, 975, 769, 695. HRMS [M+H]⁺ m/z calcd. for [C₁₇H₁₈O₃N₂F₃]⁺ 355.1270, found 355.1265.

(2S,3S)-1-tert-butyl 2-((3-methyloxetan-3-yl)methyl) 3-(pyridin-4-ylmethyl)pyrrolidine-1,2-dicarboxylate (1v)

The general protocol was followed with $(2S,3S)-1-[(2-methylpropan-2-yl)oxycarbonyl]-3-(pyridin-4-ylmethyl)pyrrolidine-2-carboxylic acid (248 mg, 0.81 mmol) was added into mixture of 3-Methyl-3-oxetanemethanol (91 mg, 0.89 mmol), EDC (186 mg, 0.97 mmol), DMAP (10 mg, 0.081 mmol) in CH₂Cl₂ (4 mL, 0.2 M). A colorless oil (276 mg, 0.70 mmol, 87%) was obtained after column chromatography (CH₂Cl₂:MeOH 100:0 to 95:5). Two rotmers: ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 8.54 (app dd, *J* = 6.0, 1.5 Hz, 4H), 8.52 (app dd, *J* = 6.0, 1.5 Hz, 4H), 7.13 (app dd, *J* = 6.0, 1.5 Hz, 2H), 7.11 (app dd, *J* = 6.0, 1.5 Hz, 2H), 4.54 – 4.44 (m, 4H), 4.40 (d, *J* = 6.0 Hz, 2H), 4.37 (d, *J* = 6.0 Hz, 2H), 4.26 (d, *J* = 11.2 Hz, 1H), 4.21 (s, 1H), 4.21 (s, 1H), 4.15 (d, *J* = 11.1 Hz, 1H), 4.08 (d, *J* = 5.0 Hz, 1H), 3.98 (d, *J* = 5.1 Hz, 1H), 3.68 – 3.41 (m, 4H), 2.98 - 2.92 (m, 2H), 2.69 - 2.55 (m, 4H), 2.02 - 1.93 (m, 2H), 1.68 - 1.58 (m, 2H), 1.45 (s, 9H), 1.41 (s, 9H), 1.32 (s, 3H), 1.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.69 (C), 172.47 (C), 154.41 (C), 153.79 (C), 150.14 (CH), 150.08 (CH), 148.08 (C), 148.01 (C), 124.42 (CH), 124.33 (CH), 80.49 (C), 80.30 (C), 79.53 (CH₂), 79.51 (CH₂), 79.43 (CH₂), 79.40 (CH₂), 69.25 (CH₂), 69.05 (CH₂), 64.15 (CH), 63.82 (CH), 45.66 (CH₂), 45.40 (CH₂), 45.19 (CH), 44.11 (CH), 39.34 (C), 39.31 (C), 38.60 (CH₂), 38.57 (CH₂), 29.91 (CH₂), 29.22 (CH₂), 28.54 (CH₃), 28.47 (CH₃), 21.27 (CH₃), 21.25 (CH₃). IR (KBr), ν/cm^{-1} 3069, 2971, 2935, 2873, 1793, 1750, 1699, 1602, 1456, 1385, 1255, 1166, 1126, 982. HRMS [M+H]⁺ m/z calcd. for [C₂₁H₃₁₀₅N₂]⁺ 391.2233, found 391.2224.

5,5-difluoro-7,9-dimethyl-3-(3-((3-methyloxetan-3-yl)methoxy)-3-oxopropyl)-5*H*-dipyrrolo[1,2-*c*:2',1'-*f*][1,3,2]diazaborinin-4-ium-5-uide (1w)

The general protocol was followed with BODIPY-FL propionic acid (69 mg, 0.24 mmol) was added into mixture of 3-Methyl-3oxetanemethanol (29 mg, 0.28 mmol), EDC (55 mg, 0.28 mmol), DMAP (3.0 mg, 0.024 mmol) in CH₂Cl₂ (4.8 mL, 0.05 M). An orange solid (90 mg, 0.24 mmol, 100%) was obtained after column chromatography (CH₂Cl₂:MeOH 100:0 to 99:1). ¹H NMR (600 MHz, CDCl₃) δ 7.08 (s, 1H), 6.88 (d, *J* = 4.0 Hz, 1H), 6.27 (d, *J* = 4.0 Hz, 1H), 6.12 (s, 1H), 4.48 (d, *J* = 6.0 Hz, 2H), 4.35 (d, *J* = 6.0 Hz, 2H), 4.20 (s, 2H), 3.31 (app t, *J* = 7.5 Hz, 2H), 2.82 (app t, *J* = 7.5 Hz, 2H), 2.56 (s, 3H), 2.25 (s, 3H), 1.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.69 (C), 160.70 (C), 156.78 (C), 144.11 (C), 135.36 (C), 133.33 (C), 128.06 (CH), 123.96 (CH), 120.61 (CH), 116.55 (CH), 79.72 (CH₂), 69.05 (CH₂), 39.12 (C), 33.34 (CH₂), 23.99 (CH₂), 21.24 (CH₃), 15.08 (CH₃), 11.43 (CH₃). IR (KBr), v/cm⁻¹ 3107, 3063, 2962, 2934, 2873, 1734, 1607, 1529, 1489, 1251, 1173, 1135, 1085, 974, 668. HRMS [M+H]⁺ m/z calcd. for [C₁₉H₂₄O₃N₂F₂B]⁺ 377.1848, found 377.1831.

(3-methyloxetan-3-yl)methyl benzoate (1x)

The general protocol was followed with benzoic acid (1730 mg, 14.17 mmol) was added into mixture of 3-Methyl-3-oxetanemethanol (1560 μ L, 15.59 mmol), EDC (3281 mg, 17.11 mmol), DMAP (171.1 mg, 1.417 mmol) in CH₂Cl₂ (28 mL, 0.5 M). A colorless oil (2804 mg, 13.57 mmol, 96%) was obtained after column chromatography (Hexane:EA 10:0 to 8:2). ¹H NMR (400 MHz, CDCl₃) δ 8.33 – 7.98 (m, 2H), 7.81 – 7.52 (m, 1H), 7.53 – 7.26 (m, 2H), 4.65 (d, *J* = 6.0 Hz, 2H), 4.46 (d, *J* = 6.0 Hz, 2H), 4.39 (s, 2H), 1.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.59 (C), 133.25 (CH), 129.93 (C), 129.69 (CH), 128.54 (CH), 79.68 (CH₂), 69.06 (CH₂), 39.35 (C), 21.36 (CH₃). IR (KBr), υ/cm^{-1} 3064, 3035, 2963, 2872, 1718, 1602, 1452, 1315, 1282, 1113, 983, 712. HRMS [M+H]⁺ m/z calcd. for [C₁₁H₁₄O₃N]⁺ 207.1021, found 207.1014.

(3-methyloxetan-3-yl)methyl 2-fluoro benzoate (1y)

The general protocol was followed with 2-fluorobenzoic acid (1242 mg, 8.87 mmol) was added into mixture of 3-Methyl-3-oxetanemethanol (823 mg, 8.06 mmol), EDC (1854 mg, 9.67 mmol), DMAP (105 mg, 0.806 mmol) in CH₂Cl₂ (17 mL, 0.5 M). A colorless oil (1889 mg, 8.43 mmol, 95%) was obtained after column chromatography (Hexane:EA 10:0 to 9:1). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (td, *J* = 7.5, 1.9 Hz, 1H), 7.52 (m, 1H), 7.21 (td, *J* = 7.6, 1.1 Hz, 1H), 7.13 (m, 1H), 4.61 (d, *J* = 6.0 Hz, 2H), 4.44 (d, *J* = 6.0 Hz, 2H), 4.41 (s, 2H), 1.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.60 (d, *J*_{C-F} = 3.9 Hz, C), 162.10 (d, *J*_{C-F} = 258.7 Hz, C), 134.82 (d, *J*_{C-F} = 9.0 Hz, CH), 132.24 (CH), 124.14 (d, *J*_{C-F} = 3.9 Hz, CH), 118.50 (d, *J*_{C-F} = 10.2 Hz, C), 117.16 (d, *J*_{C-F} = 22.2 Hz, CH), 79.67 (CH₂), 69.58 (CH₂), 39.30 (C), 21.32 (CH₃). HRMS [M+H]⁺ m/z calcd. for [C₁₂H₁₄O₃F]⁺ 225.0927, found 225.0918.

General protocol A for the one-pot synthesis of tetrazine thioethers (R=alkyl)

	one pot	
	BF ₃ ·OEt ₂ , CH ₂ Cl ₂	N ^{_N} SMe
	then pyridine, DMF, 80 °C	
Me´ 🗸	2 (1.0 equiv)	RN
	then PIDA, r.t.	3

A dry round-bottom flask was charged with the oxetane ester **1** (1.0 equiv.) and a magnetic stirbar. The flask was outfitted with a septum-fitted gas inlet adapter, evacuated and refilled with nitrogen. Anhydrous CH_2CI_2 (to 1.0 M in oxetane ester) was added via syringe and the resulting solution was cooled by an ice/brine bath (-12 °C) and boron trifluoride etherate (0.50–1.5 equiv.) was added via syringe. The resulting mixture was allowed to stir under nitrogen with continued cooling by the cold bath (maintained between – 12 °C to -4 °C) for 3–6 h. The reactions were monitored by TLC of aliquots that were quenched with trimethylamine before spotting the TLC plate. When the oxetane was completely consumed, the reaction mixture was quenched with pyridine (2.0–3.0 equiv.), and then **2** (0.70–0.80 equiv.) and DMF (to 1.0 M in **2**) were added. The mixture was stirred vigorously and vacuum was carefully applied to remove CH_2CI_2 . The resulting mixture was then heated by an oil bath at 80 °C and the mixture was allowed to stir under nitrogen at 80 °C for 20-30 min. After cooling to r.t., PIDA (0.70–0.80 equiv.) was added to the flask and the mixture allowed to stir at r.t. for 30 min. The mixture was diluted with CH_2CI_2 and sequentially washed with saturated sodium bicarbonate, water and brine, dried over sodium sulfate and concentrated by rotary evaporation. The residue was purified by flash column chromatography on silica gel.

General protocol B for the one-pot synthesis of tetrazine thioethers (R = aryl)

A dry round-bottom flask was charged with the oxetane ester (1.0 equiv.) and a magnetic stirbar. The flask was outfitted with a septum-fitted gas inlet adapter, evacuated and refilled with nitrogen. Anhydrous CH_2CI_2 (to 1.0 M in oxetane ester) was added via syringe and the resulting solution was cooled by an ice/brine bath (-5 °C) and boron trifluoride etherate (0.50–1.5 equiv.) was added via syringe. The resulting mixture was allowed to stir under nitrogen with continued cooling by the cold bath (maintained between – 5 °C to -0 °C) for 3–6 h. The reactions were monitored by TLC of aliquots that were quenched with trimethylamine before spotting the TLC plate. When the oxetane was completely consumed, the reaction mixture was quenched with pyridine (2.0–3.0 equiv.), and then **2** (0.70 equiv.) and DMF (to 1.0 M in **2**) were added. The mixture was stirred vigorously and vacuum was carefully applied to remove CH_2CI_2 . The resulting mixture was then heated by an oil bath at 80 °C and the mixture was allowed to stir under nitrogen at 80 °C for 1–2 h. After cooling to r.t., PIDA (0.70 equiv.) was added to the flask and the mixture allowed to stir at r.t. for 1 h. The mixture was diluted with CH_2CI_2 and sequentially washed with saturated sodium bicarbonate, water and brine, dried over sodium sulfate and concentrated by rotary evaporation. The residue was purified by flash column chromatography on silica gel.

General protocol C for the one-pot synthesis of tetrazine thioethers (R = 4-pyridyl or 3methoxypyrid-2-yl)

A dry round-bottom flask was charged with the oxetane ester (1.0 equiv.) and a magnetic stirbar. The flask was outfitted with a septum-fitted gas inlet adapter, evacuated and refilled with nitrogen. Anhydrous CH_2CI_2 (to 1.0 M in oxetane ester) was added via syringe and the resulting solution was cooled by an ice/brine bath (-0 °C) and boron trifluoride etherate (1.2 equiv.) was added via syringe. The resulting mixture was allowed to stir under nitrogen with continued cooling by the cold bath for 2 h, followed by stirring for 12 h at r.t. The reactions were monitored by TLC of aliquots that were quenched with trimethylamine before spotting the TLC plate. When the oxetane was completely consumed, the reaction mixture was quenched with pyridine (3.0 equiv.), and then **2** (0.70 equiv.) and DMF (to 1.0 M in **2**) were added. The mixture was stirred vigorously and vacuum was carefully applied to remove CH_2CI_2 . The resulting mixture was then heated by an oil bath at 80 °C and the mixture was allowed to stir for 2 h. After cooling to r.t., PIDA (0.70 equiv.) was added to the flask and the mixture allowed to stir at r.t. for 2 h. The mixture was diluted with CH_2CI_2 and sequentially washed with saturated sodium bicarbonate, water and brine, dried over sodium sulfate and concentrated by rotary evaporation. The residue was purified by flash column chromatography on silica gel.

3-((benzyloxy)methyl)-6-(methylthio)-1,2,4,5-tetrazine (3a)

0 ∬

1

General protocol A was followed using BF₃•OEt₂ (222 μ L, 1.81 mmol), **1a** (905 mg, 3.62 mmol), CH₂Cl₂ (3.6 mL) for 4 h at -12 °C to - 4 °C; Pyridine (580 μ L, 7.24 mmol), **2** (714 mg, 2.90 mmol) and DMF (2.9 mL) for 20 min at 80 °C; and PIDA (930 mg, 2.91 mmol) at r.t. for 30 min. A red oil (336 mg, 1.35 mmol, 70%) was obtained after chromatography (hexane:acetone 100:0 to 98:2). ¹H NMR (400 MHz, CDCl₃) δ 7.47 - 7.27 (m, 5H), 5.05 (s, 2H), 4.77 (s, 2H), 2.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.87 (C), 164.33 (C), 137.15 (C), 128.69 (CH), 128.23 (CH), 128.21 (CH), 73.78 (CH₂), 69.63 (CH₂), 13.54 (CH₃). IR (KBr), υ/cm^{-1} 3063, 3030, 2930, 2863, 1454, 1327, 1305, 1163, 1098, 893, 740, 699. HRMS [M+H]⁺ m/z calcd. for [C₁₁H₁₃ON₄S]⁺ 249.0810, found 249.0802

tert-butyl (4-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)phenyl)carbamate (3b)

General protocol B was followed using BF₃•OEt₂ (85.2 μ L, 0.692 mmol), **1b** (442 mg, 1.38 mmol), CH₂Cl₂ (1.38 mL) for 4 h at –2 °C to –0 °C; Pyridine (222 μ L, 2.77 mmol), **2** (240 mg, 0.969 mmol) and DMF (0.82 mL) for 2 h at 80 °C; and PIDA (267 mg, 0.969 mmol) at r.t. for 1 h. A red solid (245 mg, 0.767 mmol, 56%) was obtained after purified by chromatography (Hexane:Et₂O 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (app d, *J* = 8.8 Hz, 2H), 7.58 (app d, *J* = 8.6 Hz, 2H), 6.71 (s, 1H), 2.78 (s, 3H), 1.55 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.73 (C), 162.02 (C), 152.34 (C), 142.41 (C), 128.74 (CH), 125.92 (C), 118.51 (CH), 81.45 (C), 28.43 (CH₃), 13.59 (CH₃). IR (KBr), υ /cm⁻¹ 3368, 3100, 3007, 2980, 2964, 2928, 1708, 1592, 1526, 1510, 1361, 1312, 1244, 1171, 1053, 853. HRMS [M+H]⁺ m/z calcd. for [C₁₄H₁₈O₂N₅S]⁺ 320.1181, found 320.1167.

tert-butyl 4-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)benzylcarbamate (3c)

General protocol B was followed using BF₃•OEt₂ (165 μ L, 1.33 mmol), **1c** (892 mg, 2.66 mmol), CH₂Cl₂ (2.7 mL) for 4 h at –5 °C to – 0 °C; Pyridine (430 μ L, 5.32 mmol), **2** (462 mg, 1.86 mmol) and DMF (2.2 mL) for 1.5 h at 80 °C; and PIDA (599 mg, 1.86 mmol) at r.t. for 1 h. A red solid (403 mg, 1.21 mmol, 65%) was obtained after purified by chromatography (CH₂Cl₂:acetone 100:0 to 97:3). ¹H NMR (600 MHz, CDCl₃) δ 8.49 (app d, *J* = 8.4 Hz, 2H), 7.49 (app d, *J* = 8.4 Hz, 2H), 4.95 (s, 1H), 4.43 (d, *J* = 6.1 Hz, 2H), 2.79 (s, 3H), 1.48 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 175.36 (C), 162.23 (C), 156.05 (C), 143.78 (C), 130.72 (C), 128.22 (CH), 127.89 (CH), 79.97 (C), 44.52 (CH₂), 28.54 (CH₃), 13.59 (CH₃). IR (KBr), ν/cm^{-1} 3352, 3021, 2974, 2930, 1684, 1512, 1355, 1249, 1195, 1166, 1051, 894. HRMS [M+H]⁺ m/z calcd. for [C₁₅H₂₀O₂N₅S]⁺ 334.1338, found 334.1323.

3-(methylthio)-6-(4-nitrophenyl)-1,2,4,5-tetrazine (3d)

General protocol B was followed using BF₃•OEt₂ (54 μ L, 0.54 mmol), **1d** (271 mg, 1.1 mmol), CH₂Cl₂ (1.1 mL) for 6 h at 0 °C; Pyridine (174 μ L, 1.1 mmol), **2** (187 mg, 0.76 mmol) and DMF (0.76 mL) for 2 h at 80 °C; and PIDA (254 mg, 0.76 mmol) at r.t. for 1 h. A red solid (126 mg, 0.51 mmol, 67%) was obtained after purified by chromatography (Hexane:CH₂Cl₂7:3 to 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.73 (app d, *J* = 9.0 Hz, 2H), 8.43 (app d, *J* = 9.0 Hz, 2H), 2.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.67 (C), 160.99 (C), 150.26 (C), 137.52 (C), 128.44 (CH), 124.54 (CH), 13.71 (CH₃). IR (KBr), υ/cm^{-1} 3079, 2926, 1604, 1516, 1342, 1193, 871. HRMS [M+H]⁺ m/z calcd. for [C₉H₈O₂N₅S]⁺ 250.0399, found 250.0389.

3-(4-methoxyphenyl)-6-(methylthio)-1,2,4,5-tetrazine (3e)

General protocol B was followed using BF₃•OEt₂ (79 μ L, 0.64 mmol), **1e** (302 mg, 1.3 mmol), CH₂Cl₂ (1.3 mL) for 4 h at –5 °C to – 0 °C; Pyridine (207 μ L, 2.6 mmol), **2** (222 mg, 0.89 mmol) and DMF (0.9 mL) for 2 h at 80 °C; and PIDA (289 mg, 0.89 mmol) at r.t. for 1 h. A red solid (143 mg, 0.62 mmol, 69%) was obtained after purified by chromatography (Hexane:EA 10:0 to 9:1). ¹H NMR (400 MHz, CDCl₃) δ 8.48 (app d, *J* = 9.0 Hz, 2H), 7.07 (app d, *J* = 9.0 Hz, 2H), 3.91 (s, 3H), 2.78 (s,3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.50 (C), 163.20 (C), 162.19 (C), 129.42 (CH), 124.08 (C), 114.83 (CH), 55.65 (CH₃), 13.57 (CH₃). IR (KBr), ν/cm^{-1} 3003, 2936, 2838, 1603, 1513, 1424, 1353, 1252, 1192, 1037, 846. HRMS [M+H]⁺ m/z calcd. for [C₁₀H₁₁ON₄S]⁺ 235.0654, found 230.0645.

3-(4-bromophenyl)-6-(methylthio)-1,2,4,5-tetrazine (3f)

General protocol B was followed using BF₃•OEt₂ (67 μ L, 0.54 mmol), **1f** (305 mg, 1.1 mmol), CH₂Cl₂ (1.1 mL) for 4 h at –2 °C to – 0 °C; Pyridine (173 μ L, 1.1 mmol), **2** (186 mg, 0.75 mmol) and DMF (0.75 mL) for 2 h at 80 °C; and PIDA (242 mg, 0.75 mmol) at r.t. for 1 h. A red solid (115 mg, 0.41 mmol, 54%) was obtained after purified by chromatography (Hexane:EA 100:0 to 95:5). ¹H NMR (400 MHz, CDCl₃) δ 8.40 (app d, *J* = 8.6 Hz, 2H), 7.72 (app d, *J* = 8.6 Hz, 2H), 2.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.72 (C), 161.87 (C), 132.73 (CH), 130.67 (C), 129.01 (CH), 127.51 (C), 13.63 (CH₃). IR (KBr), $\nu/cm^{-1}3093$, 2924, 1585, 1355, 1194, 1004, 800. HRMS [M+H]⁺ m/z calcd. for [C₉H₈N₄SBr]⁺ 282.9653, found 282.9643.

methyl 4-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)benzoate (3g)

General protocol B was followed using BF₃•OEt₂ (116 μ L, 0.938 mmol), **1g** (248 mg, 0.938 mmol), CH₂Cl₂ (0.94 mL) for 4 h at 0 °C; Pyridine (190 μ L, 2.36 mmol), **2** (165 mg, 0.657 mmol) and DMF (0.66 mL) for 2 h at 80 °C; and PIDA (213 mg, 0.657 mmol) at r.t. for 1 h. A red solid (135 mg, 0.514 mmol, 79%) was obtained after purified by chromatography (Hexane: CH₂Cl₂1:1 to 3:7). ¹H NMR (600 MHz, CDCl₃) δ 8.61 (app d, *J* = 8.5 Hz, 2H), 8.24 (app d, *J* = 8.5 Hz, 2H), 3.98 (s, 3H), 2.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.04 (C), 166.52 (C), 161.82 (C), 135.72 (C), 133.43 (C), 130.51 (CH), 127.50 (CH), 52.63 (CH₃), 13.65 (CH₃). IR (KBr), ν/cm^{-1} 3060, 2994, 2945, 1713, 1355, 1276, 1190, 1111, 768. HRMS [M+H]^{*} m/z calcd. for [C₁₁H₁₁O₂N₄S]^{*} 263.0603, found 263.0593

4-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)benzonitrile (3h)

General protocol B was followed using BF₃•OEt₂ (162 μ L, 1.31 mmol), **1h** (300 mg, 1.31 mmol), CH₂Cl₂ (1.3 mL) for 6 h at 0 °C; Pyridine (212 μ L, 2.63 mmol), **2** (227 mg, 0.917 mmol) and DMF (0.9 mL) for 2 h at 80 °C; and PIDA (296 mg, 0.917 mmol) at r.t. for 1 h. A red solid (140 mg, 0.611 mmol, 67%) was obtained after purified by chromatography (Hexane:EA 9:1 to 8:2). ¹H NMR (600 MHz, CDCl₃) δ 8.61 (app d, *J* = 8.5 Hz, 2H), 8.24 (app d, *J* = 8.5 Hz, 2H), 3.98 (s, 3H), 2.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.53 (C), 161.17 (C), 135.87 (C), 133.12 (CH), 127.94 (CH), 118.32 (C), 115.78 (C), 13.69 (CH₃). IR (KBr), υ/cm^{-1} 3096, 2923, 2852, 2227, 1653, 1394, 853. HRMS [M+H]⁺ m/z calcd. for [C₁₀H₈N₅S]⁺ 230.0500, found 230.0493

3-(6-methoxypyridin-2-yl)-6-(methylthio)-1,2,4,5-tetrazine (3i)

General protocol B was followed using BF₃•OEt₂ (190 μ L, 1.54 mmol), **1i** (305 mg, 1.29 mmol), CH₂Cl₂ (1.3 mL) for 2 h at 0 °C followed by 12 h at r.t.; Pyridine (310 μ L, 3.84 mmol), **2** (223 mg, 0.903 mmol) and DMF (0.9 mL) for 2 h at 80 °C; and PIDA (290 mg, 0.903 mmol) at r.t. for 2 h. A red solid (128mg, 61%) was obtained after purified by chromatography (Hexane:CH₂Cl₂ 1:1 to 3:7). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, *J* = 7.4, 0.8 Hz, 1H), 7.80 (dd, *J* = 8.3, 7.4 Hz, 1H), 6.98 (dd, *J* = 8.3, 0.8 Hz, 1H), 4.10 (s, 3H), 2.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.05 (C), 164.74 (C), 162.04 (C), 147.69 (C), 139.58 (CH), 117.10 (CH), 114.52 (CH),

53.94 (CH₃), 13.63 (CH₃). IR (KBr), υ/cm^{-1} 3016, 2922, 2852, 1632, 1473, 1352, 1295, 1212, 1189. HRMS [M+H]⁺ m/z calcd. for $[C_9H_{10}ON_5S]^+$ 236.0606, found 236.0597

3-(methylthio)-6-(pyridin-4-yl)-1,2,4,5-tetrazine (3j)

General protocol B was followed using BF₃•OEt₂ (100 μ L, 0.810 mmol), **1j** (140 mg, 0.675 mmol), CH₂Cl₂ (0.68 mL) for 2 h at 0 °C followed by 12 h at r.t.; Pyridine (164 μ L, 2.03 mmol), **2** (118 mg, 0.473 mmol) and DMF (0.47 mL) for 2 h at 80 °C; and PIDA (152 mg, 0.473 mmol) at r.t. for 2 h. A red solid (50.5 mg, 0.246 mmol, 51%) was obtained after purified by chromatography (Hexane:Acetone 100:0 to 9:1). ¹H NMR (400 MHz, CDCl₃) δ 8.88 (app d, *J* = 6.2 Hz, 2H), 8.37 (app d, *J* = 6.2 Hz, 2H), 2.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.10 (C), 161.09 (C), 151.13 (CH), 139.26 (C), 120.92 (CH), 13.69 (CH₃). IR (KBr), υ/cm^{-1} 3085, 2923, 1594, 1560, 1355, 1194, 905. HRMS [M+H]⁺ m/z calcd. for [C₈H₈N₅S]⁺ 206.0500, found 206.0492

methyl 3-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)propanoate (3k)

General protocol A was followed using BF₃•OEt₂ (147 μ L, 1.19 mmol), **1k** (515 mg, 2.38 mmol), CH₂Cl₂ (1.4 mL) for 4 h at -12 °C to - 4 °C; Pyridine (384 μ L, 4.76 mmol), **2** (473 mg, 1.90 mmol) and DMF (1.9 mL) for 20 min at 80 °C; and PIDA (611 mg, 1.90 mmol) at r.t. for 30 min. A red solid (277 mg, 1.29 mmol, 68%) was obtained after purified by chromatography (Hexane:EA 100:0 to 85:15). ¹H NMR (600 MHz, CDCl₃) δ 3.70 (s, 3H), 3.59 (app t, *J* = 7.1 Hz, 2H), 3.03 (app t, *J* = 7.1 Hz, 2H), 2.73 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.85 (C), 172.58 (C), 166.37 (C), 52.15 (CH₃), 30.77 (CH₂), 29.39, (CH₂) 13.51 (CH₃). IR (KBr), υ /cm⁻¹ 2953, 2932, 2849, 1737, 1437, 1338, 1292, 1199, 1163. HRMS [M+H]⁺ m/z calcd. for [C₇H₁₁O₂N₄S]⁺ 215.0603, found 215.0596

tert-butyl 3-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)propanoate (3I)

General protocol A was followed using BF₃•OEt₂ (466 μ L, 3.78 mmol), **1** (1950 mg, 7.55 mmol), CH₂Cl₂ (7.6 mL) for 6 h at -12 °C to -4 °C; Pyridine (1.22 mL, 15.1 mmol), **2** (1.50 g, 6.04 mmol) and DMF (6.0 mL) for 20 min at 80 °C; and PIDA (1.95 mg, 6.04 mmol) at r.t. for 30 min. A red solid (896 mg, 3.50 mmol, 60%) was obtained after purified by chromatography (Hexane:EA 10:0 to 9:1). ¹H NMR (400 MHz, CDCl₃) δ 3.53 (app t, *J* = 7.1 Hz, 2H), 2.93 (app t, *J* = 7.1 Hz, 2H), 2.73 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 175.69 (C), 171.31 (C), 166.76 (C), 81.22 (C), 32.39 (CH₂), 29.68 (CH₂), 28.17 (CH₃), 13.51 (CH₃). IR (KBr), ν /cm⁻¹ 2953, 2931, 1734, 1636, 1436, 1198, 1160. HRMS [M+H]⁺ m/z calcd. for [C₁₀H₁₇O₂N₄S]⁺ 257.1072, found 257.1061

methyl 2-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)acetate (3m)

General protocol A was followed using BF₃•OEt₂ (670 μ L, 5.44 mmol), **1m** (2200 mg, 10.9 mmol), CH₂Cl₂ (10 mL) for 4 h at -12 °C to -4 °C; Pyridine (1760 μ L, 21.8 mmol), **2** (2159 mg, 8.71 mmol) and DMF (8.7 mL) for 20 min at 80 °C; and PIDA (2800 mg, 8.71 mmol) at r.t. for 30 min. A red oil (1041 mg, 5.20 mmol, 60%) was obtained after purified by chromatography (Hexane:CH₂Cl₂ 8.2 to 6:4). ¹H NMR (400 MHz, CDCl₃) δ 4.32 (s, 2H), 3.77 (s, 3H), 2.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.43 (C), 168.68 (C), 162.36 (C), 52.95 (CH₃), 40.38 (CH₂), 13.55 (CH₃). IR (KBr), υ /cm⁻¹ 2954, 2847, 1743, 1436, 1358, 1257, 1206, 1069. HRMS [M+H]⁺ m/z calcd. for [C₆H₉O₂N₄S]⁺ 201.0446, found 201.0440

tert-butyl ((6-(methylthio)-1,2,4,5-tetrazin-3-yl)methyl)carbamate (3n)

General protocol A was followed using BF₃•OEt₂ (264 μ L, 2.14 mmol), **1n** (1100 mg, 4.28 mmol), CH₂Cl₂ (4.3 mL) for 4 h at -12 °C to -4 °C; Pyridine (690 μ L, 8.56 mmol), **2** (850 mg, 3.42 mmol) and DMF (3.4 mL) for 20 min at 80 °C; and PIDA (1101 mg, 3.42 mmol) at r.t. for 30 min. A red solid (602 mg, 2.34 mmol, 69%) was obtained after purified by chromatography (Hexane:EA 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 5.56 (s, 1H), 4.88 (d, *J* = 6.0 Hz, 2H), 2.72 (s, 3H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.67 (C), 164.44 (C), 155.86 (C), 80.43 (C), 43.18 (CH₂), 28.40 (CH₃), 13.50 (CH₃). IR (KBr), υ/cm^{-1} 3356, 2978, 2833, 1704, 1517, 1367, 1280, 1170.HRMS [M+H]⁺ m/z calcd. for [C₉H₁₅O₂N₅S]⁺ 258.1025, found 258.1013

(S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-3-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)propanoate (3o)

General protocol A was followed using BF₃•OEt₂ (86 μ L, 0.68 mmol), **1o** (510 mg, 1.4 mmol), CH₂Cl₂ (1.4 mL) for 4 h at -12 °C to - 4 °C; Pyridine (220 μ L, 2.74 mmol), **2** (238 mg, 0.96 mmol) and DMF (0.9 mL) for 20 min at 80 °C; and PIDA (307 mg, 0.96 mmol) at r.t. for 30 min. A red oil (475 mg, 1.3 mmol, 64%) was obtained after purified by chromatography (Hexane:Et₂O 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 5.42 (d, *J* = 7.9 Hz, 1H), 4.72- 4.67 (m, 1H), 3.74 (dd, *J* = 14.6, 5.2 Hz, 1H), 3.62 (dd, *J* = 14.6, 7.0 Hz, 1H), 2.71 (s, 3H), 1.41 (s, 9H), 1.37 (s, 9H), peak at 5.09, 4.60ppm due to minor rotamer. ¹³C NMR (101 MHz, CDCl₃) δ 175.92 (C), 169.79 (C), 164.70 (C), 155.17 (C), 83.06 (C), 80.16 (C), 52.85 (CH), 37.75 (CH₂), 28.34 (CH₃), 28.00 (CH₃), 13.45 (CH₃). IR (KBr), ν/cm^{-1} 3344, 2979, 2933, 1737, 1713, 1502, 1367, 1154. HRMS [M+H]⁺ m/z calcd. for [C₁₅H₂₆O₄N₅S]⁺ 372.1706, found 372.1691

(S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-4-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)butanoate (3p)

General protocol A was followed using BF₃•OEt₂ (118 μ L, 0.955 mmol), **1p** (524 mg, 1.91 mmol), CH₂Cl₂ (1.9 mL) for 4 h at -12 °C to -4 °C; Pyridine (309 μ L, 3.83 mmol), **2** (322 mg, 1.34 mmol) and DMF (1.3 mL) for 20 min at 80 °C; and PIDA (431 mg, 1.34 mmol) at r.t. for 30 min. A red solid (720 mg, 1.87 mmol, 70%) was obtained after purified by chromatography (Hexane:Et₂O 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 5.14 (d, *J* = 8.2 Hz, 1H), 4.35 (app dt, *J* = 8.2, 4.8 Hz, 1H), 3.39 - 3.24 (m, 2H), 2.72 (s, 3H), 2.51 - 2.43 (m, 1H), 2.24 - 2.15 (m, 1H), 1.47 (s, 9H), 1.43 (s, 9H), peak at 4.90, 4.18ppm due to minor rotamer. ¹³C NMR (101 MHz, CDCl₃) δ 175.67 (C), 171.30 (C), 167.23 (C), 155.42 (C), 82.61 (C), 80.05 (C), 53.52 (CH), 31.25 (CH₂), 30.66 (CH₂), 28.42 (CH₃), 28.12 (CH₃), 13.49 (CH₃). IR (KBr), υ /cm⁻¹ 3369, 2977, 2917, 2849, 1722, 1636, 1367, 1164, 738. HRMS [M+H]⁺ m/z calcd. for [C₁₆H₂₈O₄N₅S]⁺ 386.1862, found 386.1847

(3S,4S,6R)-4-(4-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)butyl)tetrahydro-1H-thieno[3,4-d]imidazol-2(3H)-one (3q)

General protocol A was followed using BF₃•OEt₂ (121 μ L, 0.982 mmol), **1q** (215 mg, 0.654 mmol), CH₂Cl₂ (0.65 mL) for 4 h at -12 °C to -4 °C; Pyridine (159 μ L, 1.96 mmol), **2** (112 mg, 0.452 mmol) and DMF (0.45 mL) for 20 min at 80 °C; and PIDA (140 mg, 0.452 mmol) at r.t. for 30 min. A red solid (95.9 mg, 0.294 mmol, 66%) was obtained after purified by chromatography (CH₂Cl₂:MeOH 100:0 to 95:5). ¹H NMR (600 MHz, CDCl₃) δ 6.17 (s, 1H), 5.35 (s, 1H), 4.51 (app dd, *J* = 7.6, 5.0 Hz, 1H), 4.32 (app dd, *J* = 7.6, 5.0 Hz, 1H), 3.27 (t, *J* = 7.7 Hz, 2H), 3.18 - 3.14 (m, 1H), 2.90 (dd, *J* = 12.8, 5.0 Hz, 1H), 2.76 - 2.69 (m, 4H), 2.03 - 1.90 (m, 2H), 1.86 - 1.70 (m, 2H), 1.62-1.50 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.54 (C), 167.90 (C), 163.84 (C), 62.00 (CH), 60.23 (CH), 55.63 (CH), 40.69 (CH₂), 34.01 (CH₂), 28.40 (CH₂), 28.37 (CH₂), 28.36 (CH₂), 13.51 (CH₃). IR (KBr), υ/cm^{-1} 3422, 2931, 2859, 1702, 1460, 1265, 1159, 739.HRMS [M+H]⁺ m/z calcd. for [C₁₂H₁₉ON₆S₂]⁺ 327.1062, found 327.1049

(3R,5R,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-4-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)butan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-ol (3r)

General protocol A was followed using BF₃•OEt₂ (227 µL, 1.79 mmol), **1r** (550 mg, 1.19 mmol), CH₂Cl₂ (1.20 mL) for 4 h at -12 °C to -4 °C; Pyridine (290 µL, 3.58 mmol), **2** (206 mg, 0.831 mmol) and DMF (0.83 mL) for 20 min at 80 °C; and PIDA (267 mg, 0.831 mmol) at r.t. for 30 min. A red solid (365 mg, 0.798 mmol, 67%) was obtained after purified by chromatography (CH₂Cl₂:Et₂O 100:0 to 85:15). ¹H NMR (600 MHz, CDCl₃) δ 3.65 - 3.58 (m, 1H), 3.28 (ddd, *J* = 14.0, 10.7, 4.9 Hz, 1H), 3.12 (ddd, *J* = 14., 10.7, 6.2 Hz, 1H), 2.72 (s, 3H), 2.09 - 1.94 (m, 2H), 1.92 - 1.71 (m, 4H), 1.69 - 1.45 (m, 7H), 1.45 - 0.84 (m, 20H), 0.65 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.36, 168.79, 67.24, 56.66, 56.13, 42.97, 42.27, 40.62, 40.36, 36.65, 36.03, 35.77, 35.52, 34.94, 34.74, 31.48, 30.74, 28.39, 27.35, 26.57, 24.35, 23.52, 21.00, 18.64, 13.45, 12.24. IR (KBr), υ/cm^{-1} 3362, 2932, 2863, 1449, 1360, 1313, 1162, 1068, 737. HRMS [M+H]⁺ m/z calcd. for [C₂₆H₄₃ON₄S]⁺ 459.3158, found 459.3142

3-(methylthio)-6-(1-((5-(trifluoromethyl)pyridin-2-yl)oxy)cyclopropyl)-1,2,4,5-tetrazine (3s)

General protocol A was followed using BF₃•OEt₂ (53.1 μ L, 0.432 mmol), **1s** (95.4 mg, 0.288 mmol), CH₂Cl₂ (0.29 mL) for 4 h at – 12 °C to –4 °C; Pyridine (69.7 μ L, 0.864 mmol), **2** (50.1 mg, 0.202 mmol) and DMF (0.20 mL) for 20 min at 80 °C; and PIDA (65.0 mg, 0.202 mmol) at r.t. for 30 min. A red oil (43.2 mg, 0.131 mmol, 65%) was obtained after purified by chromatography (Hexane: Et₂O 10:0 to 9:1). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.83 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.00 (d, *J* = 8.7 Hz, 1H), 2.70 (s, 3H), 2.10 – 1.89 (m, 2H), 1.82 – 1.64 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.22 (C), 167.13 (C), 164.93 (C), 144.83 (CH, q, *J*_{C-F} = 4.1 Hz), 136.31 (CH, q, *J*_{C-F} = 1.5 Hz), 123.89 (C, q, *J*_{C-F} = 269.7 Hz), 121.27 (C, q, *J*_{C-F} = 32.9 Hz), 111.69 (CH), 59.04 (C), 19.45 (CH₂), 13.49 (CH₃). IR (KBr), υ /cm⁻¹ 3016, 2931, 2853, 1614, 1582, 1492, 1289, 1208, 1125. HRMS [M+H]⁺ m/z calcd. for [C₁₂H₁₁ON₅SF₃]⁺ 330.0636, found 330.0624

(S)-tert-butyl (1-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)-2-(pyridin-4-yl)ethyl)carbamate (3t)

General protocol A was followed using BF₃•OEt₂ (51 μ L, 0.42 mmol), **1t** (97 mg, 0.28 mmol), CH₂Cl₂ (0.28mL) for 4 h at -12 °C to - 4 °C; Pyridine (67 μ L, 0.83 mmol), **2** (50 mg, 0.20 mmol) and DMF (0.2 mL) for 20 min at 80 °C; and PIDA (60 mg, 0.20 mmol) at r.t. for 30 min. A red oil (39 mg, 0.11 mmol, 55%) was obtained after purified by chromatography (CH₂Cl₂:MeOH 100:0 to 97:3). ¹H NMR (400 MHz, CDCl₃) δ 8.51 (m, 2H), 7.08 - 7.07 (m, 2H), 5.65 - 5.62 (m, 1H), 5.53 - 5.51 (m, 1H), 3.44 - 3.39 (m, 1H), 3.30 - 3.24 (m, 1H), 2.74 (s, 3H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.94 (C), 166.05 (C), 155.00 (C), 149.96 (CH), 145.18 (C), 124.99 (CH), 80.73 (C), 53.78 (CH₂), 40.82 (CH₂), 28.35 (CH₃), 13.57 (CH₃). IR (KBr), υ/cm^{-1} 3006, 2925, 2852, 1710, 1604, 1519, 1366, 1249, 1165. HRMS [M+H]⁺ m/z calcd. for [C₁₅H₂₁O₂N₆S]⁺ 349.1447, found 349.1443

3-(methylthio)-6-((1-phenyl-5-(trifluoromethyl)-1H-pyrazol-4-yl)methyl)-1,2,4,5-tetrazine (3u)

General protocol A was followed using BF₃*OEt₂ (88 μ L, 0.72 mmol), **1u** (102 mg, 0.29 mmol), CH₂Cl₂ (0.29 mL) for 4 h at -12 °C to - 4 °C; Pyridine (117 μ L, 1.4 mmol), **2** (50 mg, 0.20 mmol) and DMF (0.20 mL) for 20 min at 80 °C; and PIDA (65 mg, 0.20 mmol) at r.t. for 30 min. A red solid (48 mg, 0.14 mmol, 68%) was obtained after purified by chromatography (Hexane:CH₂Cl₂3:7 to 0:10). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.56 - 7.40 (m, 5H), 4.66 (d, *J* = 1.4 Hz, 2H), 2.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.19 (C), 165.89 (C), 141.21 (CH), 139.51 (C), 129.98 (q, *J*_{C-F} = 37.6 Hz, C), 129.62 (CH), 129.19 (CH), 126.12 (CH), 120.45 (q, *J*_{C-F} = 268.5 Hz, C), 118.02 (C), 29.65 (CH₂), 13.56 (CH₃). IR (KBr), υ /cm⁻¹ 3056, 2974 2933, 2825, 1653, 1528, 1266, 740, 702. HRMS [M+H]^{*} m/z calcd. for [C₁₄H₁₂N₆F₃S]^{*} 353.0796, found 353.0784

(2S,3S)-tert-butyl 2-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)-3-(pyridin-4-ylmethyl)pyrrolidine-1-carboxylate (3v)

General protocol A was followed using BF₃•OEt₂ (42 μ L, 0.34 mmol), **1v** (90 mg, 0.23 mmol), CH₂Cl₂ (0.23 mL) for 4 h at –12 °C to – 4 °C; Pyridine (56 μ L, 0.68 mmol), **2** (40 mg, 0.16 mmol) and DMF (0.16 mL) for 20 min at 80 °C; and PIDA (51 mg, 0.16 mmol) at r.t. for 30 min. A red solid (41 mg, 0.11 mmol, 64%) was obtained after purified by chromatography (CH₂Cl₂:Acetone 10:0 to 85:15). Two rotamers: ¹H NMR (400 MHz, CDCl₃) δ 8.48 - 8.46 (m, 4H), 7.09 (d, *J* = 5.0 Hz, 2H), 7.04 (d, *J* = 5.0 Hz, 2H), 5.00 (d, *J* = 5.6 Hz, 1H), 4.86 (d, *J* = 6.2 Hz, 1H), 3.83 (ddd, *J* = 11.3, 7.9, 3.7 Hz, 1H), 3.76 – 3.57 (m, 3H), 3.07 – 2.64 (m, 12H), 2.33 – 2.04 (m, 2H), 1.83 – 1.68 (m, 2H), 1.40 (s, 9H), 1.13 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.25 (C), 176.15 (C), 168.47 (C), 168.08 (C), 154.40 (C), 153.35 (C), 150.09 (CH, both rotamers), 147.78 (C), 147.67 (C), 124.41 (CH), 124.29 (CH), 80.48 (C, both rotamers), 65.12 (CH), 64.88 (CH), 48.33 (CH), 47.20 (CH), 46.38 (CH₂), 46.26 (CH₂), 37.79 (CH₂, both rotamers), 29.77 (CH₂), 29.71 (CH₂), 28.48 (CH₃), 28.25 (CH₃), 13.53 (CH₃, both rotamers). IR (KBr), v/cm⁻¹ 3057, 2962, 2917, 2850, 1726, 1640, 1529, 1266, 741. HRMS [M+H]⁺ m/z calcd. for [C₁₈H₂₅O₂N₆S]⁺ 389.1760, found 389.1745

5,5-difluoro-7,9-dimethyl-3-(2-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)ethyl)-5*H*-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide (3w)

General protocol A was followed using BF₃•OEt₂ (20 μ L, 0.16 mmol), **1w** (40 mg, 0.11 mmol), CH₂Cl₂ (0.16 mL) for 4 h at -12 °C to - 4 °C; Pyridine (27 μ L, 0.33 mmol), **2** (19 mg, 0.077 mmol) and DMF (77 μ L) for 20 min at 80 °C; and PIDA (24 mg, 0.077 mmol) at r.t. for 30 min. An orange solid (16 mg, 0.043 mmol, 57%) was obtained after purified by chromatography (Hexane: CH₂Cl₂1:1 to 1:9). ¹H

NMR (400 MHz, CDCl₃) δ 7.09 (s, 1H), 6.86 (d, *J* = 4.0 Hz, 1H), 6.25 (d, *J* = 4.0 Hz, 1H), 6.12 (s, 1H), 3.71 (app t, *J* = 7.5, 1.3 Hz, 2H), 3.60 (app t, *J* = 7.5 Hz, 2H), 2.73 (s, 3H), 2.56 (s, 3H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.69 (C), 166.95 (C), 161.16 (C), 155.99 (C), 144.33 (C), 135.58 (C), 133.37 (C), 127.97 (CH), 124.04 (CH), 120.80 (CH), 116.72 (CH), 33.60 (CH₂), 26.84 (CH₂), 15.16 (CH₃), 13.51 (CH₃), 11.49 (CH₃). IR (KBr), υ/cm^{-1} 3062, 3030, 2930, 2864, 1454, 1327, 1306, 1163, 1098, 893, 741, 699. HRMS [M+H]⁺ m/z calcd. for [C₁₆H₁₈N₆F₂BS]⁺ 375.1375, found 375.1369

3-(methylthio)-6-phenyl-1,2,4,5-tetrazine (3x)

General protocol B was followed using BF₃•OEt₂ (362 μ L, 2.94 mmol), **1x** (1200 mg, 5.87 mmol), CH₂Cl₂ (0.59 mL) for 4 h at –5 °C to –0 °C; Pyridine (948 μ L, 11.7 mmol), **2** (1019 mg, 4.11 mmol) and DMF (4.1 mL) for 1 h at 80 °C; and PIDA (1323 mg, 4.11 mmol) at r.t. for 30 min. A red solid (587 mg, 2.87 mmol, 72%) was obtained after purified by chromatography (CH₂Cl₂: ether 100:0 to 95:5). ¹H NMR (400 MHz, CDCl₃) δ 8.65 – 8.20 (m, 2H), 8.09 – 7.46 (m, 3H), 2.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.43 (C), 162.44 (C), 132.45 (CH), 131.71 (C), 129.38 (CH), 127.62 (CH), 13.60 (CH₃). IR (KBr), υ/cm^{-1} 3074, 3014, 2936, 1356, 1196, 897, 760. HRMS [M+H]⁺ m/z calcd. for [C₉H₉N₄S]⁺ 205.0548, found 205.0540

3-(methylthio)-2-fluoro-6-phenyl-1,2,4,5-tetrazine (3y)

General protocol B was followed using BF₃•OEt₂ (98.5 μ L, 0.798 mmol), **1y** (358 mg, 1.60 mmol), CH₂Cl₂ (1.6 mL) for 6 h at –2 °C to –0 °C; Pyridine (258 μ L, 3.19 mmol), **2** (277 mg, 1.12 mmol) and DMF (1.1 mL) for 1 h at 80 °C; and PIDA (361 mg, 1.12 mmol) at r.t. for 1 h. A red solid (177 mg, 0.797 mmol, 50%) was obtained after purified by chromatography (Hexane: EA 100:0 to 95:5). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (td, *J* = 7.6, 1.8 Hz, 1H), 7.59 (m, 1H), 7.37 (td, *J* = 7.6, 1.2 Hz, 1H), 7.30 (m, 1H), 2.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.21 (C), 162.06 (d, *J*_{C-F} = 5.5 Hz, C), 161.33 (d, *J*_{C-F} = 257.0 Hz, C), 133.76 (d, *J*_{C-F} = 8.5 Hz, CH), 131.07 (d, *J*_{C-F} = 1.4 Hz, CH), 124.88 (d, *J*_{C-F} = 3.9 Hz, CH), 120.57 (d, *J*_{C-F} = 9.9 Hz, C), 117.43 (d, *J*_{C-F} = 21.5 Hz, CH), 13.58 (CH₃). HRMS [M+H]⁺ m/z calcd. for [C₉H₈N₄FS]⁺ 223.0454, found 223.0447

General procedure for the synthesis of 3-monosubstituted tetrazines

To a dry round-bottom flask was added tetrazine thioether **3** (1 equiv.) and $PdCl_2$ (10 mol%). The flask was outfitted with a septumfitted gas inlet adapter, and was twice evacuated and backfilled with nitrogen. Triethylsilane (3 equiv.) and anhydrous THF (to 0.1 M in **3**) were added via syringe, and the flask was heated by an oil bath at 45 °C. The mixture was allowed to stir at 45 °C for 24 h. PIDA (1.2 equiv) was added as a solid at r.t. After stirring at room temperature for 1 h, the reaction mixture was diluted with CH_2Cl_2 , transferred to a separatory funnel and was sequentially washed with saturated sodium bicarbonate, water, brine, dried over sodium sulfate and concentrated by rotary evaporation. The residue was purified by flash column chromatography on silica gel.

tert-butyl (4-(1,2,4,5-tetrazin-3-yl)phenyl)carbamate (4a)

The general protocol for thioether reduction was followed using **3b** (67 mg, 0.21 mmol), $PdCl_2$ (3.7 mg, 0.021 mmol), $HSiEt_3$ (0.10 mL, 0.63 mmol), THF (2.1 mL) and PIDA (80 mg, 0.25 mmol). A pink solid (47 mg, 0.17 mmol, 82%) was obtained after column chromatography ($CH_2Cl_2:Et_2O$ 100:0 to 97:3). ¹H NMR (400 MHz, $CDCl_3$) δ 10.15 (s, 1H), 8.57 (app d, *J* = 8.9 Hz, 2H), 7.61 (d, *J* = 8.9 Hz, 2H), 6.75 (s, 1H), 1.55 (s, 9H). ¹³C NMR (101 MHz, $CDCl_3$) δ 166.12, 157.58, 152.28, 143.24, 129.65, 125.82, 118.51, 81.60, 28.43. IR (KBr), υ/cm^{-1} 3055, 2932, 2862, 1653, 1528, 1266, 741. HRMS [M+H]⁺ m/z calcd. for [$C_{13}H_{16}O_2N_5$]⁺ 274.1304, found 274.1293

tert-butyl 4-(1,2,4,5-tetrazin-3-yl)benzylcarbamate (4b)

The general protocol for thioether reduction was followed using **3c** (150 mg, 0.45 mmol), PdCl₂ (8.0 mg, 0.045 mmol), HSiEt₃ (0.22 mL, 1.4 mmol), THF (4.5 mL) and PIDA (174 mg, 0.54 mmol). A pink solid (106 mg, 0.37 mmol, 82%) was obtained after column chromatography (Hexane:Et₂O 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.59 (app d, *J* = 8.1 Hz, 2H), 7.52 (app d, *J* = 8.1 Hz, 2H), 4.98 (s, 1H), 4.45 (d, *J* = 6.2 Hz, 2H), 1.48(s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 166.35, 157.87, 156.06, 144.79, 130.60, 128.65, 128.21, 79.96, 44.43, 28.51. IR (KBr), v/cm⁻¹ 3352, 3087, 2980, 2930, 2884, 1702, 1684, 1610, 1510, 1435, 1349, 1247, 1168. HRMS [M+H]⁺ m/z calcd. for [C₁₄H₁₈O₂N₅]⁺ 288.1460, found 288.1449

3-(4-methoxyphenyl)-1,2,4,5-tetrazine (4c)

The general protocol for thioether reduction was followed using **3e** (50 mg, 0.21 mmol), PdCl₂ (3.8 mg, 0.021 mmol), HSiEt₃ (0.10 mL, 0.64 mmol), THF (2.1 mL) and PIDA (82 mg, 0.26 mmol). A pink solid (34 mg, 0.18 mmol, 85%) was obtained after column chromatography (Hexane:Et₂O 100:0 to 94:6). ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 8.58 (app d, *J* = 8.9 Hz, 2H), 7.09 (app d, *J* = 8.9 Hz, 2H), 3.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.21, 163.86, 157.44, 130.28, 124.00, 114.92, 55.67. IR (KBr), v/cm⁻¹ 3058, 2963, 2932, 2871, 1640, 1529, 1267, 740. HRMS [M+H]⁺ m/z calcd. for [C₉H₉ON₄]⁺ 189.0776, found 189.0769

methyl 4-(1,2,4,5-tetrazin-3-yl)benzoate (4d)

The general protocol for thioether reduction was followed using **3g** (50 mg, 0.19 mmol), PdCl₂ (3.3 mg, 0.019 mmol), HSiEt₃ (0.091 mL, 0.57 mmol), THF (1.9 mL) and PIDA (73 mg, 0.23 mmol). A pink solid (30 mg, 0.14 mmol, 73%) was obtained after column chromatography (Hexane:EA 100:0 to 92:8). ¹H NMR (400 MHz, CDCl₃) δ 10.28 (s, 1H), 8.72 (app d, *J* = 8.7 Hz, 2H), 8.27 (app d, *J* = 8.7 Hz, 2H), 3.99 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.37, 166.12, 158.11, 135.61, 134.28, 130.58, 128.39, 52.67. IR (KBr), ν/cm^{-1} 3060, 2994, 2946, 1714, 1432, 1355, 1275, 1190, 1111, 767. HRMS [M+H]⁺ m/z calcd. for [C₁₀H₉O₂N₄]⁺ 217.0726, found 217.0720

4-(1,2,4,5-tetrazin-3-yl)benzonitrile (4e)

$$H \xrightarrow{N-N}_{N=N} \xrightarrow{} CN$$

The general protocol for thioether reduction was followed using **3h** (50 mg, 0.22 mmol), $PdCl_2$ (3.9 mg, 0.022 mmol), $HSiEt_3$ (0.10 mL, 0.65 mmol), THF (2.2 mL) and PIDA (84 mg, 0.26 mmol). A pink solid (27 mg, 0.15 mmol, 68%) was obtained after column chromatography (Hexane:Et₂O 100:0 to 9:1). ¹H NMR (400 MHz, CDCl₃) δ 10.33 (s, 1H), 8.78 (app d, *J* = 8.5 Hz, 2H), 7.93 (app d, *J* = 8.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.49, 158.28, 135.68, 133.20, 128.83, 118.10, 116.74. IR (KBr), υ/cm^{-1} 3095, 3053, 2931, 2225, 1445, 1354, 1200, 903, 855.

methyl 3-(1,2,4,5-tetrazin-3-yl)propanoate (4f)

The general protocol for thioether reduction was followed using **3k** (225 mg, 1.05 mmol), PdCl₂ (18.6 mg, 0.105 mmol), HSiEt₃ (0.510 mL, 3.15 mmol), THF (10.5 mL) and PIDA (405 mg, 1.26 mmol). A pink solid (133 mg, 0.790 mmol, 75%) was obtained after column chromatography (Hexane:EA 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 3.86 – 3.50 (m, 5H), 3.09 (app t, *J* = 7.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.48, 171.59, 158.22, 52.19, 30.53, 30.29. IR (KBr), υ/cm^{-1} 2962, 2918, 2838, 1726, 1653, 1529, 1266, 740. HRMS [M+H]⁺ m/z calcd. for [C₆H₉O₂N₄]⁺ 169.0726, found 169.0720

tert-butyl ((1,2,4,5-tetrazin-3-yl)methyl)carbamate (4g)

The general protocol for thioether reduction was followed using **3n** (200 mg, 0.777 mmol), $PdCl_2$ (13.7 mg, 0.0777 mmol), $HSiEt_3$ (371 μ L, 2.33 mmol), THF (7.8 mL) and PIDA (300 mg, 0.932 mmol). A pink solid (129 mg, 0.611 mmol, 79%) was obtained after column chromatography (Hexane:EA 100:0 to 82:18). ¹H NMR (400 MHz, CDCl₃) δ 10.27 (s, 1H), 5.60 (s, 1H), 5.01 (d, *J* = 6.0 Hz, 2H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.53, 158.82, 155.90, 80.66, 43.89, 28.41. IR (KBr), ν/cm^1 3350, 2979, 2934, 1709, 1517, 1251, 1168. HRMS [M+H]⁺ m/z calcd. for [C₈H₁₄O₂N₅]⁺ 212.1147, found 212.1140

(S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-3-(1,2,4,5-tetrazin-3-yl)propanoate (4h)

The general protocol for thioether reduction was followed using **3o** (165 mg, 0.444 mmol), PdCl₂ (7.86 mg, 0.0444 mmol), HSiEt₃ (213 μ L, 1.33 mmol), THF (4.4 mL) and PIDA (170 mg, 0.533 mmol). A pink solid (95.2 mg, 0.293 mmol, 66%) was obtained after column chromatography (Hexane:Et₂O 100:0 to 75:25). ¹H NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 5.47 (d, *J* = 7.8 Hz, 1H), 4.80 - 4.76 (m, 1H), 3.87 (dd, *J* = 14.7, 5.2 Hz, 1H), 3.75 (dd, *J* = 14.7, 7.3 Hz, 1H), 1.41 (s, 9H), 1.37 (s, 9H), peak at 5.13, 4.71 ppm due to minor rotamer. ¹³C NMR (101 MHz, CDCl₃) δ 170.01, 169.64, 158.19, 155.18, 83.21, 80.29, 52.83, 38.75, 28.35, 27.98. IR (KBr), ν/cm^{-1} 3371, 2979, 2833, 1715, 1502, 1368, 1251, 155, 1058, 892, 845. HRMS [M+H]⁺ m/z calcd. for [C₁₄H₂₄O₄N₅]⁺ 326.1828, found 326.1817

(S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-4-(1,2,4,5-tetrazin-3-yl)butanoate (4i)

The general protocol for thioether reduction was followed using **3p** (291 mg, 0.755 mmol), PdCl₂ (13.4 mg, 0.0755 mmol), HSiEt₃ (360 μ L, 2.26 mmol), THF (7.6 mL) and PIDA (293 mg, 0.906 mmol). A pink solid (200 mg, 0.589 mmol, 78%) was obtained after column chromatography (Hexane:EA 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 10.20 (s, 1H), 5.17 (d, *J* = 8.2 Hz, 1H), 4.36 (app td, *J* = 8.2, 4.8 Hz, 1H), 3.50 – 3.35 (m, 2H), 2.58 – 2.49 (m, 1H), 2.29 – 2.20 (m, 1H), 1.47 (s, 9H), 1.42 (s, 9H), peak at 4.93, 4.19ppm due to minor rotamer. ¹³C NMR (151 MHz, CDCl₃) δ 172.43, 171.22, 158.12, 155.44, 82.67, 80.09, 53.50, 31.60, 31.05, 28.43, 28.14. IR (KBr), υ /cm⁻¹ 3372, 2980, 2936, 1730, 1700, 1505, 1366, 1153, 1050, 893. HRMS [M+H]⁺ m/z calcd. for [C₁₅H₂₆O₄N₅]⁺ 340.1985, found 340.1973

3-(1-((5-(trifluoromethyl)pyridin-2-yl)oxy)cyclopropyl)-1,2,4,5-tetrazine (4j)

The general protocol for thioether reduction was followed using **3s** (40 mg, 0.12 mmol), PdCl₂ (2.1 mg, 0.012 mmol), HSiEt₃ (58 μ L, 0.36 mmol), THF (1.2 mL) and PIDA (46 mg, 0.14 mmol). A pink solid (24 mg, 0.097 mmol, 71%) was obtained after column chromatography (Hexane: CH₂Cl₂8:2 to 6:4). ¹H NMR (400 MHz, CDCl₃) δ 10.15 (s, 1H), 8.23 – 8.22 (m, 1H), 7.85 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.03 (d, *J* = 8.7 Hz, 1H), 2.07 (app dd, *J* = 8.8, 5.9 Hz, 2H), 1.78 (app dd, *J* = 8.7, 5.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.18 (C), 164.80 (C), 157.72 (CH), 144.74 (CH, q, *J*_{C-F} = 4.4 Hz), 136.41 (CH, q, *J*_{C-F} = 3.3 Hz), 123.86 (C, q, *J*_{C-F} = 269.7 Hz), 121.42 (C, q, *J*_{C-F} = 33.0 Hz) 111.78 (CH), 59.35 (C), 20.50 (CH₂). IR (KBr), υ /cm⁻¹ 3088, 2923, 2851, 1615, 1581, 1492, 1453, 1329, 1288, 1189, 1127, 1078. HRMS [M+H]⁺ m/z calcd. for [C₁₁H₁₉ON₅F₃]⁺ 284.0759, found 284.0749

3-((1-phenyl-5-(trifluoromethyl)-1H-pyrazol-4-yl)methyl)-1,2,4,5-tetrazine (4k)

The general protocol for thioether reduction was followed using **3u** (53 mg, 0.15 mmol), PdCl₂ (2.7 mg, 0.015 mmol), HSiEt₃ (72 μ L, 0.45 mmol), THF (1.5 mL) and PIDA (57 mg, 0.18 mmol). A pink solid (35 mg, 0.11 mmol, 75%) was obtained after column chromatography (CH₂Cl₂:Et₂O 100:0 to 95:5). ¹H NMR (400 MHz, CDCl₃) δ 10.27 (s, 1H), 7.74 (s, 1H), 7.50 – 7.44 (m, 5H), 4.78 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.99, 158.30, 141.26, 139.43, 130.11 (q, *J*_{C-F} = 37.7 Hz), 129.67, 129.20, 126.11 (q, *J*_{C-F} = 1.0 Hz), 120.38 (q, *J*_{C-F} = 268.4 Hz) 117.47 (q, *J*_{C-F} = 1.8 Hz), 30.62. IR (KBr), υ /cm⁻¹ 3077, 1924, 2853, 1598, 1503, 1472, 1309, 1183, 1132, 1091, 975. HRMS [M+H]⁺ m/z calcd. for [C₁₃H₁₀N₆F₃]⁺ 307.0919, found 307.0908

(3R, 5R, 8R, 9S, 10S, 13R, 14S, 17R) - 17 - ((R) - 4 - (1, 2, 4, 5 - tetrazin - 3 - yl) butan - 2 - yl) - 10, 13 - dimethylhexadecahydro - 1H - cyclopenta[a]phenanthren - 3 - ol (4l)

The general protocol for thioether reduction was followed using **3r** (180 mg, 0.39 mmol), $PdCl_2$ (7.0 mg, 0.039 mmol), $HSiEt_3$ (0.19 mL, 1.2 mmol), THF (3.9 mL) and PIDA (170 mg, 0.533 mmol). After aqueous work up and rotary evaporation, THF (1.0 ml), TFA (0.2 mL) and water (0.2 mL) was added into crude and stirred for 2 h at r.t. The resulting residue was concentrated. A pink solid (112 mg, 0.27 mmol, 70%) was obtained after column chromatography ($CH_2Cl_2:Et_2O$ 100:0 to 98:2). ¹H NMR (400 MHz, $CDCl_3$) δ 10.19 (s, 1H), 3.63 (tt, *J* = 10.8, 5.3 Hz, 1H), 3.40 (ddd, *J* = 14.0, 10.8, 5.0 Hz, 1H), 3.24 (ddd, *J* = 14.0, 10.5, 6.1 Hz, 1H), 2.15 – 2.03 (m, 1H), 2.02 – 0.77 (m, 32H), 0.65 (s, 3H). ¹³C NMR (101 MHz, $CDCl_3$) δ 174.02, 158.05, 72.01, 56.61, 55.99, 42.94, 42.20, 40.54, 40.30, 36.58, 35.97, 35.83, 35.47, 35.00, 34.71, 32.46, 30.68, 29.86, 28.40, 27.31, 26.54, 24.33, 23.52, 20.96, 18.63, 12.21.. IR (KBr), υ/cm^{-1} 3366, 2959, 2934, 2830, 1653, 1527, 1267, 741. HRMS [M+H]⁺ m/z calcd. for [$C_{25}H_{41}ON_4$]⁺ 413.3280, found 413.3254

3-(2-(1,2,4,5-tetrazin-3-yl)ethyl)-5,5-difluoro-7,9-dimethyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide (4m)

The general protocol for thioether reduction was followed using **3w** (16 mg, 0.043 mmol), PdCl₂ (0.76 mg, 0.0043 mmol), HSiEt₃ (21 μ L, 0.13 mmol), THF (0.43 mL) and PIDA (17 mg, 0.051 mmol). An orange solid (8.5 mg, 0.026 mmol, 61%) was obtained after column chromatography (CH₂Cl₂:Et₂O 100:0 to 98:2). ¹H NMR (400 MHz, CDCl₃) δ 10.20 (s, 1H), 7.09 (s, 1H), 6.86 (d, *J* = 4.0 Hz, 1H), 6.24 (d, *J* = 4.0 Hz, 1H), 6.12 (s, 1H), 3.82 (app t, *J* = 7.6 Hz, 2H), 3.65 (app t, *J* = 7.6 Hz, 2H), 2.55 (s, 3H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.11, 161.38, 158.19, 155.49, 144.50, 135.67, 133.33, 127.89, 124.09, 120.89, 116.70, 34.68, 26.74, 15.17, 11.49. HRMS [M+H]⁺ m/z calcd. for [C₁₅H₁₆N₆BF₂]⁺ 329.1498, found 329.1483

Synthesis of unsymmetrical tetrazines via Ag-mediated Liebeskind coupling with boronic acids

tert-butyl ((6-(4-methoxyphenyl)-1,2,4,5-tetrazin-3-yl)methyl)carbamate (5a)

To a dry round bottomed flask was sequentially charged with **3n** (54 mg, 0.21 mmol), Pd(dppf)Cl₂ (23 mg, 0.031 mmol, 15 mol%), 4methoxyphenylboronic acid (61 mg, 0.40 mmol) and Ag₂O (122 mg, 0.52 mmol). The flask was outfitted with a septum-fitted gas inlet adapter, evacuated and filled with nitrogen. DMF (2.1 mL) was added to the flask via syringe. After heating under nitrogen at 60 °C for 20 h, the DMF was removed by rotary evaporation under high vacuum. The residue was purified by column chromatography (hexane:EA 10:0 to 8:2) to give the title compound as a pink solid (50 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 8.56 (app d, *J* = 9.0 Hz, 2H), 7.09 (app d, *J* = 9.0 Hz, 2H), 5.57 (s, 1H), 4.99 (d, *J* = 5.7 Hz, 2H), 3.92 (s, 3H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.83 (C), 164.82 (C), 163.68 (C), 155.91 (C), 130.15 (CH), 123.96 (C), 114.91 (CH), 80.47 (C), 55.69 (CH₃), 43.53 (CH₂), 28.47 (CH₃). IR (KBr), υ/cm^{-1} 3360, 3056, 2973, 2928, 1712, 1678, 1605, 1525, 1396, 1260, 1158. HRMS [M+H]⁺ m/z calcd. for [C₁₅H₂₀O₃N₅]⁺ 318.1566, found 318.1553

methyl 3-(6-phenyl-1,2,4,5-tetrazin-3-yl)propanoate (5b)

To a microwave reaction tube was sequentially charged with **3k** (54 mg, 0.25 mmol), Pd(dppf)Cl₂ (28 mg, 0.038 mmol, 15 mol%), phenylboronic acid (92 mg, 0.76 mmol), Ag₂O (146 mg, 0.63 mmol) and DMF (2.5 mL) in glove box. After heating under nitrogen at 100 °C for 3 h, the DMF was removed by rotary evaporation under high vacuum. The residue was purified by column chromatography (hexane:EA 100:0 to 85:15) to give the title compound as pink solid (52 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 8.82 – 8.38 (m, 2H), 7.78 – 7.43 (m, 3H), 4.17 – 3.34 (m, 5H), 3.12 (app t, *J* = 7.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.63 (C), 168.57 (C), 164.51 (C), 132.82 (CH), 131.80 (C), 129.40 (CH), 128.14 (CH), 52.19 (CH₃), 30.77 (CH₂), 29.83 (CH₂). IR (KBr), υ/cm^{-1} 3063, 3001, 2950, 2926, 1736, 1375, 1301, 1234, 1175, 758, 696. HRMS [M+H]⁺ m/z calcd. for [C₁₂H₁₃O₂N₄]⁺ 245.1039, found 245.1031

methyl 4-(6-(4-(hydroxymethyl)phenyl)-1,2,4,5-tetrazin-3-yl)benzoate (5c)

To a dry round bottomed flask was sequentially charged with **3g** (48 mg, 0.18 mmol), Pd(dppf)Cl₂ (20 mg, 0.028 mmol, 15 mol%), *p*-hydroxymethylphenylboronic acid (54 mg, 0.35 mmol) and Ag₂O (107 mg, 0.46 mmol). The flask was outfitted with a septum-fitted gas inlet adapter, evacuated and filled with nitrogen. DMF (1.8 mL) was added to the flask via syringe. After heating under nitrogen at 60 °C for 20 h, the DMF was removed by rotary evaporation under high vacuum. The residue was purified by column chromatography (CH₂Cl₂:Et₂O 100:0 to 93:7) to give the title compound as pink solid (35 mg, 59%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.67 (app d, *J* = 8.5 Hz, 2H), 8.53 (app d, *J* = 8.3 Hz, 2H), 8.26 (app d, *J* = 8.5 Hz, 2H), 7.64 (app d, *J* = 8.3 Hz, 2H), 5.47 (t, *J* = 5.5 Hz, 1H), 4.66 (d, *J* = 5.5 Hz, 2H), 3.93 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.73 (C), 163.37 (C), 162.79 (C), 147.98 (C), 136.19 (C), 132.75 (C), 130.19 (CH), 130.04 (C), 127.85 (CH), 127.67 (CH), 127.22 (CH), 62.49 (CH₂), 52.60 (CH₃). IR (KBr), v/cm⁻¹ 3345, 3058, 3012, 2957, 2919, 1720, 1607, 1509, 1394, 1280, 1112, 1010, 697. HRMS [M+H]⁺ m/z calcd. for [C₁₇H₁₅O₃N₄]⁺ 323.1144, found 323.1132

methyl 4-(6-(4-(((tert-butoxycarbonyl)amino)methyl)phenyl)-1,2,4,5-tetrazin-3-yl)benzoate (5d)

To a dry round bottomed flask was sequentially charged with **3g** (47 mg, 0.18 mmol), Pd(dppf)Cl₂ (20 mg, 0.027 mmol, 15 mol%), 4-(*tert*-Butoxycarbonylaminomethyl)phenylboronic acid (85 mg, 0.34 mmol) and Ag₂O (103 mg, 0.45 mmol). The flask was outfitted with a septum-fitted gas inlet adapter, evacuated and filled with nitrogen. DMF (1.8 mL) was added to the flask via syringe. After heating under nitrogen at 60 °C for 20 h, the DMF was removed by rotary evaporation under high vacuum. The residue was purified by column chromatography (CH₂Cl₂:Et₂O 100:0 to 97:3) to give the title compound as a pink solid (61 mg, 81%). ¹H NMR (400 MHz, DMSO-*d*) δ 8.67 (app d, *J* = 8.4 Hz, 2H), 8.52 (app d, *J* = 8.1 Hz, 2H), 8.26 (app d, *J* = 8.4 Hz, 2H), 7.56 (m, 3H), 4.28 (d, *J* = 6.0 Hz, 2H), 3.93 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, DMSO) δ 165.72 (C), 163.32 (C), 162.80 (C), 145.51 (C), 136.17 (C), 132.76 (C), 130.18 (CH), 130.15 (C), 127.93 (CH), 127.85 (CH), 127.76 (C), 78.06 (C), 52.59 (CH₃), 43.30 (CH₂), 28.28 (CH₃). IR (KBr), v/cm⁻¹ 3348, 3081, 3008, 2984, 2947, 1722, 1683, 1606, 1512, 1394, 1277, 1250, 1168, 1111. HRMS [M+H]⁺ m/z calcd. for [C₂₂H₂₄O₄N₅]⁺ 422.1828, found 422.1815

tert-butyl 3-(6-(4-chlorophenyl)-1,2,4,5-tetrazin-3-yl)propanoate (5e)

To a dry round bottomed flask was sequentially charged with **3I** (70 mg, 0.27 mmol), Pd(dppf)Cl₂ (30 mg, 0.040 mmol, 15 mol%), 4chlorophenylboronic acid (80 mg, 0.51 mmol) and Ag₂O (156 mg, 0.67 mmol). The flask was outfitted with a septum-fitted gas inlet adapter, evacuated and filled with nitrogen. DMF (2.7 mL) was added to the flask via syringe. After heating under nitrogen at 60 °C for 20 h, the DMF was removed by rotary evaporation under high vacuum. The residue was purified by column chromatography (hexane:EA 10:0 to 9:1) to give the title compound as pink solid (67 mg, 78%). ¹H NMR (400 MHz, CDCl₃): δ 8.55 (m, 2H), 7.57 (m, 2H), 3.65 (app t, *J* = 7.1Hz, 2H), 3.01 (app t, *J* = 7.1Hz, 2H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 171.31 (C), 169.09 (C), 163.77 (C), 139.30 (C), 130.38 (C), 129.76 (CH), 129.37 (CH), 81.30 (C), 32.33(CH₂), 30.15 (CH₂), 28.18 (CH₃). IR (KBr), v/cm⁻¹ 3055, 2980, 2932, 1730, 1598, 1398, 1366, 1265, 1153, 1095, 848, 738. HRMS (ESI+) [M+H]⁺ Calculated for [C₁₅H₁₈O₂N₄CI] ⁺ 321.1118; found 321.1114

tert-butyl 3-(6-(4-(2H-1,2,3-triazol-2-yl)phenyl)-1,2,4,5-tetrazin-3-yl)propanoate (5f)

To a dry round bottomed flask was sequentially charged with **3I** (80 mg, 0.31 mmol), Pd(dppf)Cl₂ (34 mg, 0.047 mmol, 15 mol%), 4- (triazol-2-yl)phenylboronic acid (112 mg, 0.59 mmol) and Ag₂O (181 mg, 0.67 mmol). The flask was outfitted with a septum-fitted gas inlet adapter, evacuated and filled with nitrogen. DMF (3.1 mL) was added to the flask via syringe. After heating under nitrogen at 60 °C for 20 h, the DMF was removed by rotary evaporation under high vacuum. The residue was purified by column chromatography (Hexane:EA 10:0 to 90:1) to give the title compound as pink solid (66 mg, 60%). ¹H NMR (400 MHz, CDCl₃): δ 8.75 (m, 2H), 8.33 (m, 2H), 7.89 (s, 2H), 3.66 (app t, *J* = 7.1Hz, 2H), 3.03 (app t, *J* = 7.1Hz, 2H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 171.33 (C), 169.02 (C), 163.76 (C), 142.82 (C), 136.48 (CH), 130.82 (C), 129.37 (CH), 119.56 (CH), 81.30 (C), 32.38 (CH₂), 30.17 (CH₂), 28.20 (CH₃). IR (KBr), υ/cm^{-1} 3089, 3005, 2977, 2915, 2848, 1720, 1605, 1403, 1365, 1263, 945. HRMS (ESI+) [M+H]⁺ Calculated for [C₁₇H₂₀O₂N₇]⁺ 354.1678; found 354.1674.

tert-butyl 3-(6-(4-((5-(trifluoromethyl)pyridin-2-yl)oxy)phenyl)-1,2,4,5-tetrazin-3-yl)propanoate (5g)

To a dry round bottomed flask was sequentially charged with **3I** (60 mg, 0.23 mmol), Pd(dppf)Cl₂ (26 mg, 0.035 mmol, 15 mol%), 3- ([5-(trifluoromethyl)pyridin-2-yl]oxy)phenylboronic acid (198 mg, 0.70 mmol) and Ag₂O (135 mg, 0.59 mmol). The flask was outfitted with a septum-fitted gas inlet adapter, evacuated and filled with nitrogen. DMF (2.3 mL) was added to the flask via syringe. After heating under nitrogen at 60 °C for 20 h, the DMF was removed by rotary evaporation under high vacuum. The residue was purified by column chromatography (Hexane:EA 10:0 to 90:1) to give the title compound as pink solid (68 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 8.55 – 8.50 (m, 1H), 8.46 – 8.43 (m, 1H), 8.42 – 8.39 (m, 1H), 7.99 – 7.93 (m, 1H), 7.67 (t, *J* = 8.0 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.16 – 7.08 (m, 1H), 3.65 (app, t, *J* = 7.1 Hz, 2H), 3.01 (app, t, *J* = 7.1 Hz, 2H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 171.28 (C), 169.17 (C), 165.47 (C, q, *J*_{C-F} = 1.1Hz), 163.75 (C), 154.03 (C), 145.50 (q, *J*_{C-F} = 4.4Hz, CH), 137.06 (q, *J*_{C-F} = 3.1Hz, CH), 133.68 (C), 130.81 (CH), 125.88 (CH), 125.02 (CH), 123.71 (q, *J*_{C-F} = 272.5 Hz, C), 122.01 (q, *J*_{C-F} = 33.5Hz, C), 121.1 (CH), 111.9 (CH), 81.26 (C), 32.36 (CH₂), 30.10 (CH₂), 28.12 (CH₃). IR (KBr), υ/cm^{-1} 3005, 2932, 1724, 1614, 1589, 1489, 1394, 1328, 1262, 1130, 1078, 757, 689. HRMS (ESI+) [M+H]⁺ Calculated for [C₂₁H₂₁O₃N₅F₃]⁺ 448.1596 found 448.1599.

methyl 4-(6-(((tert-butoxycarbonyl)amino)methyl)-1,2,4,5-tetrazin-3-yl)benzoate (5h)

To a microwave reaction tube was sequentially charged with **3n** (57 mg, 0.22 mmol), Pd(dppf)Cl₂ (24 mg, 0.033 mmol, 15 mol%), 4methoxycarbonylphenylboronic acid (120 mg, 0.66 mmol), Ag₂O (128 mg, 0.55 mmol) and DMF (2.2 mL) in glove box. After heating under nitrogen at 100 °C for 3 h, the DMF was removed by rotary evaporation under high vacuum. The residue was purified by column chromatography (CH₂Cl₂:Et₂O 100:0 to 95:5) to give the title compound as pink solid (53 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 8.67 (app d, *J* = 8.3 Hz, 2H), 8.24 (app d, *J* = 8.3 Hz, 2H), 5.62 (s, 1H), 5.05 (d, *J* = 5.8 Hz, 2H), 3.98 (s, 3H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 166.95 (C), 166.42 (C), 164.59 (C), 155.95 (C), 135.52 (C), 133.95 (C), 130.52 (CH), 128.20 (CH), 80.63 (C), 52.67 (CH₂), 43.67 (CH₃), 28.45 (CH₃). IR (KBr), υ/cm^{-1} 3070, 2979, 2930, 1723, 1697, 1515, 1367, 1281, 1251, 1171, 1110. HRMS [M+H]⁺ m/z calcd. for [C₁₆H₂₀O₄N₅]⁺ 346.1515, found 346.1503

methyl 3-(6-(3-cyanophenyl)-1,2,4,5-tetrazin-3-yl)propanoate (5i)

To a microwave reaction tube was sequentially charged with **3k** (55 mg, 0.26 mmol), Pd(dppf)Cl₂ (28 mg, 0.038 mmol, 15 mol%), 3cyanophenylboronic acid (112 mg, 0.76 mmol), Ag₂O (147 mg, 0.64 mmol) and DMF (2.5 mL) in glove box. After heating under nitrogen at 100 °C for 3 h, the DMF was removed by rotary evaporation under high vacuum. The residue was purified by column chromatography (Hexane:EA 100:0 to 75:25) to give the title compound as pink solid (42 mg, 61%). ¹H NMR (600 MHz, CDCl₃) δ 8.92 (app t, *J* = 1.7 Hz, 1H), 8.84 (ddd, *J* = 7.9, 1.7, 1.2 Hz, 1H), 7.91 (app dt, *J* = 7.9, 1.2 Hz, 1H), 7.74 (td, *J* = 7.9, 0.6 Hz, 1H), 3.74 (app t, *J* = 7.0 Hz, 2H), 3.71 (s, 3H), 3.13 (app t, *J* = 7.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.51 (C), 169.41 (C), 162.96 (C), 135.74 (CH), 133.20 (C), 131.91 (CH), 131.54 (CH), 130.34 (CH), 118.05 (C), 113.90 (C), 52.20 (CH₃), 30.58 (CH₂), 29.89 (CH₂). IR (KBr), υ /cm⁻¹ 3079, 2954, 2924, 2232, 1737, 1603, 1437, 1396, 1369, 1198, 1176, 905, 687. HRMS [M+H]⁺ m/z calcd. for [C₁₃H₁₂O₂N₅]⁺ 270.0991, found 270.0981

(S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-4-(6-(4-(trifluoromethyl)phenyl)-1,2,4,5-tetrazin-3-yl)butanoate (5j)

To a microwave reaction tube was sequentially charged with **3p** (72 mg, 0.19 mmol), Pd(dppf)Cl₂ (21 mg, 0.028 mmol, 15 mol%), 4trifluoromethylboronic acid (107 mg, 0.56 mmol), Ag₂O (108 mg, 0.47 mmol) and DMF (1.9 mL) in glove box. After heating under nitrogen at 100 °C for 3 h, the DMF was removed by rotary evaporation under high vacuum. The residue was purified by column chromatography (CH₂Cl₂:Et₂O 100:0 to 97:3) to give the title compound as pink solid (37 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 8.73 (app d, *J* = 8.2 Hz, 2H), 7.86 (app d, *J* = 8.2 Hz, 2H), 5.17 (d, *J* = 8.0 Hz, 1H), 4.40 (app dt, *J* = 8.0, 4.9 Hz, 1H), 3.72 - 3.32 (m, 2H), 2.65 - 2.49 (m, 1H), 2.38 - 2.20 (m, 1H), 1.49 (s, 9H), 1.41 (s, 9H), peak at 4.92, 4.24 ppm due to minor rotamer. ¹³C NMR (101 MHz, CDCl₃) δ 171.26 (C), 170.03 (C), 163.46 (C), 155.45 (C), 135.17 (C), 134.26 (q, *J*_{C-F} = 32.7 Hz, C), 128.39 (CH), 126.30 (q, *J*_{C-F} = 1.9 Hz, CH), 123.83 (q, *J*_{C-F} = 271.0 Hz, C), 82.72 (C), 80.11 (C), 53.50 (CH), 31.18 (CH₂), 28.40 (CH₃), 28.14 (CH₃). IR (KBr), υ/cm^{-1} 3378, 3063, 2980, 2932, 1713, 1502, 1395, 1368, 1325, 1168, 1138, 1069, 859, 606. HRMS [M+H]⁺ m/z calcd. for [C₂₂H₂₉O₄N₅F₃]⁺ 484.2172, found 484.2160
Synthesis of furyl-substituted tetrazines via Ag-mediated Liebeskind coupling with 3furanboronic acid

To a microwave reaction tube was sequentially charged with tetrazine thioether **3** (1 equiv.) Pd(dppf)Cl₂ (30 mol%), 3-furanboronic acid (6 equiv.), Ag₂O (5 equiv.) and DMF (0.05 M) in glove box. After heating under nitrogen at 100 °C for 3 h, the DMF was removed by rotary evaporation under high vacuum. Mixture of product and unreacted starting material was collect by flash column chromatography on silica gel and concentrated by rotary evaporation. **Purification method A: oxidizing unreacted starting material.** To a dry round bottom flask was charged with the mixture and CH_2Cl_2 (0.1 M). *m*CPBA (0.3 equiv.) was added at 0°C. After stirring at 0 °C for 2 h, 5% sodium bisulfite aqueous solution was added to quench excessive *m*CPBA. Aqueous and organic layers were separated. Aqueous layer was extracted by CH_2Cl_2 twice. All organic layers were combined, sequentially washed with saturate sodium bicarbonate solution, water, brine, dried over sodium sulfate and concentrated by rotary evaporation. The residue was purified by flash column chromatography on silica gel. **Purification method B: reverse phase chromatography.** Two 14 g YAMAZEN C18 columns were stacked. Tetrazine mixture was dissolved in minimum amount of methanol, diluted by water and loaded on column. H₂O:MeOH 10:0 to 0:10 was used as the eluent, flow rate 15 mL/min.

(2S,3S)-tert-butyl 2-(6-(furan-3-yl)-1,2,4,5-tetrazin-3-yl)-3-(pyridin-4-ylmethyl)pyrrolidine-1-carboxylate (5k)

The general protocol was followed with 3v (21 mg, 0.054 mmol), Pd(dppf)Cl₂ (12 mg, 0.016 mmol), 3-furanboronic acid (36 mg, 0.32 mmol), Ag₂O (63 mg, 0.27 mmol) and DMF (1.1 ml). A pink solid (13 mg, 0.033 mmol, 60%) was obtained following purification method B. Two rotamers: ¹H NMR (400 MHz, CDCl₃) δ 8.57 – 8.43 (m, 6H), 7.63 (s, 1H), 7.61 (s, 1H), 7.23 (s, 1H), 7.21 (s, 1H), 7.10 (app d, *J* = 4.5 Hz, 2H), 7.06 (app d, *J* = 4.5 Hz, 2H), 5.08 (d, *J* = 4.8 Hz, 1H), 4.94 (d, *J* = 5.9 Hz, 1H), 3.92 – 3.66 (m, 4H), 3.09 – 2.72 (m, 6H), 2.08 – 2.03 (m, 2H), 1.87 – 1.69 (m, 2H), 1.40 (s, 9H), 1.11 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.35 (C), 169.89 (C), 162.37 (C), 162.28 (C), 154.45 (C), 153.37 (C), 150.08 (CH, both rotamers), 147.80 (C), 147.70 (C), 146.24 (CH), 146.12 (CH), 145.18 (CH), 145.01 (CH), 124.45 (CH), 124.33 (CH), 121.13 (C), 120.88 (C), 108.78 (CH, both rotamers), 80.50 (C, both rotamers), 65.42 (CH), 65.16 (CH), 48.41 (CH), 47.23 (CH), 46.40 (CH₂), 46.30 (CH₂), 37.83 (CH₂, both rotamers), 29.79 (CH₂), 29.70 (CH₂), 28.49 (CH₃), 28.24 (CH₃). IR (KBr), υ/cm^{-1} 3128, 3027, 2976, 2930, 1696, 1600, 1515, 1389, 1367, 1161, 1126, 1081, 935, 878, 736. HRMS [M+H]⁺ m/z calcd. for [C₂₁H₂₅O₃N₆]⁺ 409.1988, found 409.1976

methyl 3-(6-(furan-3-yl)-1,2,4,5-tetrazin-3-yl)propanoate (5l)

The general protocol was followed with **3k** (42 mg, 0.20 mmol), Pd(dppf)Cl₂ (43 mg, 0.059 mmol), 3-furanboronic acid (132 mg, 1.2 mmol), Ag₂O (227 mg, 0.98 mmol) and DMF (3.9 ml). A pink solid (28 mg, 0.12 mmol, 61%) was obtained following purification method A after column chromatography (Hexane:EA 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 8.51 - 8.50 (m, 1H), 7.61 (app t, *J* = 1.7 Hz, 1H), 7.22 (dd, *J* = 1.8, 0.8 Hz, 1H), 3.70 (s, 3H), 3.66 (app t, *J* = 7.1 Hz, 2H), 3.08 (app t, *J* = 7.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.62 (C), 168.22 (C), 162.07 (C), 145.99 (CH), 145.03 (CH), 121.10 (C), 108.76 (CH), 52.18 (CH₃), 30.76 (CH₂), 29.89 (CH₂). IR (KBr), υ/cm^{-1} 3145, 2931, 1730, 1591, 1258, 1194, 1168, 1084. HRMS [M+H]⁺ m/z calcd. for [C₁₀H₁₁O₃N₄]⁺ 235.0831, found 235.0823

(S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-4-(6-(furan-3-yl)-1,2,4,5-tetrazin-3-yl)butanoate (5m)

The general protocol was followed with **3p** (75 mg, 0.19 mmol), Pd(dppf)Cl₂ (43 mg, 0.058 mmol), 3-furanboronic acid (131 mg, 1.2 mmol), Ag₂O (225 mg, 0.97 mmol) and DMF (3.9 ml). A pink solid (43 mg, 0.11 mmol, 56%) was obtained following purification method A after column chromatography (Hexane:EA 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (dd, *J* = 1.8, 0.8 Hz, 1H), 7.64 (app t, *J* = 1.7 Hz, 1H), 7.25 (dd, *J* = 1.8, 0.8 Hz, 1H), 5.18 (d, *J* = 8.2 Hz, 1H), 4.41 (app td, *J* = 7.9, 4.8 Hz, 1H), 3.51 - 3.35 (m, 2H), 2.71 - 2.46 (m, 1H), 2.32 - 2.23 (m, 1H), 1.51 (s, 9H), 1.45 (s, 9H), peak at 4.94, 4.24ppm due to minor rotamer. ¹³C NMR (101 MHz, CDCl₃) δ 171.33 (C), 169.12 (C), 161.95 (C), 155.44 (C), 145.93 (CH), 145.02 (CH), 121.13 (C), 108.76 (CH), 82.65 (C), 80.08 (C), 53.57 (CH), 31.26 (CH₂), 31.19 (CH₂), 28.43 (CH₃), 28.15 (CH₃). IR (KBr), υ/cm^{-1} 3366, 3131, 2979, 2933, 1715, 1589, 1515, 1368, 1250, 1159, 873. HRMS [M+H]⁺ m/z calcd. for [C₁₉H₂₈O₅N₅]⁺ 406.2090, found 406.2079

tert-butyl ((6-(furan-3-yl)-1,2,4,5-tetrazin-3-yl)methyl)carbamate (5n)

The general protocol was followed with **3n** (50 mg, 0.19 mmol), Pd(dppf)Cl₂ (43 mg, 0.058 mmol), 3-furanboronic acid (130 mg, 1.2 mmol), Ag₂O (225 mg, 0.97 mmol) and DMF (3.9 ml). A pink solid (34 mg, 0.12 mmol, 62%) was obtained following purification method A after column chromatography (Hexane:EA 10:0 to 8:2). ¹H NMR (400 MHz, CDCl₃) δ 8.52 - 8.52 (m, 1H), 7.61 (app t, *J* = 1.8 Hz, 1H), 7.21 (app d, *J* = 1.8 Hz, 1H), 5.60 (s, 1H), 4.96 (d, *J* = 6.0 Hz, 2H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 166.20 (C), 162.65 (C), 155.92 (C), 146.23 (CH), 145.07 (CH), 120.94 (C), 108.72 (CH), 80.45 (C), 43.61 (CH₂), 28.42 (CH₃). IR (KBr), v/cm⁻¹ 3360, 3138, 2979, 2931, 1711, 1588, 1368, 1250, 1161. HRMS [M+H]⁺ m/z calcd. for [C₁₂H₁₆O₃N₅]⁺ 278.1253, found 278.1242

(S)-tert-butyl (1-(6-(furan-3-yl)-1,2,4,5-tetrazin-3-yl)-2-(pyridin-4-yl)ethyl)carbamate (50)

The general protocol was followed with **3t** (18 mg, 0.052 mmol), Pd(dppf)Cl₂ (11 mg, 0.016 mmol), 3-furanboronic acid (35 mg, 0.31 mmol), Ag₂O (60 mg, 0.26 mmol) and DMF (1.0 ml). A pink solid (9.0 mg, 0.024 mmol, 47%) was obtained following purification method B. ¹H NMR (400 MHz, CDCl₃) δ 8.53 - 8.49 (m, 3H), 8.50 (app d, *J* = 5.0 Hz, 2H), 7.63 (app t, *J* = 1.8 Hz, 1H), 7.22 (app d, *J* = 1.8 Hz, 1H), 7.08 (app d, *J* = 5.0 Hz, 2H), 5.73 - 5.51 (m, 1H), 5.58 (d, *J* = 8.8 Hz, 1H), 3.46 (dd, *J* = 14.0, 5.9 Hz, 1H), 3.30 (dd, *J* = 14.0, 7.6 Hz, 1H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.81 (C), 162.69 (C), 155.05 (C), 150.14 (CH), 146.56 (CH), 145.24 (CH), 144.96 (C), 124.79 (CH), 120.85 (C), 108.76 (CH), 80.74 (C), 54.13 (CH), 40.85 (CH₂), 28.36 (CH₃). IR (KBr), υ/cm^{-1} 3337, 3153, 3028, 2978, 2930, 1708, 1609, 1589, 1515, 1367, 1250, 1161. HRMS [M+H]⁺ m/z calcd. for [C₁₈H₂₁O₃N₆]⁺ 369.1675, found 369.1662

The general protocol was followed with **3q** (40 mg, 0.12 mmol), Pd(dppf)Cl₂ (27 mg, 0.037 mmol), 3-furanboronic acid (81 mg, 0.72 mmol), Ag₂O (141 mg, 0.61 mmol) and DMF (2.4 ml). A pink solid (20 mg, 0.058 mmol, 48%) was obtained following purification method B. ¹H NMR (400 MHz, CDCl₃) δ 8.49 - 8.48 (m, 1H), 7.61 (app t, *J* = 1.6 Hz, 1H), 7.21 (app d, *J* = 1.6 Hz, 1H), 6.12 (s, 1H), 5.32 (s, 1H), 4.53 (app dd, *J* = 7.4, 4.9 Hz, 1H), 4.33 (app dd, *J* = 7.4, 5.0 Hz, 1H), 3.34 (app t, *J* = 7.7 Hz, 2H), 3.20 3.15 (m, 1H), 2.91 (dd, *J* = 12.8, 5.0 Hz, 1H), 2.74 (d, *J* = 12.8 Hz, 1H), 2.09 - 1.93 (m, 2H), 1.91 - 1.69 (m, 2H), 1.70 - 1.48 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.71 (C), 163.60 (C), 161.95 (C), 145.86 (CH), 145.00 (CH), 121.13 (C), 108.75 (CH), 62.01 (CH), 60.23 (CH), 55.56 (CH), 40.70 (CH₂), 34.49 (CH₂), 28.40 (CH₂), 28.36 (CH₂), 28.33 (CH₂). IR (KBr), υ/cm^{-1} 3223, 3134, 2932, 2858, 1703, 1589, 1515, 1462, 1267, 1159, 872. HRMS [M+H]⁺ m/z calcd. for [C₁₅H₁₉O₂N₆S]⁺ 347.1290, found 347.1279

Synthesis of vinylether-substituted tetrazine via Cu-mediated Liebeskind coupling with tributyl(1-ethoxyvinyl)tin

To a dry round-bottom flask was added tetrazine thioether **3** (1 equiv.), Pd(PPh₃)₄ (15 mol%) and CuTc (2 equiv.) The flask was outfitted with a septum-fitted gas inlet adapter, and was twice evacuated and backfilled with nitrogen. Tributyl(1-ethoxyvinyl)tin **7** (2 equiv.) and anhydrous dioxane (5 mM in **3**) were added via syringe, and the flask was heated by an oil bath at 100 °C for 16-30 min. After cooling down, the reaction mixture was diluted with hexane and filtered through short pad of 10% K₂CO₃ modified silica gel. Et₂O was used to washed off all red fractions. The residue was concentrated by rotary evaporation and purified by flash column chromatography on 10% K₂CO₃ modified silica gel.

Vinylether tetrazines with alkyl substituents 6h-k was stored as 1-5 mM solution in CH_2CI_2 in -20 °C to prevent self-condensation.

3-(1-ethoxyvinyl)-6-phenyl-1,2,4,5-tetrazine (6a)

The general protocol was followed with **3x** (50 mg, 0.24 mmol), Pd(PPh₃)₄ (43 mg, 0.037 mmol), CuTc (94 mg, 0.49 mmol), tributyl(1-ethoxyvinyl)tin (0.17 mL, 0.49 mmol) and 1,4-dioxane (49 mL) at 100 °C for 30 min. A pink soild (41 mg, 0.18 mmol, 74%) was obtained after column chromatography (CH₂Cl₂:Et₂O 100:0 to 96:4). ¹H NMR (400 MHz, CDCl₃) δ 8.63 (dd, *J* = 8.2, 1.6 Hz, 2H), 7.72 – 7.46 (m, 3H), 6.02 (d, *J* = 2.9 Hz, 1H), 4.93 (d, *J* = 2.9 Hz, 1H), 4.15 (q, *J* = 7.0 Hz, 2H), 1.55 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.15 (C), 161.78 (C), 153.73 (C), 133.00 (CH), 131.74 (C), 129.44 (CH), 128.30 (CH), 93.16 (CH₂), 64.67 (CH₂), 14.51 (CH₃). IR (KBr), υ/cm^{-1} 3072, 2978, 2929, 1614, 1599, 1421, 1314, 1182, 1056. HRMS [M+H]⁺ m/z calcd. for [C₁₂H₁₃ON₄]⁺ 229.1089, found 229.1082

methyl 3-(6-(1-ethoxyvinyl)-1,2,4,5-tetrazin-3-yl)propanoate (6c)

The general protocol was followed with **3k** (50 mg, 0.23 mmol), Pd(PPh₃)₄ (40 mg, 0.035 mmol), CuTc (90 mg, 0.47 mmol), tributyl(1-ethoxyvinyl)tin (0.16 mL, 0.47 mmol) and 1,4-dioxane (47 mL) at 100 °C for 30 min. A pink oil (29 mg, 0.12 mmol, 52%) was obtained after column chromatography (CH₂Cl₂:Et₂O 100:0 to 97:3). ¹H NMR (400 MHz, CDCl₃) δ 5.97 (d, *J* = 2.9 Hz, 1H), 4.90 (d, *J* = 2.9 Hz, 1H), 4.12 (q, *J* = 7.0 Hz, 2H), 3.82 – 3.59 (m, 5H), 3.07 (app t, *J* = 7.1 Hz, 2H), 1.52 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) 172.52 (C), 168.84 (C), 162.13 (C), 153.57 (C), 93.19 (C), 64.65 (CH₂), 52.15 (CH₃), 30.66 (CH₂), 29.84 (CH₂), 14.45 (CH₃). IR (KBr), ν/cm^{-1} 2923, 2851, 1737, 1620, 1437, 1378, 1271, 1160, 1056, 847. HRMS [M+H]⁺ m/z calcd. for [C₁₀H₁₅O₃N₄]⁺ 239.1144, found 239.1123

(3*R*,5*R*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-17-((*R*)-4-(6-(1-ethoxyvinyl)-1,2,4,5-tetrazin-3-yl)butan-2-yl)-10,13-dimethylhexadecahydro-1*H*-cyclopenta[*a*]phenanthren-3-ol (6b)

The general protocol was followed with **3r** (62 mg, 0.14 mmol), Pd(PPh₃)₄ (23 mg, 0.020 mmol), CuTc (52 mg, 0.27 mmol), tributyl(1-ethoxyvinyl)tin (0.092 mL, 0.27 mmol) and 1,4-dioxane (27 mL) at 100 °C for 16 min. A pink oil (41 mg, 0.082 mmol, 61%) was obtained after column chromatography (CH₂Cl₂:Et₂O 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 5.94 (d, *J* = 2.9 Hz, 1H), 4.88 (d, *J* = 2.9 Hz, 1H), 4.11 (q, *J* = 7.0 Hz, 2H), 3.67 - 3.57 (m, 1H), 3.38 (ddd, *J* = 14.1, 10.5, 5.0 Hz, 1H), 3.23 (ddd, *J* = 14.1, 10.1, 6.4 Hz, 1H), 2.06 (dddd, *J* = 13.2, 10.1, 6.4, 2.7 Hz, 1H), 2.11 - 1.95 (m, 2H), 1.91 - 0.93 (m, 30H), 0.92 (s, 3H), 0.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.26, 161.93, 153.72, 92.82, 72.01, 64.62, 56.59, 56.07, 42.93, 42.20, 40.54, 40.30, 36.57, 35.96, 35.76, 35.47, 34.86, 34.70, 31.93, 30.68, 28.37, 27.31, 26.53, 24.33, 23.51, 20.95, 18.58, 14.46, 12.22. IR (KBr), v/cm⁻¹ 3390, 2934, 2836, 1670, 1618, 1447, 1379, 1269, 1160, 1057, 736. HRMS [M+H]⁺ m/z calcd. for [C₂₉H₄₇O₂N₄]⁺ 483.3699, found 483.3685

3-(1-ethoxyvinyl)-6-((1-phenyl-5-(trifluoromethyl)-1H-pyrazol-4-yl)methyl)-1,2,4,5-tetrazine (6d)

The general protocol was followed with **3u** (27 mg, 0.075 mmol), Pd(PPh₃)₄ (13 mg, 0.011 mmol), CuTc (29 mg, 0.15 mmol), tributyl(1-ethoxyvinyl)tin (0.051 mL, 0.15 mmol) and 1,4-dioxane (15 mL) at 100 °C for 16 min. A pink oil (16 mg, 0.042 mmol, 57%) was obtained after column chromatography (CH₂Cl₂:Et₂O 100:0 to 97:3). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.60 – 7.38 (m, 5H), 6.01 (d, *J* = 2.9 Hz, 1H), 4.93 (d, *J* = 2.9 Hz, 1H), 4.76 (s, 2H), 4.12 (q, *J* = 7.0 Hz, 2H), 1.52 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.28 (C), 162.13 (C), 153.44 (C), 141,24 (CH), 139.49 (C), 130.63 (q, *J*_{C-F} = 37.8 Hz, C), 129.61 (CH), 129.17 (CH), 126.13 (q, *J*_{C-F} = 0.8 Hz, CH), 120.30 (q, *J*_{C-F} = 268.7 Hz, C), 117.74 (q, *J*_{C-F} = 1.5 Hz, C), 93.64 (C), 64.71 (CH₂), 30.12 (CH₂), 30.10 (CH₂), 14.45 (CH₃). IR (KBr), v/cm⁻¹ 3064, 2983, 2930, 1618, 1598, 1502, 1398, 1310, 1184, 1159, 1132, 1091, 1053, 975, 768, 695. HRMS [M+H]⁺ m/z calcd. for [C₁₇H₁₆ON₆F₃]⁺ 377.1338, found 377.1317

3-(2-(6-(1-ethoxyvinyl)-1,2,4,5-tetrazin-3-yl)ethyl)-5,5-difluoro-7,9-dimethyl-5*H*-dipyrrolo[1,2-*c*:2',1'-*f*][1,3,2]diazaborinin-4-ium-5-uide (6e)

The general protocol was followed with **3w** (20 mg, 0.053 mmol), Pd(PPh₃)₄ (9.3 mg, 0.0080 mmol), CuTc (21 mg, 0.11 mmol), tributyl(1-ethoxyvinyl)tin (0.038 mL, 0.11 mmol) and 1,4-dioxane (11 mL) at 100 °C for 16 min. An orange solid (10 mg, 0.026 mmol, 47%) was obtained after column chromatography (CH₂Cl₂:Et₂O 100:0 to 99:1). ¹H NMR (600 MHz, CDCl₃) δ 7.08 (s, 1H), 6.85 (d, *J* = 4.0 Hz, 1H), 6.24 (d, *J* = 4.0 Hz, 1H), 6.11 (s, 1H), 5.95 (d, *J* = 2.9 Hz, 1H), 4.89 (d, *J* = 2.9 Hz, 1H), 4.12 (q, *J* = 7.0 Hz, 2H), 3.81 (app t, *J* = 7.6 Hz, 2H), 3.66 (app t, *J* = 7.6 Hz, 2H), 2.56 (s, 3H), 2.25 (s, 3H), 1.52 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.44 (C), 162.05 (C), 161.14 (C), 155.94 (C), 153.69 (C) 144.31 (C), 133.59 (C), 127.95 (CH), 124.05 (CH), 120.78 (CH), 116.79 (CH), 93.13 (C), 64.63 (CH₂), 34.03 (CH₂), 26.67 (CH₂), 15.15 (CH₃), 14.47 (CH₃), 11.49 (CH₃). HRMS [M+H]⁺ m/z calcd. for [C₁₉H₂₂ON₆F₂B]⁺ 399.1916, found 399.1898

Synthesis of new MAGL probes

1,1,1,3,3,3-hexafluoropropan-2-yl 4-(((4-(methoxycarbonyl)phenyl)sulfonamido)methyl)piperidine-1-carboxylate

A round bottom flask was charged with 1,1,1,3,3,3-hexafluoropropan-2-yl 4-(aminomethyl)piperidine-1-carboxylate hydrochloride(1.30 g, 3.8 mmol) and methyl 4-(chlorosulfonyl)benzoate(1.77 g, 7.54 mmol). The flask was outfitted with a septum-fitted gas inlet adapter and then evacuated and filled with nitrogen. Anhydrous CH₂Cl₂ (50 mL) was added to the flask via syringe. The flask was cooled by an ice bath (0 °C), and triethylamine (763 mg, 7.54 mmol) was added. After stirring under nitrogen at 20 °C for 1 h, the reaction was diluted with CH₂Cl₂ (50 mL), then the organic phase was washed with water (50 mL x2) and brine (50 mL), dried over sodium sulfate, filtered and concentrated by rotary evaporation. An off-white solid (1.20 g, 2.37 mmol, 63%) was obtained after column chromatography (petroleum ether:EA 100:0 to 55:45). ¹H NMR (400 MHz, CDCl₃) 8.19 (app d, *J* = 8.6 Hz, 2H), 7.92 (app d, *J* = 8.5 Hz, 2H), 5.73 (hept, *J* = 6.2 Hz, 1H), 4.55 (t, *J* = 6.6 Hz, 1H), 4.31 – 4.04 (m, 2H), 3.97 (s, 3H), 2.99 – 2.72 (m, 4H), 1.83 – 1.67 (m, 3H), 1.20 – 1.03 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 165.65, 151.02, 145.18, 133.25, 130.48, 127.30, 121.34 (q, *J*_{C-F} = 282.0 Hz), 67.68 (hept, *J*_{C-F} = 33.0 Hz), 52.97, 47.91, 44.19, 43.70, 35.76, 29.47, 29.10. HRMS [M+H]⁺ m/z calcd. for [C₁₈H₂₀O₆N₂F₆SNa]⁺ 529.0844, found 529.0844

4-(N-((1-(((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)carbonyl)piperidin-4-yl)methyl)sulfamoyl)benzoic acid

A round bottom flask was charged with 1,1,1,3,3,3-hexafluoropropan-2-yl 4-(((4-(methoxycarbonyl)phenyl)sulfonamido)methyl) piperidine-1-carboxylate (880 mg, 1.74 mmol), LiOH.H₂O (182 mg, 4.34 mmol) in THF (20 mL) and H₂O (20 mL). After strring at 20°C for 2 h, the mixture was acidized by 2 N HCl to pH 3~4 and extracted by EA (50 mL x 2). The organic phase was washed with water (30 mL) and brine (30 mL x2), dried over Na2SO4, filtered and concentrated by rotary evaporation. An off-white solid (735 mg, 1.53 mmol, 86%) was obtained after triturating from CH₂Cl₂/Hexane (3 mL/15 mL). ¹H NMR (400 MHz, DMSO) δ 13.40 (s, 1H), 8.12 (app d, *J* = 8.5 Hz, 2H), 8.05 - 7.60 (m, 3H), 6.52 (hept, *J* = 6.4 Hz, 1H), 3.91 (t, *J* = 14.2 Hz, 2H), 3.05 - 2.74 (m, 2H), 2.67 (t, *J* = 6.3 Hz, 2H), 1.80 - 1.37 (m, 3H), 1.37 - 0.68 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 166.24, 150.56, 144.30, 134.07, 130.14, 126.71, 120.90 (q, *J*_{C-F} = 281.0 Hz), 67.20 (hept, *J*_{C-F} = 33.2 Hz), 47.45, 44.21, 43.76, 35.31, 29.03, 28.65. LCMS [M+H]⁻ m/z calcd. for [C₁₇H₁₆O₆N₂F₆SNa]⁺ 515.0687, found 515.0685

1,1,1,3,3,3-hexafluoropropan-2-yl 4-((4-(((3-methyloxetan-3 yl)methoxy)carbonyl) phenylsulfonamido) methyl)piperidine-1- carboxylate (8)

A dry round-bottom flask was charged with 3-methyl-3-oxetanemethanol (57.0 mg, 0.559 mmol), 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (117 mg, 0.609 mmol) and DMAP (6.20 mg, 0.0508 mmol). The flask was outfitted with a septumfitted gas inlet adapter and then evacuated and filled with nitrogen. Anhydrous CH_2Cl_2 (5 mL, 0.1 M) was added to the flask via syringe. The flask was cooled by an ice bath (0 °C), and 4-(N-((1-(((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)carbonyl)piperidin-4yl)methyl)sulfamoyl)benzoic acid (250 mg, 0.508 mmol) was added. After stirring under nitrogen at 0 °C for 15 min and at r.t overnight, the reaction mixture was diluted with CH_2Cl_2 . The solution was washed with saturated sodium bicarbonate solution, water and brine, and the organics were dried over sodium sulfate and concentrated by rotary evaporation. A white solid (280 mg, 0.486 mmol, 96%) was obtained after column chromatography (CH₂Cl₂:EA 100:0 to 95:5). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (app d, *J* = 8.4 Hz, 2H), 7.94 (app d, *J* = 8.4 Hz, 2H), 5.73 (hept, *J* = 6.3 Hz, 1H), 4.64 - 4.61 (m, 3H), 4.49 (d, *J* = 6.0 Hz, 2H), 4.44 (s, 2H), 4.27 - 4.06 (m, 2H), 2.99 - 2.76 (m, 4H), 1.89 - 1.65 (m, 3H), 1.44 (s, 3H), 1.23 - 1.05 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 176.52 (C), 161.22 (C), 151.45 (C), 143.20 (C), 135.91 (C), 128.27 (CH), 127.91 (CH), 120.80 (q, *J*_{C-F} = 281.6 Hz, C), 68.16 (hept, *J*_{C-F} = 34.2 Hz, CH), 48.51 (CH₂), 44.79 (CH₂), 44.19 (CH₂), 36.47 (CH), 29.56 (CH₂), 29.20 (CH₂), 13.68 (CH₃). HRMS [M+H]⁺ m/z calcd. for [C₂₂H₂₇O₇N₂F₆S]⁺ 577.1443, found 577.1421

1,1,1,3,3,3-hexafluoropropan-2-yl 4-((4-(6-(methylthio)-1,2,4,5-tetrazin-3-yl)phenylsulfonamido)methyl)piperidine-1carboxylate (9)

A dry round-bottom flask was charged with **8** (93 mg, 0.16 mmol) and a magnetic stirbar. The flask was outfitted with a septum-fitted gas inlet adapter, evacuated and refilled with nitrogen. Anhydrous CH₂Cl₂ (0.16 mL) was added via syringe and the resulting solution was cooled by an ice/brine bath (-5 °C) and BF₃•OEt₂ (10 µL, 0.081 mmol) was added via syringe. The resulting mixture was allowed to stir under nitrogen with continued cooling by the cold bath (maintained between -5 °C to -0 °C) for 4 h. Reaction mixture was quenched with pyridine (39 µL, 0.48 mmol), and then **2** (28 mg, 0.11 mmol) and DMF (0.11 mL) were added. The mixture was stirred vigorously and vacuum was carefully applied to remove CH₂Cl₂. The resulting mixture was then heated by an oil bath at 80 °C and the mixture was allowed to stir under nitrogen at 80 °C for 2 h. After cooling to r.t., PIDA (36 mg, 0.11 mmol) was added to the flask and the mixture allowed to stir at r.t. for 1 h. The mixture was diluted with CH₂Cl₂ and sequentially washed with saturated sodium bicarbonate, water and brine, dried over sodium sulfate and concentrated by rotary evaporation. A red solid (47 mg, 0.082 mmol, 72%) was obtained after purified by chromatography (CH₂Cl₂:Et₂O 100:0 to 95:5). ¹H NMR (600 MHz, CDCl₃) δ 8.69 (app d, J = 8.5 Hz, 2H), 8.05 (app d, J = 8.5 Hz, 2H), 5.72 (hept, J = 6.3 Hz, 1H), 4.80 (t, J = 6.6 Hz, 1H), 4.19 - 4.13 (m, 2H), 2.93 (t, J = 6.5 Hz, 2H), 2.92 - 2.82 (m, 2H), 2.82 (s, 3H), 1.81 - 1.71 (m, 3H), 1.22 - 1.10 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 176.52 (C), 161.22 (C), 151.45 (C), 143.20 (C), 135.91 (C), 128.27 (CH), 127.91 (CH), 120.80 (q, $_{C-F} = 281.6$ Hz, C), 68.16 (hept, $_{C-F} = 34.2$ Hz, CH), 48.51 (CH₂), 44.79 (CH₂), 44.19 (CH₂), 36.47 (CH), 29.56 (CH₂), 29.20 (CH₂), 13.68 (CH₃). IR (KBr), υ/cm^{-1} 3060, 2932, 2834, 1734, 1653, 1527, 1267, 1183, 740. HRMS [M+H]⁺ m/z calcd. for [C₁₉H₂₁O₄N₆F₆S₂]^{*} 575.0970, found 575.0956

1,1,1,3,3,3-hexafluoropropan-2-yl 4-((4-(6-(furan-3-yl)-1,2,4,5-tetrazin-3-yl)phenylsulfonamido) methyl)piperidine-1- carboxylate (10a)

To a microwave reaction tube was sequentially charged with **9** (28 mg, 0.049 mmol), Pd(dppf)Cl₂ (11 mg, 0.015 mmol), 3furanboronic acid (33 mg, 0.29 mmol), Ag₂O (57 mg, 0.24 mmol) and DMF (1.0 ml) in glove box. After heating under nitrogen at 100 °C for 3 h, the DMF was removed by rotary evaporation under high vacuum. A pink solid (21 mg, 0.036 mmol, 74%) was obtained after reverse phase chromatography with two stacked 14 g YAMAZEN C18 columns (H₂O:MeOH 10:0 to 0:10). ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, *J* = 8.4 Hz, 2H), 8.60 (s, 1H), 8.08 (d, *J* = 8.3 Hz, 2H), 7.67 (t, *J* = 1.7 Hz, 1H), 7.29 (d, *J* = 1.7 Hz, 1H), 5.73 (hept, *J* = 6.1 Hz, 1H), 4.61 (t, *J* = 6.6 Hz, 1H), 4.18 (t, *J* = 14.3 Hz, 1H), 2.95 (t, *J* = 6.6 Hz, 1H), 2.91 – 2.73 (m, 1H), 1.92 – 1.68 (m, 2H), 1.16 (t, *J* = 13.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.70 (C), 162.10 (C), 151.46 (C), 146.70 (CH), 145.36 (CH), 143.45 (C), 136.07 (C), 128.60 (CH), 127.95 (CH), 122.81 (q, *J*_{C-F} = 279.9 Hz, C), 121.02 (C), 108.77 (CH), 68.16 (hept, *J*_{C-F} = 34.2 Hz, CH), 48.54 (CH₂), 44.80 (CH₂), 44.20 (CH₂), 36.50 (CH), 29.57 (CH₂), 29.21 (CH₂). HRMS [M+H]⁺ m/z calcd. for [C₂₂H₂₁O₅N₆F₆S]⁺ 595.1198, found 595.1180

1,1,1,3,3,3-hexafluoropropan-2-yl 4-((4-(6-(1-ethoxyvinyl)-1,2,4,5-tetrazin-3-yl)phenylsulfonamido) methyl)piperidine-1-carboxylate (10b)

To a dry round-bottom flask was added **9** (15 mg, 0.026 mmol), Pd(PPh₃)₄ (4.5 mg, 0.039 mmol), CuTc (10 mg, 0.052 mmol). The flask was outfitted with a septum-fitted gas inlet adapter, and was twice evacuated and backfilled with nitrogen. Tributyl(1- ethoxyvinyl)tin (0.017 mL, 0.052 mmol) and anhydrous dioxane (5.2 mL) were added via syringe, and the flask was heated by an oil bath at 100 °C for 30 min. After cooling down, the reaction mixture was diluted with hexane and filtered through short pad of 10% K₂CO₃ modified silica gel. Et₂O was used to washed off all red fractions. A pink oil (11 mg, 0.018 mmol, 67%) was obtained after column chromatography with 10% K₂CO₃ modified silica gel (CH₂Cl₂:Et₂O 100:0 to 85:15). ¹H NMR (400 MHz, CDCl₃) δ 8.79 (app d, *J* = 8.5 Hz, 2H), 8.07 (app d, *J* = 8.5 Hz, 2H), 6.09 (d, *J* = 3.0 Hz, 1H), 5.72 (hept, *J* = 6.3 Hz, 1H), 5.01 (d, *J* = 3.0 Hz, 1H), 4.65 (t, *J* = 6.6 Hz, 1H), 4.21 - 4.14 (m, 4H), 2.94 (app t, *J* = 6.5 Hz, 2H), 2.90 - 2.80 (m, 2H), 1.90 - 1.70 (m, 3H), 1.56 (t, *J* = 7.0 Hz, 3H), 1.20 - 1.13 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.05 (C), 162.04 (C), 153.42 (C), 151.46 (C), 143.72 (C), 135.77 (C), 128.95 (CH), 127.94 (CH) , 120.81 (q, *J*_{C-F} = 281.0 Hz, C), 94.37 (C), 68.16 (hept, *J*_{C-F} = 34.2 Hz, C), 64.84 (CH₂), 48.55 (C), 44.79 (CH₂), 44.19 (CH₂), 36.50 (CH), 29.56 (CH₂), 29.21 (CH₂), 14.49 (CH₃). HRMS [M+H]⁺ m/z calcd. for [C₂₂H₂₅O₅N₆F₆S]⁺ 599.1511, found 599.1496

1,1,1,3,3,3-hexafluoropropan-2-yl 4-((4-(1,2,4,5-tetrazin-3-yl)phenylsulfonamido)methyl)piperidine-1-carboxylate (10c)

To a dry round-bottom flask was added **9** (20 mg, 0.035 mmol), PdCl₂ (0.62 mg, 0.0035 mmol). The flask was outfitted with a septumfitted gas inlet adapter, and was twice evacuated and backfilled with nitrogen. Triethylsilane (17 μ L, 0.10 mmol) and anhydrous THF (0.35 mL) were added via syringe, and the flask was heated by an oil bath at 45 °C. The mixture was allowed to stir at 45 °C for 24 h. PIDA (12 mg, 0.042 mmol) was added as a solid at r.t. After stirring at room temperature for 1 h, the reaction mixture was diluted with CH₂Cl₂, transferred to a separatory funnel and was sequentially washed with saturated sodium bicarbonate, water, brine, dried over sodium sulfate and concentrated by rotary evaporation. A pink solid (10 mg, 0.019 mmol, 54%) was obtained after column chromatography (CH₂Cl₂:Et₂O 100:0 to 95:5). ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 8.81 (app d, *J* = 8.6 Hz, 2H), 8.10 (app d, *J* = 8.6 Hz, 2H), 5.73 (hept, *J* = 5.9 Hz, 1H), 4.65 (t, *J* = 6.6 Hz, 1H), 4.19 (app d, *J* = 13.6 Hz, 1H), 4.15 (app d, *J* = 13.6 Hz, 1H), 2.95 (app t, *J* = 6.6 Hz, 2H), 2.90 (app td, *J* = 13.0, 2.1 Hz, 1H), 2.84 (app td, *J* = 13.0, 2.1 Hz, 1H), 1.18 - 1.69 (m, 3H), 1.20 - 1.12 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.53, 158.32, 151.45, 144.14, 135.72, 129.20, 127.99, 120.80 (q, *J*_{C-F} = 281.0 Hz), 69.16 (hept, *J*_{C-F} = 34.2 Hz), 48.54, 44.78, 44.19, 36.50, 29.55, 29.20. HRMS [M+H]⁺ m/z calcd. for [C₁₈H₁₉O4N₈F₆S]⁺ 529.1093, found 529.0932

Stopped-flow kinetic analysis of MAGL terazines 10a, 10b, 10c and 12^[3] with *eq*-5-hydroxy*trans*-cyclooctene in MeOH at 25°C

Solutions (3 mL) of tetrazines **10a**, **10b**, **10c** and **12** (0.080 mM) was prepared in MeOH. Solutions (3 mL) of *eq*-5-hydroxy-*trans*cyclooctene (0.80 mM) were prepared in MeOH. The reactions between tetrazines and *trans*-cyclooctene were measured under pseudo-first order conditions using SX 18MV-R stopped-flow spectrophotometer (Applied Photophysics Ltd.). Each solution of tetrazine and *trans*-cyclooctene were injected in equal volumes via 3 mL syringes into the stopped-flow instrument at 25 °C, resulting in final concentration of 0.04 mM of tetrazines and 0.40 mM *trans*-cyclooctene. The reaction was monitored by the decay of absorbance associated with the tetrazines (10a and 10b at 300 nm, 10c at 280 nm). Reaction were repeated in triplicate. With Prism software, an observed rate constant, k_{obs}, was obtained by nonlinear regression.

Figure S4 Pseudo-first order stopped-flow kinetics of tetrazine 10a, 10b, 10c and eq. 5-hydoxy-*trans*-cyclooctene. The plot shows the decay of absorbance at 300 nm, 300 nm, 280 nm respectively measured by a stopped-flow instrument (red curve). The nonlinear regression calculation by prism software is fitted as black curve.

MAGL Probe Experiment

Materials. Tetrazine amine was purchased from Click Chemistry Tools. TCO-TAMRA were synthesized according to literature protocol.^[4] Human brain vascular pericytes and pericyte growth supplement were purchased from ScienCell Research Laboratories. Phosphate-based saline (PBS) was purchased from Mediatech, Inc.. Media and other supplements for cell culture were purchased from Thermo Fisher Scientific unless otherwise noted. For cell experiments, all reagents were prepared as 1000x stock solutions in DMSO and stored at -80°C.

MAGL in vitro activity assay. The MAGL in vitro activity assay was performed based on a reported protocol.^[5] Briefly, human MAGL enzyme was pre-treated with compounds at room temperature for 30 min, and subsequently incubated with 7-hydroxycoumarinyl arachidonate (7-HCA) as a substrate at room temperature for 1 h. The fluorescence signals were measured on an Envision plate reader (excitation 355 nm, emission 460 nm).

Cell culture and probe treatment. Human brain vascular pericytes were cultured in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F-12) GlutaMAX media supplemented with 5% heat-inactivated fetal bovine serum (HI FBS), 1x pericyte growth supplement (PGS), and 1x penicillin-streptomycin at 37 °C with 5% CO₂ in a humidified environment. Cells were plated in 6-well plates and cultured overnight in growth media.

To assess cellular potency of probe **10c**, live cells were treated with **10c** ($0.32 \text{ nM} - 10 \mu$ M) at 37 °C for 1 h, after which the cells were washed with fresh media. The media were then placed with fresh media containing 2 μ M of TCO-TAMRA, and the cells were incubated at 37 °C for 30 min. The reaction was quenched by replacing the media with PBS containing 100 μ M tetrazine amine, and the cells were washed with cold PBS and harvested with a scrapper.

To measure the cellular labeling kinetics of TCO-TAMRA with **10c** and **12**, live cells were treated with **10c** (1 μ M) or **12** (32 nM) at 37 °C for 1 h. At these concentrations, both probes achieved full labeling of MAGL. Subsequently, the cells were washed with fresh growth media, which were placed with fresh media containing 50 nM, 200 nM, or 2 μ M of TCO-TAMRA, and the cells were incubated at 37 °C for 2, 5, 10, 15, 20, 30, and 60 min. To quench the reaction, the media were replaced with PBS containing 100 μ M tetrazine amine, and the cells were washed with cold PBS and harvested with a scrapper.

The suspensions were centrifuged at 10,000xg for 1 min at 37 °C, and the cell pellets were lysed in PBS containing 0.25% sodium dodecyl sulfate (SDS) with sonication. The protein concentration was measured with a bicinchoninic acid (BCA) assay kit (Thermo Scientific) and normalized.

In-gel fluorescence and data analysis. The proteomes were analyzed with 1.0 mm thick 4-12% bis-tris protein gels in 2-(*N*-morpholino)ethanesulfonic acid (MES) buffer. The gels were scanned with a Typhoon FLA 9500 Biomolecular Imager (GE Healthcare) with the TAMRA channel with 532 nm excitation and a 575 nm long pass emission filter. To measure the total protein loading, the gels were treated with ClearPage Instant Blue (CBS Scientific) overnight, and after brief destaining with water, scanned with an Odyssey Imager (Li-COR) at the 700 nm channel. The in-gel fluorescence images were processed with ImageJ software (v1.47, NIH), and the intensities were quantified with Image Studio (v5.2, Li-COR) with background subtraction. The coomassie images were processed and quantified with the Image Studio software. For data fitting, the fluorescence intensities of the two MAGL bands were averaged and fitted with a dose-response (for cellular potency) or exponential (for kinetics) equation with Prism v7.02 (GraphPad).

MAGL probe with 6-methyltetrazen-3-yl substituent 12

Figure S5 Stucture of reagents in live cell experiments

Figure S6 Representative cellular potency data of 10c in live human brain vascular pericytes. (A) Full gel of in-gel fluorescence data in Figure 3C. (B) Coomassie staining of total proteins.

Figure S7 Cellular labeling kinetics of TCO-TAMRA with 10c (1 µM, 1 h) in live human brain vascular pericytes. (A) Full gel of in-gel fluorescence data (200 nM TCO-TAMRA in Figure 3D). (B) Coomassie staining of total proteins.

Figure S8 Cellular labeling kinetics of TCO-TAMRA with 12 (32 nM, 1 h) in live human brain vascular pericytes.

References

- [1] Org. Process Res. Dev. 2018, 22, 1262–1275,
- [2] E. S. Scott, L. F. Audrieth, J. Org. Chem. 1954, 19, 1231-1237.
- [3] W. D. Lambert, Y. Fang, S. Mahapatra, Z. Huang, C. W. am Ende, J. M. Fox, J. Am. Chem. Soc. 2019, 141, 17068-17074.
- [4] H. E. Murrey, J. C. Judkins, C. W. am Ende, T. E. Ballard, Y. Fang, K. Riccardi, L. Di, E. R. Guilmette, J. W. Schwartz, J. M. Fox, D. S. Johnson, J. Am. Chem. Soc. 2015, 137, 11461-11475.
- [5] C. R. Butler, E. M. Beck, A. Harris, Z. Huang, L. A. McAllister, C. W. am Ende, K. Fennell, T. L. Foley, K. Fonseca, S. J. Hawrylik, D. S. Johnson, J. D. Knafels, S. Mente, G. S. Noell, J. Pandit, T. B. Phillips, J. R. Piro, B. N. Rogers, T. A. Samad, J. Wang, S. Wan, M. A. Brodney, J. Med. Chem. 2017, 60, 9860-9873.

3830	3791	3758	3682	3659	3586	3548	3528	3462	3399	3358	3328	3296	3255	3181	3142	3090	3038	2985	2961	2919	2882	6446	5090	4939	3856	3705	2567	1480
7.	7.	Ч	. ۲ ۲	۲ Z .	7.7	~	~~/	۲	- 7	- 7.	- 7.	- 7.	- 7.	- 7.	- 7	-7.	.7.	.7	7-	-7	7.	ر 4.	J_4.	J-4.	4.	4	4	∕_4

S49

S51

S53

6.9347 6.9198

 4.6457

 4.6358

 4.4516

 4.4516

 4.3604

 -3.8617

-1.4182

6483	6334	4476	4327	4223	9266
4.	∕_4.	4	4	4	m I

5054 4955 3717 3617 3617 1811	5851	5887 5845 5793 5753 5753 5753 5742 5511 5511 5511 5511 5512 5312 5312 531	3220
4 4 4 4			1

-1.3275

S77

0005 388 237 087 087 0022 9066 867 708 883 738 805 7707 707 707 707 8822 8822 8822 738 822 8822 8822 7084 80587 707888 8822 708488888888888888888888888888888888888	970 933 888 852 852 774 774 738 314 631 631 470 470 470	309 259 146 146 035 035 853 853 728 853 338 853 891 019	701 5527 527 527 527 872 601 601 606 606 606 606 606 606 606 606
1 2 2 2 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6	A A A A A A A A		м и и и и и и и и и и и и и и и и и и и
0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 M M M M M	· · · · · · · · · · · · · · · · · · ·	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

5268 5120 3899 3751 1516 39751 53751 53751 3367 3367 3367 3367 3367 3367 3367 336	1189 1075 1075 1075 1189 1075 1189 1075 1189 1189 1189 1189 1189 1189 1189 118	2542 2545 2545 2545 22395 22345 22345 22345 22345 22345 2536 2536 2536 2536 2536 2536 2536 253

S85

0	σ	σ	8	8	\sim
0	4	4	σ	\sim	б
-	σ	6	\sim	4	ъ
Ś	4	\sim	\sim	\sim	\sim
4	4	4	4	4	m.
\sim	1	1-	ノ		
	ור	r	r		1

03 04 02 35	35	36 36 51 58 58	78 78 53	10	
26(88(87	270 26	3 5 4 4 8 3 5 1 9 4 7 8	32(30) 29)	830 80 25	
6.7 1	000	4 4 4 4	n n n	N NNN	
$\langle \langle \rangle \rangle$	\checkmark /				

-1.3058

L164.6267 L164.5881 L164.5881 L163.3975 L160.8107	$\begin{pmatrix} 134.8626 \\ 134.7724 \\ 132.2378 \\ -132.2378 \\ -112.4.1192 \\ 118.5471 \\ 1117.2730 \\ 1117.0497 \end{pmatrix}$	79,6684	
F O O O			
Ι.		CDCI3	
200 190 180 170 160 150	140 130 120 110	100 90 80 70 60 f1 (ppm) \$98	50 40 30 20 10 0

8	28	31	8	16	26	36	80	27	12	39	91	51	27	80	2	17	39	4	2	90	52
õ	6	6	80	[∞]	2	~	Ň	10	2	4	ŝ	ŝ	2	20	H	Ξ	ö	6	6	8	8
Ч	5		m.					m.	m.	m.	m.		m.		m.	m. M.	m.	2.2	2.2	2.2	2.2
<u>``</u>	<u> </u>	<u> </u>	1		Ľ.	Ľ	Ľ	Ľ	Ľ	Ś	2	2	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	

--5.0509 --4.7719

-2.7432

<7.4960</pre>

---4.9540

4.4366
4.4264

-2.7948

8.7476 8.7252 8.4463 8.4240 —2.8295

563	918	663	[95	383	865
90	56	20	5	4	ß
	<u>.</u>		-:	~	
2	Ğ	20	ŝ	Š	5
—	Ē.	-	-		1

8.6168 8.6026 8.2451 8.2308

—3.9778

-2.8133

MeS-N-N-O N=N-OOMe

< 8.6740
</ s.6524
</ s.6919
</ s.8702

			~135.8666 ~133.1164 ~127.9368	~118.3204 ~115.7830		CDCI ₃			— 13.6930
		N−N MeS{∕∕ `} N=N	CN						
	1	1							
nyahaan ayaa ahaa ahaa ahaa ahaa ahaa ah	honn hanna an	alinyahidi kayatan kayaaninya kana kana kana kana kana kana kana k	nlangnyrmennen fynnyr pronosion progenyr	arnalmalanaalaannaalaannaa	inshindan qommuning mining mana	anthining), mannadhinnadhinadhinadh	al Waranya wang Kang Ang Kang Ang Kang Kang Kang Kang Kang Kang Kang Ka	lmanloonadaladalaanaa ahaanaa a	nihlivinina na kirkiva papanan laan
190 180	0 170	160 150	140 130	120 110	100 90 f1 (ppm)	80 70	60 50 40	30 20	10 0

S114

1678	1659	1493	1473	8213	8028	8005	7821	9921	0066	9714	9694
°.	8	~8./	∞. √	77.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	۲	- ⁶ .	√6.	ë L	

---4.0984

-2.8181

006 998 879 879)406)287)168)168 '336

190	180	170	160	150	140	130	120	110	100 f1 (p S ²	90 pm) 124	80	70	60	50	40	30	20	10	Ó
	· · · · · · · ·											·			·	·			
											CDCI	3						7	
				Mes	N−1 5{⁄ N=1	u V	–OMe								1				
	—176.4263		— 162.3644															— 13.5498	

S125

718	233		001	70T	120	2/8	254	177	150	126	021	370	040 788	1 00		000	717	683	581	546	469	197	114	984	901	374	249	161	840	711	577	437	194	142	200	975 975	917	806	770	677	632	598		508 461	371	825	751	677	647	597	580	205	327 327
1 0	പ	പ	പ	<u>п</u>	<u> </u>	\sim c	γn	n n	n m	ົ້	n m	ົດ	ററ	7 V	7 V	7 F				1	1	б	6	×	×	\sim	\sim	\sim	6	6	റെ	റെ	ω (∞α	οα	5 r	\sim	\sim	\sim	\sim	\sim	r 7	~ r	~ ~	- ~	ഹ	S	S	S	ц п	പ	പ	ъω
ں ف	, A	. A	t	t	4 [.] •	4. 4	4. 2	t. 4	- -	- 4	⊦ ⊲	ŕ ¬	τ.	n n	n n	n n	n m	n m	i m	ς. Έ	ς.	Ň	N.	Ň	N.	Ň	Ň	Ň	Ĺ.	Ĺ.	i,	i,	i,	-i -	-i	i H	Ē	Ŀ.	Ĺ.	Ĺ.	ц,	-i -	-i •	-i -	i H	Ĺ.	Ĺ.	Ŀ.	Ŀ.	ц,	-i -	-i -	i H
																						_			_			L						L 1	L I	L					ς.	/											
																								_																													

ω	Ч	\sim	9	4	ი	0	m	ø	\sim	Ь	6	ω	4	9	ø	\sim	0	9	m	Ь	\sim	8	6	4	0	\sim	9	6	Ч	9	8	<u>н</u> і	<u> </u>	ר כ	∩ 4		0	8	6	8	Ч	m		τ σ	ט ת	5 4	· ∞	0	Ч	9	<pre>N</pre>	<u> </u>	പര	n m
\sim	9	\sim	9	ഹ	0		6	σ	9	Ь	2	4	1	ഹ	\sim	9	4	S	1	0	\sim	\sim	\sim	9	8	1	S	1	\sim	4	8	ഗ	x c	\sim \circ	γ γ	1 00) m	б	ъ	1	9	റെ	γ	0 1	、 r	- 5	ι LO	\sim	0	4	\sim	χ	7 7	<u>г</u> 0
σ	0	2	N	ō	S		ŝ	o,	~	9	9	4	4	4	N	L L		Ч	1	S,	∞	8	~	Q	-		0	6	8 S	\sim	9	9 I	<u> </u>	sг	റഗ	ר י	. 4	\sim	\sim	\sim	\sim	0	იი	0 1		~ 9	, r	9	Q	ŝ	4 (ہ م	ο -	14
e	ဖ			O,	റ	ຸດ	00						~	e	œ.	e	e	ь С	ഹ	4	4	4	4	4	4	4	4	\sim	\sim	\sim	m.	സ്	m d	N (7 0	10		2	N	\sim	2	N I			1 -		0	0	0	0	0,0	ກັດ	סית	9 9
m	m	N	N	Ē	-		-	-i	-i	-i	÷,	Ч,	-i	-i	-i	-i	-i	-i	-i	-i	-i	-i	-i	-i	Ē,	-i	-i	-i	Ē,	-i	-i	-i ,	-i •	-i •		i	. –	-	-	Ē,	÷,	н,					i —	-	-i	Ē.	-i (o d	o c	်ဝ
_							_	_	_				_											_									L		L										_	<u> </u>	~ <	1						
																																												_	-		n ì	~~						

7043	0333	9932	9785	9713	9575	9153	7702	7279	7141	7070	6922	6520
Ň	Ň	÷,	Ξ.	÷,	Ĺ,	÷,	Ĺ,	Ξ.	Ĺ,	Ξ.	Ξ.	ц,
	<u> </u>			5	1	/	$ \ge $					

S136

4427	4286	4069	3937	3454	2925	2720	2581	2379	7367	
ň	ň	ň	ň	ň			°.	 		

<pre>)11 246 515 515 575 575 575 575 572 812 812 812 812 835 53 8392 8353 8353 855 853</pre>	187 380 389 386 386 300 321	542 367 396 398 398 391 391 218 218 218 218 746	590 556 360 360 323 923 923 515 515 515	549 549 518 518 518 555 355 355 355 355 355 355 355 355 35	547 562 152 953 824
	8.81 8.68 8.68 7.72 7.72 7.72 8.68 8.68 8.68 8.68 8.68 8.68 8.68 8.6	6.00 6.00			75 75 75 75 75 75 75 75 75 75 75 75 75 7

S141

0868 8740 8639	2543 2444 1181	7300 7261 7119 7058 6916 6891 6225 5848 5559 5559 5559 5559 5559
√ 5.6.	9 9 9 9	

 $CDCl_3$

— 162.4408

132.4490 131.7127 129.3819 127.6211

S149

7.1059 7.0836

< 8.5937</pre>< 8.5715</pre>

 $\begin{array}{c} & 8.7200 \\ & 8.7057 \\ & 8.2752 \\ & 8.2609 \end{array}$

—3.9863

7807	1001	7734	7687	6719	6516	9359	9193	9148	7989
С ц	o 	 	∾ ∦ ″	8	8 	.77	≁.	~~	~

 $\begin{array}{c}
3.7103 \\
3.6928 \\
3.6860 \\
3.6750 \\
3.1090 \\
3.0914 \\
3.0739
\end{array}$

S161

S163

S165

8.2260 8.2221 8.2189 7.8649 7.8588 7.8588 7.8431 7.8371 7.0458 7.0242

2: 0874 2: 0728 2: 0526 2: 0516 1: 7866 1: 7794 1: 7794

7420	4953	4910	4863	4779	4738	4697	4607	4525	4484	4431
ر ۲. ۲.	۲ <u>۲</u>	7.	7.	77.	- 2	~	~	2	2	7

-4.7726

∕7.0872 €.8689 €.8588	6.1212	3.8411 3.8232 3.8189 3.8031 3.6728 3.6570 3.6529 3.6348	

281 115 928	340 163 986
8.72 8.71 8.69	EL 20.2

S189

<u> </u>	- 0 1 4 8 0 V V 8 9 V M V 0 1	- L U 4 0 0 M U -	4 m 2 6 0 0	, H O V M O V V O L V A 4
	· / w w w / v @ w 4 / 0 & / 0 /	~ v v v v 4 0 0 0	0 1 0 8 5 1 7	, n u u u u u u u u u u
0 N 0 0 M 0 0 N 0 0 4 8 N	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- 8 L 2 4 0 8 9 1	4 8 0 H 7 M	- 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
44400000000000	. 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	> o o o o o o o o o	× × × × × × ×	、 ー ー ー ー a a a c c a e
о о о о о о о о о о о о о о			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

+941 +914 +889	097 8057	016 115	C11:	239	443	311	253	129	324	278	146	604 412	220	997	.876	6 0 4	.007 637	513	354	231	033	530 7530	211	334	153	973	8499	3424	3327	3256	8085	'920	834	740	460	484	359	128	6063	941	c/01	690	535	495
8 8 8 1 7 7 7	9. 6. 	0. 1	7. Z.	- 9 1	0 4 0 0	4.5	4	4 4	4 4	4	4 (() ()		μ	-3.1	μ. 			- m - m	-2.9	-2.9	2.0	2.5	- 7 - 7	- 2.	- 2.0			_1.8			 	71.7					L1.7	L1.6	-1.6	- - -		1.5	1.5	[] []

9403 9331 8719 8719 1437 1261 1261 1086 0910 0396 0910 0396 9972 8423 8423 8018 8018	7704 7429 6543 6417 5945 5734 5734 5738 5738 5357	5249 5183 5084 5084 4369 4277 4204 4191 4191 4100 3923	3857 3786 3616 2765 27723 2676 2614 2517 2517 2517 2517 2517 2517 2517 2517

	7.7283 7.4925 7.4755 7.4755 7.4755 7.4755 7.4755 7.4455 7.4455	6.0016	4.9355 4.9281 4.7587 4.1509 4.1334 4.0985	1.5422 1.5248 1.5248
--	--	--------	--	----------------------------

S220

CDCl₃

1.99*-*T

8.5

9.0

1.98.T

8.0

7.5

7.0

6.5

1.00<u>-</u>[

5.5

5.0

6.0

3.01 ⊣ 2.02 ⊣ 2.00 ∩ ⊣ 2.22 ⊣

4.5 f1 (ppm)

S221

4.0

3.5

4.03-

2.5

3.0

3.01*-*T

1.5

3.06-]

2.0

2.08-]

1.0

0.5

0.0

5968 5825	0597 0454 7443 7339 7236 7236 7236 7236 7287 8096 8096 7878 7878 7878 7878 7878 7878 7878 78	9205 9205 8894 8852 8636 8636 8485 8445 8445 8445 8445 8445 8445 8211 8054 7794 7794 7794 7794	7525 7463 7404 7342 7275 7213 7158 2146	2067 2028 1999 1863 1644 1644 1645 1293 1293 1225 1123 1123 1123 1088
8.0	8 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			

