

Supplementary Information for

A peptide of a type I toxin-antitoxin system induces *Helicobacter pylori* morphological transformation from spiral-shape to coccoids

Lamya EL MORTAJI<sup>1</sup>, Alejandro TEJADA-ARRANZ<sup>1,2</sup>, Aline RIFFLET<sup>3</sup>, Ivo G BONECA<sup>3</sup>, Gérard PEHAU-ARNAUDET <sup>4</sup>, J. Pablo RADICELLA<sup>5</sup>, Stéphanie MARSIN<sup>5+</sup> and Hilde DE REUSE<sup>1\*</sup>

Corresponding author: Hilde DE REUSE Email: <u>hdereuse@pasteur.fr</u>

# This PDF file includes:

Figures S1 to S8 Table S1 to S4 Legend of movies S1, S2 and S3 SI References

Other supplementary materials for this manuscript include the following:

Movies S1 to S3



**Fig. S1.** Schematic representation of the native A1 locus, of the AapA1-GFP fusions expressed from plasmid pILL2157 or from the native locus and of the PaapA1-lacZ and PIsoA1-lacZ fusions expressed at their native loci from their respective native promoters.

SD indicates the Shine-Dalgarno sequence; -10, the position of the -10 box of the promoter; Purel, the promoter of the *urel* gene from plasmid plLL2157; arrows, the direction of transcription; a red cross on an arrow, an inactivated promoter; GFP, green fluorescent protein; kan, the gene conferring kanamycin resistance; a star (\*) a STOP codon that has been replaced by a codon coding for Ala. A hatched *IsoA1* arrow indicates that the corresponding RNA is not expressed. The corresponding strains are listed in Table S2, the plasmids in Table S3 and the primers used for the construction in Table S4.



В



Fig. S2. Controls of the H. pylori fractionation procedure

A. Western blot analysis of total extract (T), soluble extract (SE), inner membrane (IM) and outer membrane (OM) fractions prepared from a control *H. pylori* B128 strain and revealed with the following control antibodies anti-Pbp2 for IM, anti-AlpA for the OM and anti-AmiE for the cytoplasmic fraction.

B. Fluorescence of a strain expressing GFP from plasmid plLL2157 is presented as a control for the data of Fig. 2B.

А

# A t=0h

**B** t=8h





c t=24h





Histograms of fluorescence intensity of cells from strains pA1-isoA1, pA1 or pA1\* stained with the PMF-sensitive MitoTracker Red CMXROS dye at 0h (A), 8h (B) or 24h (C) after 1 mM IPTG addition or not. pA1\* cells treated with TCS served as a control for PMF dissipation conditions.

# **Bacterial length over time**



### Bacterial length (µM)



Mean curve obtained from the analysis of the growth of 61 individual *H. pylori* bacteria (strain HPLEM213 without IPTG, Table S2). Bacteria were analyzed by live microscopy, and their size and time of division were measured from their separation following a division to the next division. The curves were analyzed and normalized. Mean division time is 165 min, initial length mean is 1.9  $\mu$ m, mean length when division occurs is 3.2  $\mu$ m.



**Fig. S5.** Response of the *aapA1* and *IsoA1* promoters to different stresses.  $\beta$ -galactosidase activities expressed by strains expressing the PaapA1-lacZ and PIsoA1-lacZ fusions from the native locus were measured after 6h treatment with different stresses, NiCl<sub>2</sub> (20 and 200 mM), pH 4, Tetracycline (0.1 and 1 mg/ml) or Rifampicin (0.05 and 0.5 mg/ml).  $\beta$ -galactosidase activities are presented as ratio (expressed in %) of activities measured with stress versus activities of untreated samples. Results from 3 independent experiments performed in duplicates are shown. Error bars represent the standard deviation, NS corresponds to nonsignificant, (*P* >0.05).



# Fig. S6. Half-life of the aapA1 and IsoA1 RNAs

RNA decay was determined by plotting normalized intensities (RNA signal relative to time 0) of bands corresponding to full length *aapA1* and *IsoA1* transcripts as a function of time after rifampicin addition. Approximate half-lives (min) measurements from three independent experiments are indicated for each transcript.





**A)** Growth of the B128 WT strain, of six isogenic mutants carrying *AapA1-IsoA1* deletions ( $\Delta A1$ ,  $\Delta A2$ ,  $\Delta A3$ ,  $\Delta A4$ -2+A4-2,  $\Delta A5$  or  $\Delta A6$ ) and of a multiple mutant strain carrying deletions of every functional class A TA system ( $\Delta 5$ ) was followed under normal conditions during 44h. The growth curve of the mutants was similar to that of the parental WT strain.

**B)** Viability of the B128 WT strain and of the  $\Delta 5$  multiple TA mutant was measured during 72h by determining colony forming units (CFU) by plating on blood agar medium. No significant difference was observed in the kinetics of loss of viability between these strains.

**C)** Exponentially growing B128 WT strain,  $\Delta A1$  and  $\Delta 5$  isogenic mutants were exposed to 1% hydrogen peroxide. Their viability was measured during 12h by counting the colony forming units (CFU/mL) on blood agar plates.

**D)** Exponentially growing B128 WT strain,  $\Delta A1$  and  $\Delta 5$  isogenic mutants were exposed to 1% hydrogen peroxide during 8 h. The percentage of survival was calculated by dividing the number of CFU/mL in the culture after 8h with hydrogen peroxide by the number of CFU/mL after 8 h of incubation without stress.



Fig. S8. Sequence alignment of the six functional class A TA modules present on the *H. pylori* B128 genome.

Sequences alignment of the six functional class A TA module colored according to the percentage identity with their consensus sequence. The -10 box, Shine-Dalgarno (SD) and AapA toxin coding sequence are framed in red and the start and stop codons are indicated above the sequences. *IsoA* antisense RNA sequence is represented by a green bar under the sequence alignment. Note that in B128, two consecutive TA modules are found at the locus A4, here referred as locus A4-1 and locus A4-2. A locus corresponding to the position of the A2 locus in other *H. pylori* strains was identified but its corresponding A2 ORF was inactivated in B128 strain.

**Table S1.** Summary of the muropeptide composition of peptidoglycan extracted from B128 WT strain during exponential phase (24h), early stationary (36h) and late stationary phase (72h culture) and from the B128  $\Delta aapA1$ -*IsoA1* + pA1 strain, 8 and 24 hours after toxin induction by IPTG addition and, as a negative control, from B128  $\Delta aapA1$ -*IsoA1* + pA1\* 8h and 24 h after IPTG addition. Panel A: Summary of the muropeptide composition of peptidoglycan extracted from *H. pylori* B128 WT strain during exponential phase (24h, first column); stationary phase (36h, second column); after 72h culture ("aging" coccoids, third column); of toxin-induced coccoids of B128  $\Delta aapA1$ -*IsoA1* + pA1 strain after 8h of induction (equivalent to 24h of culture, fourth column) or 24 h of induction (equivalent to 36h of culture, fifth column); and as a control, of strain B128  $\Delta aapA1$ -*IsoA1* + pA1\* after 8h of induction (sixth column) and 24 h of induction (seventh column). Each condition was analyzed in triplicates. The relative abundance of muropeptides in each sample was calculated according to Glauner *et al.* (1). Arrows show major statistically significant changes measured in the muropeptide composition when comparing exponential phase grown bacteria with aging coccoids and with A1 toxin induced coccoids (cultures at equivalent timepoints). These data show that both "aging coccoids" and toxin-induced coccoids present similar changes namely significant GM2 increase and GM3 reduction, which for the toxin-induced condition is already visible at 8h post-induction and is accentuated at 24h post-induction. In contrast, for the control condition, pA1\*, no such changes are measured.

| Area - % for each muropeptide <sup>a</sup> |                      |                                       |                        |                           |                                    |                                     |                                    |                                         |
|--------------------------------------------|----------------------|---------------------------------------|------------------------|---------------------------|------------------------------------|-------------------------------------|------------------------------------|-----------------------------------------|
|                                            |                      | B128 B128 $\Delta aapA1$ -IsoA1 + pA1 |                        |                           | B128 $\Delta aapA1$ -IsoA1 + pA1*  |                                     |                                    |                                         |
|                                            |                      | Exponential phase (24h)               | Stationary phase (36h) | "Aging"<br>coccoids (72h) | 8h post-induction<br>(24h culture) | 24h post-induction<br>(36h culture) | 8h post-induction<br>(24h culture) | 24h post-<br>induction<br>(36h culture) |
| Peak n°                                    | Monomers             | $69.11 \pm 1.00$                      | $73.11 \pm 1.17$       | $73.38\pm0.23$            | $59.83 \pm 0.41$                   | $61.23 \pm 0.58$                    | $58.75 \pm 1.07$                   | $59.98 \pm 1.04$                        |
| 3                                          | GM2                  | $9.04\pm0.57$                         | $24.67 \pm 1.24$       | $27.27\pm0.54$            | $15.62 \pm 1.24$                   | $23.72 \pm 1.21$                    | $6.55 \pm 0.7$                     | $13.19 \pm 3.51$                        |
|                                            |                      |                                       | Я                      | 7                         | 7                                  | 7                                   |                                    |                                         |
| 1                                          | GM3                  | $9.42\pm0.94$                         | $7.49\pm0.71$          | $4.67\pm2.26$             | $5.00 \pm 1.3$                     | $1.12 \pm 0.19$                     | $8.14\pm0.72$                      | $5.51 \pm 1.23$                         |
|                                            |                      |                                       |                        | Ы                         | Ľ                                  | Ы                                   |                                    |                                         |
| 4                                          | GM4                  | $16.91\pm0.34$                        | $10.8\pm0.48$          | $14.52\pm2.77$            | $9.43\pm0.76$                      | $9.02\pm0.23$                       | $11.97\pm0.77$                     | $10.33 \pm 1.39$                        |
| 5                                          | GM5                  | $28.06\pm0.8$                         | $23.92\pm0.69$         | $20.53\pm0.54$            | $25.99 \pm 1.95$                   | $23.30\pm0.6$                       | $28.16\pm2.09$                     | $26.69\pm0.23$                          |
| 2                                          | GM4+gly <sup>b</sup> | $5.69\pm0.26$                         | $6.24\pm0.44$          | $6.41\pm0.74$             | $3.79 \pm 0.35$                    | $4.07 \pm 0.19$                     | $3.94 \pm 0.13$                    | $4.25\pm0.27$                           |
|                                            | Dimers               | $16.13 \pm 0.2$                       | $13.63 \pm 0.04$       | $11.66 \pm 1.32$          | $15.41 \pm 1.07$                   | $13.11 \pm 0.71$                    | $15.40 \pm 0.24$                   | $14.7 \pm 1.94$                         |
| 7                                          | GM3 + GM4            | $2.21\pm0.16$                         | $1.66 \pm 0.3$         | 1.41                      | $2.43\pm0.08$                      | $1.96 \pm 0.11$                     | $2.52\pm0.24$                      | $1.94 \pm 0.41$                         |
| 8                                          | GM4 + GM4+gly        | $0.93\pm0.08$                         | $1.02\pm0.01$          | $1.01 \pm 0.13$           | $0.77\pm0.04$                      | $0.69\pm0.07$                       | $0.77\pm0.06$                      | $0.81\pm0.02$                           |
| 9                                          | GM4 + GM4            | $7.1\pm0.19$                          | $5.84\pm0.09$          | $5.66\pm0.76$             | $5.73\pm0.12$                      | $5.23 \pm 0.17$                     | $6.11\pm0.52$                      | $5.94\pm0.15$                           |
| 10                                         | GM5 + GM4            | $5.89\pm0.13$                         | $5.12\pm0.37$          | $4.29\pm0.3$              | $6.49\pm0.97$                      | $5.22 \pm 0.55$                     | $6.00\pm0.38$                      | $6.01\pm0.16$                           |
|                                            | Trimers              |                                       |                        |                           |                                    |                                     |                                    |                                         |
|                                            | GM4 + GM3 + GM4      | $0.06\pm0.00$                         | $0.06 \pm 0.01$        | $0.12 \pm 0.1$            | $0.1 \pm 0.01$                     | $0.09 \pm 0.00$                     | $0.11 \pm 0.01$                    | $0.10\pm0.01$                           |
|                                            | Anhydromuropeptides  | $14.28\pm0.88$                        | $12.8 \pm 1.09$        | $14.42 \pm 1.19$          | $22.63 \pm 0.57$                   | $22.46 \pm 0.18$                    | $23.77 \pm 0.94$                   | $23.51 \pm 0.63$                        |
| 12                                         | G(anhM)2             | $0.23 \pm 0.02$                       | $0.54 \pm 0.01$        | $0.88 \pm 0.01$           | $0.7 \pm 0.03$                     | $1.09 \pm 0.06$                     | $0.65 \pm 0.04$                    | $0.97\pm0.29$                           |
|                                            |                      |                                       |                        |                           | I                                  |                                     | I                                  |                                         |

| 6  | G(anhM)3                  | $0.62\pm0.04$   | $0.54\pm0.08$   | $0.62 \pm 0.16$ | $1.01 \pm 0.07$ | $0.46\pm0.03$   | $1.06\pm0.08$   | $0.94 \pm 0.1$  |
|----|---------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 11 | G(anhM)4                  | $1.56\pm0.13$   | $0.84\pm0.13$   | $1.61\pm0.07$   | $1.59\pm0.17$   | $1.06\pm0.02$   | $2.29\pm0.05$   | $1.77\pm0.46$   |
| 13 | G(anhM)5                  | $2.29\pm0.2$    | $2.06\pm0.12$   | $1.89\pm0.37$   | $2.49\pm0.22$   | $1.9\pm0.04$    | $3.00\pm0.25$   | $2.87\pm0.11$   |
| 14 | G(anhM)4 + GM3            | $1.23 \pm 0.11$ | $1.06\pm0.21$   | $1.11 \pm 0.1$  | $2.52 \pm 0.25$ | $2.66\pm0.15$   | $2.38 \pm 0.2$  | $2.21\pm0.3$    |
| 15 | G(anhM)4+GM4+gly          | $0.29\pm0.03$   | $0.41\pm0.01$   | $0.47\pm0.01$   | $0.48\pm0.03$   | $0.55\pm0.02$   | $0.44\pm0.03$   | $0.52\pm0.2$    |
| 16 | G(anhM)4 + GM4            | $3.63\pm0.22$   | $3.24\pm0.33$   | $3.61\pm0.08$   | $6.02 \pm 0.03$ | $6.47\pm0.07$   | $6.33\pm0.47$   | $6.36\pm0.2$    |
| 17 | G(anhM)4 + GM5            | $1.5\pm0.08$    | $1.57\pm0.22$   | $1.63\pm0.13$   | $2.3\pm0.08$    | $2.41\pm0.06$   | $2.15\pm0.09$   | $2.3 \pm 0.1$   |
| 18 | G(anhM)5 + GM4            | $1.94\pm0.1$    | $1.61\pm0.08$   | $1.49\pm0.3$    | $3.09 \pm 0.04$ | $3.07\pm0.06$   | $3.18\pm0.08$   | $3.12\pm0.07$   |
| 19 | G(anhM)3+G(anhM)4         | $0.15\pm0.02$   | $0.15\pm0.00$   | $0.17\pm0.03$   | $0.46\pm0.05$   | $0.5\pm0.05$    | $0.41\pm0.05$   | $0.42\pm0.06$   |
| 20 | G(anhM)4+ G(anhM)4        | $0.41\pm0.03$   | $0.36\pm0.04$   | $0.47\pm0.02$   | $1.05 \pm 0.07$ | $1.22 \pm 0.04$ | $1.05\pm0.08$   | $1.15\pm0.11$   |
| 21 | G(anhM)5+ G(anhM)4        | $0.42\pm0.04$   | $0.45\pm0.06$   | $0.49\pm0.06$   | $0.93 \pm 0.08$ | $1.07\pm0.02$   | $0.84\pm0.05$   | $0.90\pm0.05$   |
|    | Additional muropeptides   | $0.42\pm0.07$   | $0.44 \pm 0.03$ | $0.44\pm0.01$   | $2.03 \pm 0.14$ | $3.11 \pm 0.02$ | $1.97 \pm 0.23$ | $1.71 \pm 0.03$ |
| 22 | GM4 + AmDap <sup>c</sup>  | $0.15\pm0.03$   | $0.14\pm0.01$   | $0.14\pm0.00$   | $0.83 \pm 0.07$ | $1.29\pm0.03$   | $0.89 \pm 0.10$ | $0.73\pm0.03$   |
| 23 | GM4 + AmDap <sup>d</sup>  | $0.06\pm0.01$   | $0.07\pm0.00$   | $0.07\pm0.01$   | $0.19 \pm 0.01$ | $0.28\pm0.02$   | $0.14\pm0.05$   | $0.16\pm0.02$   |
| 24 | GM4 + AAmDap <sup>e</sup> | $0.12\pm0.02$   | $0.12\pm0.01$   | $0.13\pm0.01$   | $0.64 \pm 0.06$ | $0.93\pm0.01$   | $0.64\pm0.07$   | $0.53\pm0.02$   |
| 25 | $GM5 + AmDap^{f}$         | $0.09\pm0.02$   | $0.12\pm0.01$   | $0.11\pm0.01$   | $0.37 \pm 0.03$ | $0.61\pm0.02$   | $0.30\pm0.03$   | $0.28\pm0.01$   |

GM2: GlcNAc-MurNAc-dipeptide; GM3: GlcNAc-MurNAc-tripeptide; GM4: GlcNAc-MurNAc-tetrapeptide; GM5: GlcNAc-MurNAc-pentapeptide; AnhM: *N*-acetyl-anhydromuramic acid.

<sup>a</sup> Percentages were calculated as in Glauner *et al.* (1).

<sup>b</sup>GM4+gly: GlcNAc-MurNAc-Tetrapeptide with an additional glycine moiety.

The structures of GM4 + AmDap<sup>c</sup>, GM4 + AmDap<sup>d</sup>, GM4 + AAmDap<sup>e</sup> and GM5 + AmDap<sup>f</sup> are represented below



Panel B: Total ion current chromatograms of the HPLC/MS profiles of muropeptides of the seven samples indicated above (only one replicate is represented). Peak numbers correspond to those of Panel A and are identical in every graph.



Table S2. List of strains used in this study.

|                                                                                                               | Strain<br>designation | Genotype                                                                                          | Plasmid       | Antibiotic<br>resistance<br>markers <sup>a</sup> | Reference<br>or source |
|---------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------|------------------------|
| B128                                                                                                          | HPLEM001              | Parental wild type strain                                                                         | -             | -                                                | (2, 3)                 |
| B128 ∆rpsL::rpsL1                                                                                             | HPLEM015              | ∆rpsL::rpsL1                                                                                      | -             | Str                                              | (4)                    |
| B128 ∆ TA A1::Kan +<br>pA1-isoA1                                                                              | HPLEM011              | ∆AapA1-isoA1::aphA-3                                                                              | pA1-<br>isoA1 | Kan, Cm                                          | (5)                    |
| B128 ∆ TA A1::Kan +<br>pA1                                                                                    | HPLEM012              | ∆AapA1-isoA1::aphA-3                                                                              | pA1           | Kan, Cm                                          | (5)                    |
| B128 ∆ TA A1::Kan +<br>pA1*                                                                                   | HPLEM086              | ∆AapA1-isoA1::aphA-3                                                                              | pA1*          | Kan, Cm                                          | (5)                    |
| B128 ∆rpsL::rpsL1<br>∆A1 PureA-GFP<br>∆flaA::Apra + pA1                                                       | HPLEM213              | ∆rpsL::rpsL1 ∆A1<br>∆flaA::Apra ∆ureA::GFP-<br>mut2                                               | pA1           | Str, Kan,<br>Apr, Cm                             | This study             |
| B128 ∆rpsL::rpsL1<br>∆TA A1 + pA1-GFP                                                                         | HPLEM155              | $\Delta rpsL::rpsL1 \Delta A1$                                                                    | pA1-<br>GFP   | Str, Cm                                          | This study             |
| B128 ∆TA A1-isoA1::<br>AapA1-222nt-GFP-<br>253nt                                                              | HPLEM160              | ∆A1-isoA1:: AapA1-222nt-<br>gfp-mut2-253nt                                                        | -             | Kan                                              | This study             |
| B128 ∆ TA A1 AapA1-<br>isoA1::PaapA1-lacZ-<br>Kan                                                             | HPLEM084              | ∆ AapA1-isoA1::PaapA1-<br>lacZ-Kan                                                                | -             | Kan                                              | This study             |
| B128 ∆ TA A1 AapA1-<br>isoA1::PisoA1-lacZ-<br>Kan                                                             | HPLEM142              | ∆ AapA1-isoA1::PisoA1-<br>IacZ-Kan                                                                | -             | Kan                                              | This study             |
| B128 Δ <i>rpsL::rpsL1</i><br>Δ <i>TA</i> Δ <i>A5</i> Δ <i>A3</i> Δ <i>A1</i><br>Δ <i>A</i> 6 Δ <i>A4::Kan</i> | HPLEM159              | ∆rpsL::rpsL1 ∆TA ∆A5 ∆A3<br>∆A1 ∆A6 ∆A4::Kan                                                      | -             | Str, Kan                                         | This study             |
| B128 ∆rpsL::L1 ∆TA<br>A1                                                                                      | HPLEM214              | $\Delta rpsL::L1 \Delta TA A1$                                                                    | -             | Str                                              | This study             |
| B128 ∆rpsL::L1 ∆TA<br>A3                                                                                      | HPLEM080              | ΔrpsL::L1 ΔTA A3                                                                                  | -             | Str                                              | This study             |
| B128 ∆rpsL::L1 ∆TA<br>A4::Kan                                                                                 | HPLEM157              | ∆rps::L1 ∆TA A4::Kan                                                                              | -             | Str, Kan                                         | This study             |
| B128 ∆rpsL::L1 ∆TA<br>A5                                                                                      | HPLEM067              | ΔrpsL::L1 ΔTA A5                                                                                  | -             | Str                                              | This study             |
| B128 ∆rps::L1 ∆TA A6                                                                                          | HPLEM216              | ∆rps::L1 ∆TA A6                                                                                   | -             | Str                                              | This study             |
| B128 $\Delta rpsL::rpsL1$<br>$\Delta TA \Delta A5 \Delta A3 \Delta A1$<br>$\Delta A6 \Delta A4::Kan$          | HPLEM159              | $\Delta$ rpsL::rpsL1 $\Delta$ TA $\Delta$ A5 $\Delta$ A3 $\Delta$ A1 $\Delta$ A6 $\Delta$ A4::Kan | -             | Str, Kan                                         | This study             |

| Name                                 | Description                                                                                                                                                                                                                                                 | Resistance (*) | Reference or source |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|
| pILL2157                             | Derivative of the pHeL-2 <i>E. coli-H. pylori</i> shuttle vector, carries <i>lacZ</i> under the control of p <i>urel</i> with 2 Lacl-binding sites                                                                                                          | Cm             | (6)                 |
| pILL2157bis                          | pILL2157 without <i>lacZ</i> (pILL2157bis)                                                                                                                                                                                                                  | Cm             | This study          |
| pDifWT-RC                            | rpsL-cat cassette flanked by difH                                                                                                                                                                                                                           |                | (7)                 |
| pA1-isoA1                            | AapA1-isoA1 locus cloned into pILL2157bis                                                                                                                                                                                                                   | Cm             | (5)                 |
| pA1                                  | <i>AapA1-isoA1</i> locus cloned into pILL2157bis with <i>isoA1</i> promoter inactivated                                                                                                                                                                     | Cm             | (5)                 |
| pA1*                                 | <i>AapA1-isoA1</i> locus cloned into pILL2157bis<br>with isoA1 promoter inactivated and AapA1<br>start codon mutated to ATT                                                                                                                                 | Cm             | (5)                 |
| pGEM ∆TA A1                          | Suicide plasmid with <i>difH-rpsL-cat-difH</i> flanked<br>by upstream and downstream region <i>A1</i> for<br>markerless deletion of A1 locus.                                                                                                               | Amp/Cm         | This study          |
| pGEM ΔTA A3                          | Suicide plasmid with <i>difH-rpsL-cat-difH</i> flanked<br>by upstream and downstream region <i>A3</i> for<br>markerless deletion of A3 locus.                                                                                                               | Amp/Cm         | This study          |
| pGEM ∆TA A5                          | Suicide plasmid with <i>difH-rpsL-cat-difH</i> flanked<br>by upstream and downstream region <i>A5</i> for<br>markerless deletion of A5 locus.                                                                                                               | Amp/Cm         | This study          |
| pGEM ∆TA A6                          | Suicide plasmid with <i>difH-rpsL-cat-difH</i> flanked<br>by upstream and downstream region <i>A6</i> for<br>markerless deletion of A6 locus.                                                                                                               | Amp/Cm         | This study          |
| pJET-pureA-<br>GFP-mut2-Kan-<br>ureA | Suicide plasmid with <i>gfp-mut2</i> under the control of <i>ureA</i> promoter for chromosomal integration at the <i>ureA</i> locus                                                                                                                         | Amp/Kan        | (8)                 |
| pA1-GFP                              | <i>gfp-mut2</i> cloned in translational fusion between<br>AapA1 sequence 222 nt (from 0 to the 222 nt<br>aapA1) and 253 nt (from 223 to the 253 nt) into<br>vector pILL2157bis. AapA1-222nt-GFP-253nt is<br>under the control of the <i>purel</i> promoter. | Cm             | This study          |

Table S3. List of plasmids used in this study.

Table S4. List of primers used in this study.

| Name      | Sequence 5'→3'                        | Description                    |
|-----------|---------------------------------------|--------------------------------|
| oLEM001   | GTAAGCATTGCCGACAAACAC                 | rpsl::rpsl1                    |
|           |                                       | Forward primer to              |
|           |                                       | amplify upstream               |
|           |                                       | region of <i>rpsL.</i>         |
| oLEM002   | CCAATTGATTTATGGTAGGCACTATTTTTCCTTATTC | rpsl::rpsl1                    |
|           |                                       | Reverse primer to              |
|           |                                       | amplify upstream               |
|           |                                       | region of <i>rpsL</i> . Primer |
|           |                                       | contains a                     |
|           |                                       | homolougous region             |
|           |                                       | to rpsL1.                      |
| oLEM003   | GIGCCIACCAIAAAICAAIIGG                | rpsl::rpsl1                    |
|           |                                       | Forward primer to              |
|           |                                       | amplify rpsL1 from             |
|           |                                       |                                |
| OLEIVIU04 |                                       | Poverse primer to              |
|           |                                       | amplify rost 1 from            |
|           |                                       | nDifWT-RC                      |
| oLEM005   |                                       | rpsl::rpsl1                    |
| 022111000 |                                       | Forward primer to              |
|           |                                       | amplify downstream             |
|           |                                       | region of rpsL. Primer         |
|           |                                       | contains a                     |
|           |                                       | homologous region to           |
|           |                                       | rpsL1.                         |
| oLEM006   | CCATTCTAACTCCAATTACCAG                | rpsl::rpsl1                    |
|           |                                       | Reverse primer to              |
|           |                                       | amplify downstream             |
|           |                                       | region of <i>rpsL.</i>         |
| oLEM192   | GGATGTATAGACCGTTATGG                  | flaA::apr                      |
|           |                                       | Forward primer to              |
|           |                                       | amplify upstream               |
|           |                                       |                                |
| OLEWI193  |                                       | naA::apr                       |
|           |                                       | amplify upstroom               |
|           |                                       | region of flad Primer          |
|           |                                       | contains a                     |
|           |                                       | homolougous region             |
|           |                                       | to <i>apr</i> resistance       |
|           |                                       | cassette with a stop           |
|           |                                       | codon and an RBS.              |
| oLEM120   | TGAcTAAcTAGggagtgcaATGtcgtgcaa        | flaA::apr                      |
|           |                                       | Forward primer to              |
|           |                                       | amplify apr resistance         |
|           |                                       | cassette with stop             |
|           |                                       | codon upstream of the          |
|           |                                       | RBS.                           |
| oLEM066   | cgatccgctccacgtgttgcc                 | flaA::apr                      |

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reverse primer to              |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | amplify <i>apr</i> resistance  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cassette.                      |
| oLEM194  | ggcaacacgtggagcggatcgCAAGCCAATACCGTTCAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | flaA::apr                      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Forward primer to              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | amplify downstream             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | region of <i>flaA</i> . Primer |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | contains a                     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | homologous region to           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | apr resistance                 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cassette.                      |
| oLEM195  | CATAGCATAAAATCGCATCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flaA::apr                      |
| •=====•  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reverse primer to              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | amplify downstream             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | region of flaA                 |
| ol EM015 | CTCCCACCGCAATTGATTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Delta 41$ with marker less   |
| OLEMOIS  | o lood doo do a lood a lood do a loo | evetom                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Forward primer to              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | amplify upstream               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | region of A1 Toxin             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | antitoxin locus                |
| ol EM025 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A <b>A1</b> with marker loss   |
| OLLWIUSS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Boyeree primer to              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | complify upstroom              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | region of A7 Toxin             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | antitoxin locus. Primer        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | contains a <i>Xho</i> i        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | restriction site.              |
| OLEM036  | CATAGGATCCCGAAGTTTCTGTAAAACGATAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Delta A1$ with marker less   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | system                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Forward primer to              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | amplify downstream             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | region of A1 Toxin             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | antitoxin locus. Primer        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | contains a BamHI               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | restriction site.              |
| OLEM018  | CTCAATGCGTTTAGGATTAATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Delta A1$ with marker less   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | system                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reverse primer to              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | amplify downstream             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | region of A1 Toxin             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | antitoxin locus.               |
| OLEMU19  | CATICAAAGATGTTGGTAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Delta A3$ with marker less   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | system                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Forward primer to              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | amplity upstream               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | region of A3 Toxin             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | antitoxin locus.               |
| oLEM037  | CATACTCGAGCTAGATCGCATCCAATACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Delta A3$ with marker less   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | system                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reverse primer to              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | amplify upstream               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | region of A3 Toxin             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | antitoxin locus. Primer        |

|           |                                  | a a staling a Minal                  |
|-----------|----------------------------------|--------------------------------------|
|           |                                  | restriction site.                    |
| oLEM038   | CATAGGATCCCAAGAGCGTTCCCTTAAGC    | $\Delta A3$ with marker less         |
| 0LEm000   |                                  | system                               |
|           |                                  | Forward primer to                    |
|           |                                  | amplify downstream                   |
|           |                                  | region of A3 Toxin                   |
|           |                                  | antitoxin locus Primer               |
|           |                                  | contains a <i>Bam</i> HI             |
|           |                                  | restriction site                     |
| ol FM022  | CTTGAAAGGCTTCAATCAAG             | $\Delta A3$ with marker less         |
| OLEMIOLE  |                                  | system                               |
|           |                                  | Reverse primer to                    |
|           |                                  | amplify downstream                   |
|           |                                  | region of A3 Toxin                   |
|           |                                  | antitoxin locus                      |
| OLEM027   |                                  | A 45 with marker less                |
| OLLWOZ/   | ONTOOTION NOONONG                | system                               |
|           |                                  | Forward primer to                    |
|           |                                  | amplify upstream                     |
|           |                                  | region of A5 Toxin                   |
|           |                                  | antitoxin locus                      |
| ol FM041  |                                  | A45 with marker less                 |
| OLEMIO II |                                  | system                               |
|           |                                  | Reverse primer to                    |
|           |                                  | amplify upstream                     |
|           |                                  | region of A5 Toxin                   |
|           |                                  | antitoxin locus Primer               |
|           |                                  | contains a <i>Xho</i> l              |
|           |                                  | restriction site                     |
| ol FM042  | CATAGGATCCCTAAGAGCGTTCCCCTAAG    | $\Lambda$ <b>45</b> with marker less |
| 02211012  |                                  | system                               |
|           |                                  | Forward primer to                    |
|           |                                  | amplify downstream                   |
|           |                                  | region of A5 Toxin                   |
|           |                                  | antitoxin locus. Primer              |
|           |                                  | contains a <i>Bam</i> HI             |
|           |                                  | restriction site.                    |
| oLEM030   | CTCAGTATGTGAATTTAGCG             | <b>∆A5</b> with marker less          |
|           |                                  | system                               |
|           |                                  | Reverse primer to                    |
|           |                                  | amplify downstream                   |
|           |                                  | region of A5 Toxin                   |
|           |                                  | antitoxin locus.                     |
| oLEM031   | GCCAAGCACCATCTTCTTATG            | <b>∆A6</b> with marker less          |
|           |                                  | system                               |
|           |                                  | Forward primer to                    |
|           |                                  | amplify upstream                     |
|           |                                  | region of A6 Toxin                   |
|           |                                  | antitoxin locus                      |
| oLEM043   | CATACTCGAGGCTGCAAACCACTCATTTAAAG | <b>∆A6 with marker less</b>          |
|           |                                  | system                               |
|           |                                  | Reverse primer to                    |
|           |                                  | amplify upstream                     |
|           |                                  | region of A6 Toxin                   |

|          |                                        | antitoxin locus. Primer      |
|----------|----------------------------------------|------------------------------|
|          |                                        | contains a Xhol              |
|          |                                        | restriction site.            |
| oLEM044  | CATAGGATCCGGGTTATCCTTAAGTGGA           | <b>∆A6 with marker less</b>  |
|          |                                        | system                       |
|          |                                        | Forward primer to            |
|          |                                        | amplify downstream           |
|          |                                        | region of A6 Toxin           |
|          |                                        | antitoxin locus. Primer      |
|          |                                        | contains a <i>Bam</i> HI     |
|          |                                        | restriction site             |
| oLEM034  | CTCATTACGACACTATTGC                    | $\Delta A6$ with marker less |
|          |                                        | system                       |
|          |                                        | Reverse primer to            |
|          |                                        | amplify downstream           |
|          |                                        | region of A6 Toxin           |
|          | 0ATA0T00A0-##=====##=====              | antitoxin locus.             |
| OLEWI045 | CATACTCGAGaillaaaagillgaaaagigcag      | Econyard primar to           |
|          |                                        | amplify rps/cat              |
|          |                                        | cassette from pDifWT-        |
|          |                                        | RC Primer contains a         |
|          |                                        | Xhol restriction site        |
| ol FM046 |                                        | marker less system           |
|          |                                        | Reverse primer to            |
|          |                                        | amplify rpsl-cat             |
|          |                                        | cassette from pDifWT-        |
|          |                                        | RC. Primer contains a        |
|          |                                        | BamHI restriction site.      |
| oLEM023  | GAGGCTGTAAGGATAAGG                     | ∆A4::Kan                     |
|          |                                        | Forward primer to            |
|          |                                        | amplify upstream             |
|          |                                        | region of A4 Toxin           |
|          |                                        | antitoxin locus.             |
| oLEM107  | gTTAgTCAcccgggtaccCAAACGCTAAAACGAGGCAC | ∆A4::Kan                     |
|          |                                        | Reverse primer to            |
|          |                                        | amplify upstream             |
|          |                                        | region of A4 Toxin           |
|          |                                        | antitoxin locus. Primer      |
|          |                                        | contains a                   |
|          |                                        | nomologous region to         |
|          |                                        |                              |
|          | CCT4CCCCCTC4CT44C                      |                              |
| OLEWIUU9 | GGTACCCGGGTGACTAAC                     | A4::Nan<br>Ecoward primar to |
|          |                                        | amplify the Kanamycin        |
|          |                                        |                              |
| OL EM010 | CATTATTCCCTCCAGGTAC                    | ΛΔΔ.··Κ2n                    |
| SELWOID  |                                        | Reverse primer to            |
|          |                                        | amplify the Kanamycin        |
|          |                                        | resistance cassette          |
| oLEM108  |                                        | Λ <b>Α4::Kan</b>             |
|          |                                        | Forward primer to            |
|          |                                        | amplify downstream           |
|          |                                        | region of A4 Toxin           |

|         |                         | antitoxin locus. Primer |
|---------|-------------------------|-------------------------|
|         |                         | contains a              |
|         |                         | homologous region to    |
|         |                         | the Kanamycin           |
|         |                         | resistance cassette.    |
| oLEM026 | CCCTAATAGTAGAAAATGGAG   | ∆A4::Kan                |
|         |                         | Reverse primer to       |
|         |                         | amplify downstream      |
|         |                         | region of A4 Toxin      |
|         |                         | antitoxin locus.        |
| oLEM073 | GATCATTAAAGGCTCCTTTTG   | pA1-GFP                 |
|         |                         | Forward primer to       |
|         |                         | amplify upstream        |
|         |                         | region of purel in      |
|         |                         | pILL2157bis.            |
| oLEM080 | CAAAATGCCCGCTTCAATAAAAC | pA1-GFP                 |
|         |                         | Reverse primer to       |
|         |                         | amplify aapA1 where     |
|         |                         | stop codon of the A1    |
|         |                         | toxin has been          |
|         |                         | replaced by Ala         |
|         |                         | codon .                 |

Movie S1. Movie of *H. pylori* morphological transformation.

Representative movie of the transformation of *H. pylori* upon expression of AapA1 toxin. Snapshots of the cells were taken at intervals of 10min.

Movie S2. Movie of *H. pylori* morphological transformation.

Representative movie of the transformation of *H. pylori* upon expression of AapA1 toxin. Snapshots of the cells were taken at intervals of 10min.

Movie S3. Large view movie of *H. pylori* morphological transformation.

Representative movie of the transformation of *H. pylori* upon expression of AapA1 toxin. Snapshots of the cells were taken at intervals of 10min.

#### **SI References**

- 1. B. Glauner, Separation and quantification of muropeptides with high-performance liquid chromatography. *Anal. Biochem.* 172 (1988).
- 2. M. Farnbacher, *et al.*, Sequencing, annotation, and comparative genome analysis of the gerbil-adapted Helicobacter pylori strain B8. *BMC Genomics* 11, 335 (2010).
- 3. M. S. McClain, C. L. Shaffer, D. A. Israel, R. M. Peek, T. L. Cover, Genome sequence analysis of Helicobacter pylori strains associated with gastric ulceration and gastric cancer. *BMC Genomics* 10, 3 (2009).
- 4. F. Fischer, *et al.*, Characterization in Helicobacter pylori of a Nickel Transporter Essential for Colonization That Was Acquired during Evolution by Gastric Helicobacter Species. *PLOS Pathog.* 12, e1006018 (2016).
- 5. H. Arnion, *et al.*, Mechanistic insights into type I toxin antitoxin systems in *Helicobacter pylori:* the importance of mRNA folding in controlling toxin expression. *Nucleic Acids Res.* 45, gkw1343 (2017).
- 6. I. G. Boneca, *et al.*, Development of inducible systems to engineer conditional mutants of essential genes of Helicobacter pylori. *Appl. Environ. Microbiol.* 74, 2095–102 (2008).
- 7. A. W. Debowski, *et al.*, Xer-cise in *Helicobacter pylori*: One-step Transformation for the Construction of Markerless Gene Deletions. *Helicobacter* 17, 435–443 (2012).
- 8. C. Corbinais, A. Mathieu, T. Kortulewski, J. P. Radicella, S. Marsin, Following transforming DNA in Helicobacter pylori from uptake to expression. *Mol. Microbiol.* 101, 1039–53 (2016).