
	
  

	
  

1	
  

	
  

Supplementary Information for 

 

High resolution mouse subventricular zone stem cell niche transcriptome reveals 

features of lineage, anatomy, and aging 

Xuanhua P. Xie,1,2 Dan R. Laks,1,2,8 Daochun Sun,1,2 Asaf Poran,3,9 Ashley M. 

Laughney,3 Zilai Wang,1,2 Jessica Sam,4 German Belenguer,5,6 Isabel Fariñas,6 Olivier 

Elemento,3 Xiuping Zhou,7 Luis F. Parada1,2,* 

 

1Cancer Biology and Genetics Program; 2Brain Tumor Center 

Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA; 

3Institute for Computational Biomedicine, Department of Physiology and Biophysics; Weill 

Cornell Medicine, New York, NY 10065, USA; 4Biochemistry, Cell & Molecular Biology 

Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA; 5Centro de 

Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 

Madrid 28031, Spain; 6Departamento de Biología Celular, Biología Funcional y Antropología 

Física, Universidad de Valencia, Valencia 46010, Spain; 7Institute of Nervous System 

Diseases, Xuzhou Medical University, Jiangsu 221002, PR China; 8Present address: Voyager 

Therapeutics, Cambridge, MA 02139, USA. 9Present address: Neon Therapeutics, 

Cambridge, MA 02139, USA. 

Corresponding author: Luis F. Parada                                     
paradal@mskcc.org  

646 888 3781 

 

This PDF file includes: 

Supplementary text 

Figures S1 to S7 

Legend for Movies S1  

Legends for Dataset Tables S1 to S3 

SI References  

 

Other supplementary materials for this manuscript include the following:  

www.pnas.org/cgi/doi/10.1073/pnas.2014389117



	
  

	
  

2	
  

	
  

 

Movies S1  

Dataset Tables S1 to S3 

Supplementary Information Text 

Supplemental Materials and Methods 

Single cell sequencing. 

The Dropseq cell-bead collection, sample preparation, library preparation, and 

sequencing were performed as previously described (1). Beads were purchased from 

Chemgenes (#MACOSKO-2011-10) and the microfluidics chip was purchased from 

Nanoshift. All our reagents were purchased from the recommended sources as outlined 

in Macosko et al., 2015 and the McCarroll lab’s online Dropseq protocol, v3.1, Dec. 2015 

(http://mccarrolllab.com/download/905/). Our primers and oligonucleotides were 

purchased from IDT with the identical sequences outlined by Macosko et al., 2015. 

Sequencing was done on a NextSeq 500 at the Cornell Sequencing core, 64bp (R2). 

Alignment of reads and generation of cellular expression counts were performed with the 

Drop-seqAlignmentCookbookv1.2Jan2016 (http://mccarrolllab.com/wp-

content/uploads/2016/03/Drop-seqAlignmentCookbookv1.2Jan2016.pdf) and with the 

Dropseq tools provided by the McCarroll lab (http://mccarrolllab.com/download/922/). 

We utilized the mm10 reference genome into which we incorporated the CGD transgene 

mRNA sequence. The transgene expression level is determined by capturing of the 3’ 

end of the transcript that encodes the DTR gene. Mus_musculus.GRCm38.82 was used 

as our refflat GTF. The Digital Expression NUM_CORE_BARCODES output was set to 

5000 as we knew we had less than or equal to 2000 cells per sample.  
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Single cell analysis by “Seurat” 

All our analysis was performed in R version 3.3.0 with R Studio. The “Seurat” R package 

was used to filter, normalize, cluster and select differentially regulated genes for each 

cluster. Seurat package (version 1.4.0.16 and, when released, version 2.0) was utilized 

as described in the online clustering tutorials by the Satija lab (http://satijalab.org/seurat) 

(1). Cells were excluded if genes were detected in less than 3 cells, or had less than 200 

unique genes. The resultant matrix was normalized to 10,000 transcripts, log 

transformed, and a regression to the number of unique molecular identifiers (UMIs) was 

performed before dimensional reduction. Principle components 1-19 were used to 

identify subpopulation clusters. We compared the lists of differential genes for each 

group in a cohort to select genes that were unique to a group, in other words, they were 

signature genes that were differentially regulated in a certain group but not in any other 

group. This produced two lists, differentially up-regulated genes and unique up-regulated 

genes. We used the differentially up-regulated gene list for gene ontology analysis by 

DAVID (2), (https://david-d.ncifcrf.gov/summary.jsp). We used the top 10 unique genes 

(DEGs when not enough, Table S2B & 2C) for each group to produce the heatmap with 

the Seurat package (Figure 3C). We performed batch correction in Seurat (version 2.0) 

to cluster and project both the Aged samples and the sorted two-month samples 

together (Fig. S7B-C). To do this we used the union of the top 2000 most variable genes 

for each data set and ran the canonical correlation analysis (CCA) in Seurat that 

identifies common sources of variation between the two datasets. For this analysis we 

used the first 19 dimensions and all the other settings and analyses were the same as 

above. 
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When Seurat version 3 was released, we re-did both the sorted wildtype and aged 

samples analyses with the latest version. As the samples were from the same tissue, 

preparation date, sequencing run, and there were no discernible batch effects in the 

sorted samples (GFPhi, GFPlo, GFP-, Unsorted) we did not use the integration method 

for this analysis but rather simply merged the samples into one matrix before the Seurat 

pipeline so as not to introduce any noise from unnecessary processing. In contrast, for 

the aged samples we used the anchor integration method (Stuart et al., 2019). In both 

instances, the original results were conserved and proved robust across different 

pipelines and versions of Seurat. One exception was the co-clustering of H1 with H2 into 

one cluster in the Seurat version 3 processing of the sorted two-month SVZ samples. As 

the results and clustering were largely conserved across different versions of Seurat, we 

present the original analysis with confidence that they are robust results irrespective of 

the Seurat versions and processing employed. 

 

Pseudotime Analysis 

Pseudotime analysis was performed using the Destiny package as detailed in (3) and in 

the vignette at https://www.helmholtz-muenchen.de/icb/research/groups/quantitative-

single-cell-dynamics/software/destiny/index.html. We used H0-L2 groups from Fig. S3A 

for our Pseudotime analysis in Fig. 4F. In Destiny, we plotted the result with our 

established color codes. The animation was compiled in Sequimago and labels were 

added in Wondershare Filmora (Version 7.8.9). Pseudotime analysis was also 

performed in a similar manner on the H and L groups of the aged samples that were 

included with the aforementioned pseudotime matrix of H and L groups in Fig. 4F (Fig. 

7B). 
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Allen Brain Atlas SVZ localization of unique genes 

The gene list used for this experiment is the same as those used in the aforementioned 

Heatmap section (see above). We collected images from the Allen Brain Atlas (4), 

http://mouse.brain-map.org/) where the SVZ was at its largest in the sagittal sections. 

We authored a macro in ImageJ that got rid of the white space in our quantification. We 

then made 5 sections of the SVZ from Ventral to Dorsal and used ImageJ to quantify the 

in situ hybridization of RNA for each of the five sections. We then normalized the values 

to the most ventral section and plotted the values, performed linear regression, and in 

GraphPad (Prism7) we calculated whether the slopes were significantly different than 0. 

The p-values for this test are reported.  

 

Venn Diagrams 

Venn diagrams were created by InteractiVenn (http://www.interactivenn.net/) (5) and 

reproduced in Photoshop CS6 (Version 13.0.6) to improve the quality and size of the 

associated text.  

 

Transcription factor analysis 

Transcription factors related in a sign sensitive manner to our inputted lists of up- and 

down-regulated genes were identified by TFactS by target gene signatures curated from 

microarray gene expression data (http://www.tfacts.org) (5, 6).  
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String network 

Gene networks were generated by String database (https://string-db.org) (7) with 

medium confidence (0.400) to assess known and predicted interactions (physical and 

functional) between genes in our inputted gene sets. The PPI enrichment score p-value 

is a measure of the significance of enrichment for network interactions within a gene set.  

 

qRT-PCR with CD95+ sorted samples 

We sorted 1000 GFPhi;CD95+, GFPhi;CD95-, bulk GFPhi, GFPlo, GFP-, or DAPI-viable 

cells into tubes containing 3000 Dropseq beads (Chemgenes) in 100ul lysis buffer with 

DTT (#15508013, Thermo Scientific) (1). The tubes were rotated at 4 degrees for 10 

minutes. Then we washed the samples twice with 6xSSC (1), followed with another 

wash with reverse transcription buffer (Thermo Scientific). Reverse Transcription mix 

with Template Switch Oligo were added and incubated for 30 minutes with rotation at 

room temperature and an additional 90 minutes with shaking at 700 rpm at 42 degrees 

Celsius. We then processed the samples as Dropseq samples outlined in Macosko et 

al., 2015 with Exonuclease treatment, PCR for 30-35 cycles, and Agencourt Ampure XP 

(#A63881, Beckmam-Coulter) bead purification of the resultant DNA. The purified DNA 

content was measured on a Qubit with high sensitivity reagents (#Q32854, Thermo 

Scientific). qRT-PCR reactions were performed with SYBR Select Master Mix 

(#4472903, Applied Biosystems) in an Applied Biosystems QuantStudio Flex6, real time 

PCR system. The following primers were selected from PrimerBank (8), 



	
  

	
  

7	
  

	
  

https://pga.mgh.harvard.edu/primerbank/index.html) except for Cd95 which was selected 

from Sabbagha et al. (9), and all primers were purchased from Eton Biosciences Inc. 

 

 

SCDE analysis 

We employed the package SCDE (https://www.nature.com/articles/nmeth.2967) (10) to 

determine differentially expressed genes between 2 Months and 12 Months aged 

samples in both the combined H1-H2 groups (N=93 for 2 months, N=115 for 12 months) 

and in the combined H3-L0-L1 groups (N=84 for 2 months, N=63 for 12 months). We 

used non-log transformed, ‘Seurat’ normalized data matrices as the input. We chose 

genes with FDR P values <0.05 for further analysis including gene ontology (David, 

https://david-d.ncifcrf.gov/summary.jsp) (2). 

 

qRT$PCR'Primers'for'Mouse'Genes
Gene'(Mouse) Fwd Rev Amplicon'Size'(bp)
1110017D15RIK TGTCTCGGAACCGGACTCT GGAGCAAGGGCTTTCATATCC 101
Fam183b CGTGTGGGGCAGATGAAGAAT GGTGAATGAGGTTCAGGAACTTG 148
Dynlrb2 GAATCCAGAGTCACAAAGGGG GACCCGCATACTGAACCGTT 105
Rplp1 CTCGCTTGCATCTACTCCGC AGAAAGGTTCGACGCTGACAC 109
Tmem212 GGTACACAGGATGGAGCGTTT GCTTCCCACAAGTGTCTCTGG 121
Actb GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT 154
Hsp90ab1 TCAAACAAGGAGATTTTCCTCCG GCTGTCCAACTTAGAAGGGTC 102
Cd95'(Fas) TATCAAGGAGGCCCATTTTGC TGTTTCCACTTCTAAACCATGCT 148
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Fig. S1. This figure accompanies Figure 1. CGD transgene construct characterization. 
(A) FETPTR expression vector. (B) eGFP reporter detection in FETPTR-CGD construct 
transfected 293T cells. Scale bar: 20µm. (C) Western blot with GFP antibody verifies 
efficient production of GFP monomers. 293T cells were transiently transfected with virus 
packaging a pEIF4A promoter driven CGD cassette and collected three days later in 2X 
laemmli for western blot. (D) CreER protein from the CGD transgene can remove the 
floxed region within an NF1 gene allele, detected by PCR. (E) Mouse embryo fibroblasts 
transfected with the FETPTR-CGD derived viruses are sensitive to diphtheria toxin in an 
ATP assay. (F) Left: Diagram of classic SVZ “pinwheel” structure in which a 
eGFP+/Glast+/CD133+ stem cell is surrounded by CD133+ ependymal cells. The three 
black lines indicate the relative positions for the microscope images on the right. Right: 
Corresponding IHC SVZ images with a CGD-GFPhi nucleus and Glast+ cytoplasm 
surrounded by CD133+;GFP- ependymal cells. Scale bar: 20µm.  
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Fig. S2. This figure accompanies Figure 2. Gene expression analysis of CGD-GFPhi and 
GFPlo cells point to a quiescent versus a proliferative state respectively. (A) Venn 
diagram analysis comparison of CGD-GFPhi DEGs and published quiescent NSC 
signatures demonstrates significant overlap but not with activated NSCs (A1). (B) GFPlo 
cell signatures preferentially overlap with that of published activated NSCs but not with 
quiescent NSCs (B1). (C) Gene Ontology analysis of CGD-GFPhi and GFPlo profiles is 
consistent with a stem versus progenitor state. (D) and (E) Known and unknown 
biological processes related to quiescent or proliferative NSCs are associated with GFPhi 
(D) or GFPlo cells (E).  
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Fig. S3 This figure accompanies Figure 3 and Table 2. Drop-seq analysis of whole SVZ. 
(A) Combined 6600 cells yield fourteen groups that integrate the GFPhi, GFPlo, and GFP- 
subgroups. Note UNB cells exist in each of the fourteen groups. (B) tSNE projection of 
UNB cells shows similar groups and enriched CGD expression in H1-L2 lineage. (C) 
Distribution of sorting markers for stem/progenitor cells used in previous studies. (C1) 
Representative distribution of NSC and progenitor specific transcription factors; (C11-
C111) candidate markers identified in this study for GFP-:N7 and different SVZ 
stem/progenitor groups. (D) Representative markers for NSC/Progenitor/neuron lineage 
facilitate the identification of respective populations in UNB cells. (E) Transcript numbers 
for each of the four sorted and Dropseq analyzed samples present a “bell” shape 
distribution. Average transcripts per cell for each sample are indicated at the bottom. (F) 
SVZ UNB cells contain fourteen distinct subgroups ranging from 0.5% to 14% of the 
whole tissue. 
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Fig. S4. This figure accompanies Figure 4. Granular view provided by analysis of the 
fourteen groups in the adult SVZ. (A) Cell cycle signature analysis of the GFPhi and 
GFPlo (H&L) groups reveals heterogeneity. Subgroup L1 shows the highest mitotic index 
for all seven signatures (see Fig. 2E). (B) Transcription levels of the five NSC markers 
within the fourteen populations (all standard errors < 1.2, units are normalized values 
scaled to 10,000 counts/cell). (C) Published single cell gene signatures fail to distinguish 
between the four GFPhi subgroups. (D) Known and unknown biological processes 
related to quiescent NSCs are revealed by a comprehensive list of genes derived from 
H0-H3 groups. (E-E11) An overlap analysis of genes commonly expressed in H0-H3 
groups results in 121 genes (E), putative transcription factors associated to this list 
(TfactS analysis) (E1), and enrichment for a gene network is revealed (STRING analysis) 
(E11). 
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Fig. S5. This figure accompanies Figure 5. H0 subgroup gene analysis. (A) A gene 
network proposed as ependymal-like NSCs is enriched in the GFP-:N7 subgroup that by 
our analysis represents endothelial progenitor cells (all standard errors < 0.2, units are 
normalized values scaled to 10,000 counts/cell). (B) Gene ontology analysis of GFP-:N7 
associate to vasculature and blood vessel development. (C) Cilia associated genes are 
uniquely expressed in GFPhi:H0 subgroup (all standard errors < 0.2, units are normalized 
values scaled to 10,000 counts/cell). (D) Expression profiles of seven potential markers 
for H0 subgroup cells (all standard errors < 2.0, units are normalized values scaled to 
10,000 counts/cell). (E) and (F) Among the GFP+ subgroups of cells, CD95 antibody 
preferentially labels cells with higher levels of GFP proteins. (G) IHC analysis reveals 
some CD95+ cells co-localized with CGD-GFP at ventral SVZ. Scale bars: 200µm (G) 
and 10µm (G1). V: lateral ventricle in (G and G1). 
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Fig. S6. This figure accompanies Figure 6. Age-related alteration of GFPhi and GFPlo 
lineage related genes. (A) Candidate genes for GFPhi qNSC and GFPlo progenitor cells 
illustrated in the adult SVZ analysis (all standard errors < 0.6, units are normalized 
values scaled to 10,000 counts/cell). (B) Concordant with age related GFP expression 
decrease, cells expressing four candidate genes decrease over age. (C-C111) The CGD-
GFP-associated expression of the three candidate genes for NSC activation (C-C11, 
dashed line) drops more compared to the pan-NSC marker Sox2 (C111, dashed line). 
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Fig. S7. This figure accompanies Figure 7. tSNE projection and marker gene analysis of 
the SVZ cells over age. (A-A1) tSNE projection of the 5,600 single cells from two-week, 
two-month, six-month, and twelve-month SVZs reveals sample distribution (A) and 
thirteen groups (A1). The groups were assigned by comparing the cell constituents of the 
GFP sorted cohort (Fig. 3A), the Aged sample cohort (Fig. S7A1), and the combined 
analysis (Fig. S7B1). They were further confirmed by comparing unique genes from this 
analysis (Table S3C) with the unique genes from the GFP sorted cohort analysis (Table 
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S2C). DEGs were used instead when there were not enough unique genes (H2). (B-B1) 
tSNE projection of the comprehensive populations of the combined GFP sorted cohort 
with the Aged sample cohort (12,200 cells) demonstrates sample distribution (B) and 
fourteen conserved populations (B1). (C-C1) Each stem/progenitor group identity in the 
Aged sample cohort is examined further by comparing the cell constituents in (C) the 
combined versus the Aged samples and  (C1) the combined versus the GFP sorted 
cohort. More than half of the cells are overlapped between the two cohorts in most 
cases. A significant amount of H2 cells are assigned into the H1 group in the combined 
analysis, possibly due in part to batch effect correction. (D) Marker genes identified in 
the two-month SVZ samples guide the identification of Seurat based clusters of SVZ 
cells from different ages. H0 cells (9 cells in total) are too few to form a group in the 
Aged cohort by themselves.  
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Movies S1 Legend 

To generate movie S1, the CGD-GFPhi cells were sorted from freshly dissociated 

mouse SVZ, incubated in Cytation 5 (BioTek), and imaged every hour for GFP 

and cell morphology.  

Dataset Table Legends 

Dataset Table S1, related to Figure 2E-2F and S2. Transcriptomes (TS1A), 

differentiated expressed genes (TS1B), and GO analysis (TS1C&D) of the bulk RNAseq 

data derived from the CGD-GFPhi vs GFPlo samples. Complete lists of NSC genes 

derived from various studies including the CGD-GFPhi vs GFPlo samples are 

summarized in TS1E. 

Dataset Table S2, related to Figure 3, S3, 4, S4, and S5A-D. Transcriptomes (TS2A), 

differentiated expressed genes (TS2B), unique genes (TS2C), and GO analysis (TS2D) 

of the fourteen cell groups derived from the two-month old murine SVZs. The 1914 

genes derived from H0-H3 groups and associated GOs in Fig. S4D are summarized in 

(TS2E). The 121 overlapped G genes used in Fig. 4C&S4E, and related transcription 

factors are shown in (TS2F&G).  

Dataset Table S3, related to Figure 7 and S7. Transcriptomes (TS3A), differentiated 

expressed genes (TS3B), and unique genes (TS3C) of the thirteen cell groups derived 

from the SVZs of two-week, two-month, six-month, and twelve-month mice. 

Transcriptomes of each cell group in the four aged SVZs are summarized in (TS3D). In 

lineage H1-H2, genes and GOs up-regulated in either two-month or twelve-month are 

shown in (TS3E&F). Transcription factors associated to the age-related change are 

indicated in (TS3G). In lineage H3-L1, genes and GOs up-regulated in either two-month 
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or twelve-month are shown in (TS3H&I). Potential transcription factors involved in the 

age-related blockage are summarized in (TS3J). 
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