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SUPPLEMENTAL METHODS

Non-negative Matrix Facroization

In the main text, we describe NMF algorithm as a method for finding a soft partition of edges into subgraphs.
Here, we discuss specifically how that solution is obtained. We solve for W and H such that:

min
W,H

1

2
||Â−WH||2F + α||W||2F + β

T∑
t=1

||H(:, t)||21 (1)

where β is the penalty to impose sparse basis weights, and α is the regularization for the basis set. Regularization is
frequently used in machine learning algorithms to avoid overfitting data, which is especially important when employing
these techniques to examine highly variable single trial estimates of functional connectivity [1]. Additionally, selecting
for sparsity will encourage the characterization of local neural processes where many edges do not contribute [2]. From
many such local processes arises the diversity of cognitive functions involved in complex tasks such as BCI control [3].

To solve the NMF equation, we use an alternating non-negative least squares with block-pivoting method with 100
iterations for fast and efficient factorization of large matrices, where W and H with non-negative weights are drawn
from a uniform random distribution on the interval [0, 1] [4]. The parameter m is drawn from the range (2,20), and
α and β are drawn from the range (0.001,2). We select for parameters that will both minimize the residual error,
and maximize the temporal and subgraph sparsity [2]. Specifically, we select the optimal parameters m̄, ᾱ, and β̄
that are in the lowest 25th percentile for residual error, and the highest 25th percentile for temporal and subgraph
sparsity. This procedure resulted in an average m̄ of 7.4, an average ᾱ of 0.46, and an average β̄ of 0.45. Distributions
of parameters and reliability across runs are shown in Fig. S2 and S3.

Given the non-deterministic nature of this approach, we also test for the stability of our identified clusters using
a consensus clustering algorithm [5]. Our procedure was comprised of the following ordered steps: (1) run the NMF
algorithm r = 100 times per multimodal configuration matrix, (2) concatenate the subgraph matrix W across r runs
into an aggregate matrix with dimensions E × (rm̄), and (3) apply NMF to the aggregate matrix to determine a
final set of subgraphs and expression coefficients [2]. While the implementation is heuristic in nature, we found that
across two runs of the algorithm, we obtain highly consistent selections for parameters (see Supplement), bolstering
confidence in the robustness of the subsequent analyses.

Optimal Control

In the methods section of the main text, we describe the notion of optimal control trajectories in rather broad
strokes. Here in the supplement, we provide a more formal description. We begin by noting that from the formulation
in Eq (6) in the main text, we can see that the term (xT −x(t))T (xT −x(t)) constrains the trajectories of a subset of
nodes by preventing the system from traveling too far from the target state. We can also see that the term ρuκ(t)Tuκ
constrains the amount of input used to reach the target state, which is a requirement dictated by the underlying
biology including metabolic demands and tissue sensitivities.

To solve the minimization problem stated in Eq (6) in the main text, we follow the derivation from [6]. Specifically,
in order to compute an optimal u* that induces a transition from the initial state x(0) to the target state x(T ), we
define the Hamiltonian as

H(p,x,uκ, t) = (xT − x)T(xT − x) + ρuT
κ u + p(Ax + Buκ). (2)

According to the Pontryagin minimization principle, if u∗
κ is a solution with the optimal trajectory x∗, then there

exists a p∗ such that

∂H

∂x
=− 2(xT − x∗) + ATp∗ = −ṗ∗,

∂H

∂p
=Ax∗ + Buκ,

∂H

∂uκ
=2ρu∗

κ + BTp∗ = 0.

From the equations above, we can derive that

u∗
κ = − 1

2ρ
BTp∗, (3)
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ẋ∗ = Ax∗ − 1

2ρ
BBTp∗, (4)

such that the only unknown is now p∗. Next, we can reduce this to[
ẋ∗

ṗ∗

]
=

[
A 1

2ρBBT

−2 −AT

] [
x∗

p∗

]
+

[
0
2

]
xT . (5)

Let us define

Ã =

[
A 1

2ρBBT

−2 −AT

]
,

x̃ =

[
x∗

p∗

]
,

b̃ =

[
0
2

]
xT ,

so that Eq. (4) can be rewritten as

˙̃x = Ãx̃ + b̃, (6)

which can be solved as

x̃(t) = eÃtx̃(0) + Ã−1(eÃtx(0)− I)b̃. (7)

Let

c = Ã−1(eÃtx̃(0)− I)b̃, (8)

and

eÃT =

[
E11 E12

E21 E22

]
. (9)

Then, by fixing t = T , we can rewrite Eq. (5) as[
ẋ∗(T )
ṗ∗(T )

]
=

[
E11 E12

E21 E22

] [
ẋ∗(0)
ṗ∗(0)

]
+

[
c1
c2

]
. (10)

From this expression we can obtain

x∗(T ) = E11x
∗(0) + E12p

∗(0) + c1. (11)

As a known result in optimal control theory [7], p∗(T ) = 0. Therefore,

p∗(T ) = E21x
∗(0) + E22p

∗ + c2 = 0. (12)

We can now solve for p∗(0) as follows:

p∗(0) =

[
E12

E22

]+(
−
[
E11

E21

]
x∗(0)−

[
c1
c2

]
+

[
x(T )

0

])
, (13)

where [̇]+ indicates the Moore-Penrose pseudoinverse of a matrix. Now that we have obtained p∗(0), we can use it
and x∗ (or x(0)) to solve for x̃ via forward integration. To solve for u∗

κ, we simply take p∗ from our solution for x̃
and solve Eq. (5).

Optimal Control Energy of the System

To quantify differences in the ease of controlling the system to a certain target state, we calculated a single measure
of total energy for node i, defined as follows:

Eix0xT
=

∫ T

0

uix0xT
dt . (14)

A single measure of energy for the entire system was calculated by summing over all nodes in the network.
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Metric for Simulation Error

Because optimal control is a computationally difficult problem, we also calculate the numerical error associated
with each computation. The numerical error is calculated as

nerr =

∣∣∣∣∣∣∣∣([E12

E22

]
p∗
)

+

([
E11

E21

]
x∗(0) +

[
c1
c2

]
−
[
x(T )

0

])∣∣∣∣∣∣∣∣ . (15)

We minimize this error metric when choosing values for the free parameters ρ and T , as described in more detail
below.

Parameter Selection

Our optimal control framework has two free parameters: ρ, the relative importance of the input constraint over
the distance constraint, and T , the control horizon, or the amount of time given for the system to reach the target.
Intuitively, choosing a lower value of the parameter ρ corresponds to relaxing the constraint on the minimal energy,
leading to larger energies but smaller errors. The final parameter T determines how quickly the system is required to
reach the target state. At small values of T , the system is difficult to control, leading to large errors and high energy
requirements. At moderately large values of T , the system has more time to reach the target state, and simulations
typically produce smaller errors. At very large values of T , it is difficult to calculate the matrix exponentials, and
simulations typically produce large errors.

Because we lack direct biological data that would inform the choice of these parameter values, we explored a
range of values for both parameters, and we chose values that minimized the numerical error of the simulation.
For each parameter, we first calculated the error of the simulations for parameter values that were logarithmically
spaced between 1× 10−4 and 1 for ρ and between 0.01 and 1 for T . We then selected the parameters that produced
minimal error. Specifically, the parameters selected were T = 0.1 and ρ = 0.1. For the purposes of reliability and
reproducibility, we also report results for two different sets of parameters and we note that these two sets also produced
low error. The two additional sets used were T = 0.2 and ρ = 0.01, and T = 0.07, and ρ = 1.

Model Validation

In this work, we sought to test the hypothesis that regularized subgraphs of co-varying functional connectivity
are well suited to modulate certain patterns of connectivity by positing a model of how activity would spread across
connections defined by those subgraphs. It is important to note that the functional connectivity we study here reflects
statistical dependencies between regions rather than causal interactions. However, since the subgraphs are regularized
and were selected to maximize sparsity, they could be interpreted as possible paths of influence that are only weakly
modulated by redundant relationships. Here we therefore investigated the validity of using these regularized subgraphs
in our theoretical model of activity spread.

We operationalized this investigation by considering three properties of these subgraphs that would be required
in order for them to be suitable for use in the control theoretic model. First, we sought to demonstrate that the
regularization imposed by NMF leads to subgraphs with fewer triangles than functional connectivity matrices obtained
without regularization [8]. Second, our model assumes that brain activity, at least on short time scales, evolves linearly
along the connections of the network. This assumption leads to the testable prediction that simulating state transitions
using Eq. 5 in the main text would yield states that bear some resemblance to empirical states. Third and finally,
we wish to validate our claim that each subgraph contributed to a different part of the observed changes in brain
state, and that that contribution is larger when that subgraph’s temporal expression is higher relative to the other
subgraphs.

To test the first prediction – that regularized subgraphs will have fewer triangles than the original functional
connectivity matrices – we calculate the fraction of possible triangles present in the subgraphs as well as the average
weight of each triangle. The first metric is calculated from a binarized version of the subgraph, while the second metric
is calculated from the weighted version of the subgraph. For each subject, we report average values of each metric
over subgraphs. Since the original functional connectivity matrices (prior to decomposition with regularization) are
fully weighted and fully connected, they contain the maximum number of possible triangles. In contrast, subgraphs
have approximately 30% of the possible triangles (Fig. S1A). Moreover, we observed a drastic reduction in the weight
of triangles in the subgraphs compared to that observed in the original functional connectivity matrices (Fig. S1B).
Together, these two results indicate that the process of regularization enacted by NMF removes many of the redundant
relationships present in functional connectivity matrices.
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We now turn to our second prediction that simulating state transitions using Eq. 5 in the main text would yield
states that bear some resemblance to empirical states. It is unreasonable to expect noise free, time invariant linear
models to fully capture neural dynamics at this time scale. Instead, we would like to ask if the features of network
topology we are interested in provide additional explanatory power than similarly simple models that do not contain
these features. We operationalize this prediction in the specific context of our experiment by stating that the third
highest performance loading subgraph and the lowest performance loading subgraph should explain some of the
changes in brain activity according to the following model of dynamics:

ẋ(t) = Ax(t) + Bu(t) , (16)

where x is the brain state at each sensor, A is the subgraph that we wish to test, and Bu represents input to the left
motor region during the BCI task.

To test our prediction, we use the above equation to obtain simulated brain states for each trial t where x(0) is the
brain state at trial t− 1, and we compare those simulated states to the observed brain states. Consistent with prior
work [9], we define a brain state as a vector of power estimates in each channel, and we obtain such states separately
for each frequency band. More specifically, for each trial we use FieldTrip (http://www.fieldtriptoolbox.org/) to
implement a multitaper Fourier transform (method = ‘mtmfft’) with half taper smoothing. We then log transform
the calculated power spectra, and z-score across trials and within sessions to obtain a brain state for each trial. For
each trial, we then simulate the above equation with either the third highest or lowest performance loading subgraph
as A, the same B that was used in the main text (ones at regions in the left motor cortex, and a constant, smaller
number at other regions), and u(t) = 1. The time in the simulation is defined in arbitrary units, and thus it is not clear
which time point to select that would be comparable to the 3 s trial interval. Here, we select 1000 arbitrary time steps
to ensure that the system’s response has stabilized. Then we select the time point at which the simulated state is most
similar to the empirical brain state, where state similarity is given by the Pearson’s correlation coefficient between the
simulated state and the observed state. This procedure provides a measure of the best possible prediction that our
model is capable of generating. We then average maximum correlations across trials to obtain one correlation value
per subject. To ensure that our results were dependent on the true network topology of the empirical subgraphs, we
repeated the same process with randomized networks that preserve the edge weight distribution, number of nodes, and
number of edges of the original networks. These random networks are obtained using the ‘randmio und.m’ function
with 1000 swaps per edge from the Brain Connectivity Toolbox [10]. For both the third highest (paired t-test t = 4.49,
p = 3.67×10−4) and lowest (paired t-test t = 4.84, p = 1.75×10−4) performance loading subgraphs, correlations are
significantly larger than those obtained from the null model. Together, these results indicate that simulating state
transitions using Eq. 5 in the main text does indeed yield states that are statistically similar to empirical states, and
that that similarity is greater than expected in appropriate random network null models.

Lastly, we wished to test the final prediction that each subgraph will contribute more to future brain states when
its expression is relatively high. We performed simulations using the same model described above, but this time we
used each subgraph individually. More specifically, for every subgraph Ci, we simulate the dynamics

˙̄x(t) = Cix(t) + Bu(t) . (17)

Ultimately, this process gives us the predicted states for every subgraph and every trial X̄, an N ×m× t vector where
N is the number of nodes, m is the number of subgraphs, and t is the number of trials. We can then estimate the
weight of each prediction on the true state by solving for d in

ẋ(t) = X̄(t)d(t) , (18)

where d is a 1 ×m vector. We can then test the similarity of d to the temporal expression obtained from the NMF
algorithm. Specifically, we z-score both d and W across subgraphs to scale the data, and then assess the correlation
coefficient between di and Wi for each subgraph i ∈ m. We then average the correlation values over subgraphs.
Lastly, we compare the observed mean correlations to those obtained from comparing di to Wj, where j is drawn
randomly with replacement from m. We find that correlations for the empirical data are significantly greater than
0 (permutation test: p = 0.038), and significantly greater than correlations obtained from unmatched subgraphs
(permutation test, p = 0.022) (Fig. S1D). Together, these results indicate that a subgraph will contribute more to
future brain states when its expression is relatively high, consistent with our prediction.

Collectively, the validation of our three predictions provides empirical support for our use of NMF-derived subgraphs
as adjacency matrices in the network control framework.
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FIG. 1. Effect of Regularization on Triangles. (A) The fraction of present triangles over possible triangles in binarized
graphs for each subgraph, and for the original functional connectivity (FC) matrices prior to NMF decomposition with regular-
ization. (B) The average weight of triangles for each subgraph, and for the original FC matrices prior to NMF decomposition
with regularization. The inset shows all subgraphs on a different scale. (C ) Similarity between simulated and empirical brain
states for third highest and lowest performance loading subgraphs. Each data point reflects the average of the maximum corre-
lation reached over all trials (N = 384 if no trials were removed). Correlations from empirical subgraphs are shown in green, and
correlations from randomized subgraphs are shown in grey. (D) The similarity between (i) the weighted contribution of each
subgraph to predicting the next brain state and (ii) the temporal expression of that subgraph derived from NMF. Correlations
from matched state prediction weights and temporal expression are shown in green, and correlations from mismatched temporal
expression are shown in grey.

SUPPLEMENTAL FIGURES

[1] J. Kim and H. Park, SIAM J. Sci. Comput , Tech. Rep. 1 (2011).
[2] A. N. Khambhati, M. G. Mattar, N. F. Wymbs, S. T. Grafton, and D. S. Bassett, NeuroImage 166, 385 (2018).
[3] C. Jeunet, B. Nkaoua, S. Subramanian, M. Hachet, and F. Lotte, PLoS ONE 10, 1 (2015), arXiv:journal.pone.0143962

[10.1371].
[4] J. Kim, Y. He, and H. Park, Journal of Global Optimization 58, 285 (2014).
[5] D. Greene, G. Cagney, N. Krogan, and P. Cunningham, Bioinformatics 24, 1722 (2008).
[6] S. Gu, R. F. Betzel, M. G. Mattar, M. Cieslak, P. R. Delio, S. T. Grafton, F. Pasqualetti, and D. S. Bassett, NeuroImage

148, 305 (2017), arXiv:1607.01706.
[7] A. E. Bryson, IEEE Control Systems 16, 26 (1996).
[8] A. Das, A. L. Sampson, C. Lainscsek, L. Muller, W. Lin, J. C. Doyle, S. S. Cash, E. Halgren, and T. J. Sejnowski, Neural

Computation, Tech. Rep. 3 (2017) arXiv:1309.2848v1.
[9] J. Stiso, A. N. Khambhati, T. Menara, A. E. Kahn, J. M. Stein, S. R. Das, R. Gorniak, J. Tracy, B. Litt, K. A. Davis,

F. Pasqualetti, T. Lucas, and D. S. Bassett, (2018), 10.1101/313304, arXiv:1805.01260.
[10] M. Rubinov and O. Sporns, NeuroImage 52, 1059 (2010).

http://www.ncbi.nlm.nih.gov/pubmed/11868488
http://dx.doi.org/10.1016/j.neuroimage.2017.11.015
http://dx.doi.org/ 10.1371/journal.pone.0143962
http://arxiv.org/abs/journal.pone.0143962
http://arxiv.org/abs/journal.pone.0143962
http://dx.doi.org/ 10.1007/s10898-013-0035-4
http://dx.doi.org/ 10.1093/bioinformatics/btn286
http://dx.doi.org/ 10.1016/j.neuroimage.2017.01.003
http://dx.doi.org/ 10.1016/j.neuroimage.2017.01.003
http://arxiv.org/abs/1607.01706
http://dx.doi.org/10.1109/37.506395
http://dx.doi.org/10.1162/NECO_a_00936
http://dx.doi.org/10.1162/NECO_a_00936
http://arxiv.org/abs/1309.2848v1
http://dx.doi.org/10.1101/313304
http://arxiv.org/abs/1805.01260
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003


7

AA

B

C

D

FIG. 2. NMF Parameters. Distributions of all three NMF parameters (panel A, β; panel C, α; panel D, m) and error (panel
B) for empirical data (emp) and null data (upr, indicating uniformly phase randomized null model). Each band is shown in a
different color: α band (red), β band (grey-blue), and γ band (cream).
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FIG. 3. NMF Parameter Consistency. The consistency of NMF parameters across two randomly chosen runs of the
algorithm: run i marked by the x-axis, and run j marked by the y-axis. Each parameter is given in a different row: α (top
row), β (second row), rank (third row), and error (bottom row). Each band is shown in a different color: α band (red, left), β
band (grey-blue, middle), and γ band (cream, right). Each data point indicates the selected parameter for a single subject.
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FIG. 4. Mean Subgraphs. Example histograms from a representative subject showing how one subgraph (m, shown in
purple) has drastically different distributions of (A) temporal expression and (B) coefficients than the others. These outlier
subgraphs were removed from further analysis to allow us to investigate differences among the remaining more local subgraphs.
Different subgraphs are plotted in different colors.



10

Co
ns

is
te

nc
y 

(E
m

p 
- N

ul
l)

Threshold (% removed) Threshold (% removed)Co
ns

is
te

nc
y 

(E
m

p 
- N

ul
l)

10 90705030 10 90705030

0.3

0.9

0.7

0.5

3rd Highest

2nd HighestHighest

Lowest

0

0.6

0.4

0.2

0.2

0.5

0.4

0.3

-0.2

1

0.6

0.2

Alpha Beta Gamma

0.1 0.1

FIG. 5. Consistency Across Thresholds. To quantify spatial features common to each subgraph, we calculate the average
consistency of each edge, or the number of subjects that had a given edge in their X% strongest connections. Here, we plot
the difference in average consistency between empirical and null data changes with the choice of different thresholds (choices of
X). Notice that for any choice of threshold, the relationship between null and empirical graphs for a given band has the same
sign, and that generally null data is less consistent (except for the γ band in the second highest subgraph). Each frequency
band is shown in a different color: α band (red), β band (grey-blue), and γ band (cream). Results are shown for the highest
performance loading subgraph (top left), second highest performance loading subgraph (top right), third highest performance
loading subgraph (bottom left), and lowest performance loading subgraph (right).
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FIG. 6. Consistency for Null Data. The consistent subgraphs identified for the uniformly phase randomized null data (UPR)
and for the empirical data (Empirical). Each frequency band is shown in a different color: α band (red, two leftmost columns),
β band (grey-blue, two middle columns), and γ band (cream, two rightmost columns). The color bar reflects consistency, or
the number of subjects that had a given edge in their 25% strongest connections.
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FIG. 7. Connectivity to Electro-occulogram (EOG) Channels. To address the possibility that consistent involvement
of more frontal sensors in subgraphs was due to residual EOG artifacts, we calculated weighted phase-locking index between
vertical (Left) and horizontal (Right) EOG channels, and all other sensors using the same methods as in the main manuscript.
Since the strong frontal interactions are present in almost all subgraphs, and therefore should be present at all time points,
we then averaged across trials to obtain a single horizontal and vertical EOG connectivity pattern for all subjects. Similar
to the main manuscript, we then wished to investigate which edges were consistent across subjects. We thresholded each
connectivity vector to only contain the 25% strongest edges. The colorbar shows how many subjects retained each edge after
thresholding. The top, middle, and bottom rows show the α, β, and γ bands respectively. Note that there is not a clear increase
in connectivity to frontal sensors, unlike what is seen in the main text in Figure 4.
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FIG. 8. Alternate target states with the same magnitude. A histogram of the correlation between the energy difference
for low and third highest subgraphs to reach a spatially shifted brain state with the same magnitude as the attention state,
and the learning rate for 500 randomly shifted target states. The red line indicates the observed p-value.
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FIG. 9. Montages. Masks of the montages used to define regions for consistency analyses. Black dots indicate sensor locations.
Yellow areas indicate regions included in the montage; dark blue areas indicate regions not included in the montage. Columns
indicate hemisphere. Rows indicate lobe or swath: frontal (top), motor (second), parietal (third), temporal (fourth), and
occipital (bottom).
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FIG. 10. Optimal Control Target States. Masks of the target states used for the optimal control analyses. Each state is
a linear combination of the montages displayed in the previous figure. Color indicates state value. The left column shows the
attention state for the α band (top), β band (middle), and γ band (bottom); the right column shows the motor state for the α
band (top), β band (middle), and γ band (bottom).

−2 −1 0 1 2

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Norm Quantiles

Le
ar

ni
ng

 R
at

e

FIG. 11. Normality of Performance. Quantile-quantile plot for the performance in each session across subjects. Each data
point indicates a subject. Most of the data points fall near the red line, indicating a normal distribution. Dotted red lines
represent the 95% confidence interval.
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indicates a subject. Most of the data points fall near the red line, indicating a normal distribution. Dotted red lines represent
the 95% confidence interval.
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FIG. 13. Normality of Performance Loading for Empirical Data. Quantile-quantile plots for performance loading
across subjects. Each data point indicates a subject and band. Each panel displays data from a different subgraph: the
highest performance loading subgraphs (top left), the second highest performance loading subgraph (top right), the third
highest performance loading subgraph (middle left), the fourth highest performance loading subgraph (middle right), the
lowest performance loading subgraph (bottom left), and the second lowest performance loading subgraph (bottom right). Note
that some of the data does not fall near the red line, indicating a non-normal distribution. In each panel, the dotted red lines
represent the 95% confidence interval.



17

1.
0

3.
0

5.
0

1.
0

3.
0

5.
0

0.
0

1.
0

2.
0

3.
0

4.
0

0.
0

1.
0

2.
0

3.
0

4.
0

−2 −1 0 1 2

0.
0

1.
0

2.
0

3.
0

4.
0

−2 −1 0 1 20.
0

2.
0

4.
0

Norm QuantilesNorm Quantiles
2L

 P
er

f. 
Lo

ad
in

g 
(x

10
-4

)

L 
Pe

rf
. L

oa
di

ng
 (x

10
-4

)

4H
 P

er
f. 

Lo
ad

in
g 

(x
10

-4
)

3H
 P

er
f. 

Lo
ad

in
g 

(x
10

-4
)

2H
 P

er
f. 

Lo
ad

in
g 

(x
10

-4
)

H
 P

er
f. 

Lo
ad

in
g 

(x
10

-4
)

FIG. 14. Normality of Performance Loading for Null Data. Quantile-quantile plots for performance loading across
subjects from the uniformly phase randomized null data. Each data point indicates a subject and band. Each panel displays
data from a different subgraph: the highest performance loading subgraphs (top left), the second highest performance loading
subgraph (top right), the third highest performance loading subgraph (middle left), the fourth highest performance loading
subgraph (middle right), the lowest performance loading subgraph (bottom left), and the second lowest performance loading
subgraph (bottom right). Note that some of the data does not fall near the red line, indicating a non-normal distribution. In
each panel, the dotted red lines represent the 95% confidence interval.
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FIG. 15. Normality of Consistency Data. Quantile-quantile plot for the consistency across subjects. Each data point
indicates a subject and band. Most of the data points fall near the red line, indicating a normal distribution. Dotted red lines
represent the 95% confidence interval.
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FIG. 16. Normality of Peak Temporal Expression Data. Quantile-quantile plots for the peak expression across subjects,
bands, and subgraphs. Each data point indicates a subgraph for a given subject and band. Empirical data is shown on the left
and uniformly phase randomized data is shown on the right. Most of the data points fall near the red line, indicating a normal
distribution. Dotted red lines represent the 95% confidence interval.
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FIG. 17. Normality of Energy Difference to Attention States. Quantile-quantile plots for the optimal energy difference
in attention states across subjects, separately for the α band (left), β band (middle), and γ band (right). Each data point
indicates a subject. Most of the data points fall near the red line, indicating a normal distribution. Dotted red lines represent
the 95% confidence interval.
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FIG. 18. Normality of Energy Difference to Motor Imagery States. Quantile-quantile plots for the optimal energy
difference of motor imagery states across subjects, separately for the α band (left), β band (middle), and γ band (right). Each
data point indicates a subject. Most of the data points fall near the red line, indicating a normal distribution. Dotted red lines
represent the 95% confidence interval.
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FIG. 19. Normality of Energy Difference for Alternate Control Set and for Null Data. Quantile-quantile plots for
the optimal energy difference of null analyses across subjects. The left panel show data for the alternative control set and the
right panel shows data for the uniformly phase randomized null. Each data point indicates a subject. Most of the data points
fall near the red line, indicating a normal distribution. Dotted red lines represent the 95% confidence interval.



22

−2 −1 0 1 2

−0
.1
0
−0
.0
5
0.
00

0.
05

−2 −1 0 1 2

−0
.1

0.
0

0.
1

0.
2

−2 −1 0 1 2

−0
.1
0

0.
00

0.
10

0.
20

−2 −1 0 1 2−0
.1
0

0.
00

0.
10

0.
20

St
at

e 
M

ag
ni

tu
de

 C
on

tr
ol

La
rg

er
 M

ag
ni

tu
de

 C
on

tr
ol

M
ea

n 
St

at
e 

Co
nt

ro
l

0-
1-

2 
St

at
e 

Co
nt

ro
l

FIG. 20. Normality of Energy Difference for Various State Controls. Quantile-quantile plots for the optimal energy
difference of state control analyses across subjects. These analyses include a control for state magnitude (top left), a control
for larger magnitude (top right), a control changing the state intervals (bottom left), and a control for the mean state (bottom
right). Each data point indicates a subject. Most of the data points fall near the red line, indicating a normal distribution.
Dotted red lines represent the 95% confidence interval.
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