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Details for the Docking Calculations 

 

 Glide. Schrödinger’s Protein Prep wizard utility was used for preparing the protein. A 20-

Å grid was then generated and centered on the co-crystallized ligand, which was subsequently 

removed. The drug library members were neutralized and/or ionized via Schrödinger’s LigPrep.1 

The Epik program2 was used for estimating the pKa values of each compound. Plausible tautomers 

and stereoisomers within the pH range of 7 ± 1 were generated for each compound using the 

OPLS3 force field.3 These conditions resulted in a total of 16000 structures, which were then 

docked into Mpro using Schrödinger’s standard-precision (SP) Glide.4,5 

 AutoDock. The AutoDockTools (ADT) software6 was used for creating PDBQT files from 

SDF and PDB files of compounds and the protein, respectively. Non-polar hydrogen atoms were 

removed and Gasteiger–Marsili charges were assigned for both the protein and the ligands using 

ADT. The AutoGrid 4.2 program6 was used for generating affinity grids with a spacing of 0.375 

Å and with a box size of 74 × 80 × 62 Å. The affinity grids were centered at two different points 

of the active site for performing two sets of runs. In the first run, the grid box was centered at Cβ 

of Cys145 of monomer A. In the second run, the grid center was displaced toward the geometric 

center of the active site. The AutoDock 4.2 program6 was applied for docking the ligands into 

Mpro. The Lamarckian genetic algorithm (LGA) was used for ligand conformational searching. 

LGA was iterated 15 and 50 times in the first and the second run, respectively, for each compound. 

The maximum RMS tolerance for conformational cluster analysis was 2.0 and 0.5 Å in the first 

and second runs, respectively. The number of generations was set to 27000 with 300 individuals 

in each population in both runs. The maximum number of energy evaluations was 30 × 106 for all 

compounds and 40 × 106 for re-docking of the selected consensus compounds. Other parameters 

were set to their default values.  
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AutoDockVina. The PDBQT files generated by ADT for the protein and library compounds also 

used for running AutoDock Vina.7 Non-polar hydrogen atoms were removed. An affinity grid box 

with a size of 18 × 21 × 18 Å was generated and centered on the active site. The default docking 

parameters were used, except for the number of modes that was set to 9.  

 

Figure S2.  Correlation of docking scores for all drugs (left) and for the 42 consensus compounds 

(right). 
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 Molecular Dynamics Simulations. The GROMACS software, version 2018a compiled in 

double precision, was used for performing all molecular dynamics (MD) simulations.8 The 

protonated Mpro dimer, with a net charge of -8 e, was represented by the OPLS-AA/M force field.9 

TIP4P water was used as the solvent.10 Sodium counterions were added to neutralize the net charge 

of each system. The selected ligand candidates were represented by the OPLS/CM1A force field,11 

as assigned by the BOSS software12 (version 4.9) and the LigParGen Python code.13 The 

parameters were converted to GROMACS format using LigParGen.13 For neutral ligands, the 

CM1A partial atomic charges were scaled by a factor of 1.14.11  

Each Mpro-ligand complex was put at the center of a triclinic simulation box with 10-Å 

padding. An energy minimization was then performed until the steepest descent algorithm 

converged to a maximum force smaller than 2.4 kcal mol-1 Å-1. A cutoff radius of 12 Å was used 

to explicitly calculate non-bonded interactions. Long-range electrostatic interactions were treated 

using the Particle Mesh Ewald (PME) algorithm.14 The PME was used with an interpolation order 

of 4, a Fourier spacing of 1.2 Å, and a relative tolerance of 10-6. The van der Waals forces were 

smoothly switched to zero between 10 and 12 Å. Analytical corrections to the long-range effect 

of dispersion interactions were applied to both energy and pressure. All covalent bonds to 

hydrogen atoms were constrained at their equilibrium lengths using the LINCS algorithm.15 Each 

system was initially simulated for 1 ns in the canonical ensemble (NVT) in order for the solvent 

to relax and the temperature to equilibrate. Initial velocities were sampled from a Maxwell-

Boltzmann distribution at 310 K. The V-rescale thermostat with a stochastic term16 was used for 

keeping the temperature at 310 K. The coupling constant of the thermostat was set to 2.0 ps. The 

system was then equilibrated for 1.5 ns in the isothermal-isobaric ensemble (NPT) for obtaining 

a density consistent with the reference pressure. The pressure was kept at 1 bar by the Berendsen 
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barostat17 with a coupling constant of 4.0 ps and a compressibility factor of 4.5 × 10-5 bar. A 

harmonic position restraint with a force constant of 2.4 kcal mol-1 Å-2 was applied to the protein 

backbone and to all solute heavy atoms during the equilibration steps. A 70 ns unrestrained run 

was then performed in the NPT ensemble with the Parrinello−Rahman barostat18 using a coupling 

time of 4.0 ps.  

 MD Analyses for the Mpro-ligand Complexes. Before the assaying was carried out, the 

70-ns MD simulations were run for complexes of 14 of the promising compounds starting from 

the Glide poses. The idea was to obtain insight on which compounds gave more stable complexes 

and were, therefore expected to be more active inhibitors. In addition to visualization of the 

evolving structures, the all-atom RMSD of each ligand was computed over the course of the 

simulation time with and without least-square (LS) fitting of the ligand’s atoms onto the initial 

structure of the ligand in the complex (Figure S3). The LS-fit RMSD monitors only the ligand’s 

conformational changes, whereas the no-fit RMSD also reflects rotational and translational 

movements away from the starting structure. The LS-fit RMSD converged relatively quickly to 2-

3 Å for all ligands, except for carindacillin, which converged to 4 Å. However, as expected, no-fit 

RMSD values are larger than the LS-fit RMSD values for all ligands, demonstrating the 

contribution of rotational and translational movements. The no-fit RMSD value converged for 

bedaquiline, idarubicin, indinavir, and perampanel after about 10 ns, while it converged for 

efonidpine after 60 ns. The no-fit RMSD values steadily fluctuated about an average value of 4 Å 

for lapatinib and periciazine. In general, most ligands showed some displacement from their initial 

position, whereas they remained close to their initial conformation.  Differences between initial 

and final structures were considered in selecting compounds for purchase and assay. 
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Figure S2. RMSD in Å of all ligand atoms with and without Least-Square fitting to the original 

complex structure during the course of 70-ns MD simulations. 
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Figure S3. Kinetic data measuring activity of SARS-CoV2 Mpro in the presence of A) manidipine, 

B) lercanidipine, C) boceprevir, D) bedaquiline, and E) efonidipine. All measurements were 

performed in triplicate, averaged, and plotted with standard deviation. Kinetic data for inhibition 

of Mpro by bedaquiline was collected at concentrations up to 50 μM due to solubility issues.  
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