
Supplementary Methods 

Instrumentation 

Capillary electrophoresis time-of-flight mass spectrometry (CE–TOF–MS) was carried out 

using an Agilent CE–TOF–MS system (Agilent Technologies Inc. Waldbronn, Germany) 

system, equipped with an Agilent 6210 Time of Flight mass spectrometer (TOF–MS), Agilent 

1100 isocratic High-performance liquid chromatography (HPLC) pump, Agilent G1603A 

capillary electrophoresis mass spectrometry (CE–MS) adapter kit, and Agilent G1607A 

capillary electrophoresis electrospray ionization mass spectrometry (CE–ESI–MS) sprayer kit 

(all from Agilent Technologies, Waldbronn, Germany). System control, data acquisition and 

evaluation were controlled by Agilent G2201AA ChemStation software version B.03.01 for 

CE (Agilent Technologies). To facilitate thermostating of the capillary, the CE–MS adapter kit 

includes a capillary cassette. The CE−ESI–MS sprayer kit simplifies coupling the CE system 

with MS systems equipped with an electrospray source. The sprayer is designed to give an 

orthogonal flow in order to reduce the detrimental effects caused by the charged particles or 

droplets [1]. 

Metabolite measurement 

Compounds were measured in the cation and anion modes of CE–TOF–MS-based metabolome 

analysis [2-4]. To improve the quality of the CE–MS analysis, samples were diluted 1:2 and 

1:5 for cation and anion modes respectively.  

Cationic metabolites (i.e. cation mode) were analysed with a fused silica capillary (i.d. 50 μm 

× 80 cm), using Cation Buffer Solution (p/n: H3301-1001; HMT) as both the run and rinse 

buffer. Sample injection was done at a pressure of 50 mbar for 10 seconds at an applied CE 

voltage of 27 kV. Electrospray ionization mass spectrometry (ESI–MS) was conducted in the 

positive ion mode with a capillary voltage of 4,000 V. Mass spectrometer (MS) scanning range 



was m/z 50–1,000 using an HMT in-house sheath liquid (p/n: H3301-1020). All other 

conditions were as used in cation analysis mass spectrometry [2]. Anionic metabolites (i.e. 

anion mode) were analysed with a fused silica capillary (i.d. 50 μm × 80 cm), using Anion 

Buffer Solution (p/n: H3302-1021; HMT) as both the run and rinse buffer. Sample injection 

was done at a pressure of 50 mbar for 25 seconds at an applied CE voltage of 30 kV. ESI-MS 

was conducted in the negative ion mode with a capillary voltage of 3,500 V. MS scanning 

range was m/z 50–1,000 using an HMT in-house sheath liquid (p/n : H3301-1020). All other 

conditions were as used in anion analysis mass spectrometry [4]. 

Statistical analysis 

Data analyses were performed using SPSS version 22 (IBM Corp.), GraphPad Prism version 

8.2.0 (GraphPad Software, Inc), and MetaboAnalyst 4.0. MetaboAnalyst is a comprehensive, 

Web‐based tool that supports analysis of metabolomic data using a range of univariate, 

multivariate, and machine‐learning methods and tools [5-7].  

Data pre-processing. Prior to any downstream analysis, a data integrity check was performed 

using MetaboAnalyst. First, the entire data set from all three time points was checked for 

missing values. Overall, metabolite concentration values should be non-negative and without 

missing values (in this case “N.D”); these cause difficulties in data normalisation and 

downstream analysis. Since missing or zero values were caused by metabolites with abundance 

below the detection limit, and not a mere absence, these were replaced by a small pseudo value 

(i.e. half the minimum positive value in the entire data set= 0.15 μM). 

Metabolite data were then processed to remove data for metabolites with a constant value 

across all samples. By default, MetaboAnalyst removes data for metabolites with a constant or 

a single value across samples. For example, a metabolite with concentration values of 0.15 μM 

across all 83 samples will be removed. For the metabolite data set at baseline, six metabolites 



were found and removed (Adenosine triphosphate (ATP), Anthranilic acid, Betaine aldehyde 

+ H2O, Dihydroxyacetone phosphate, Glycerol-3-phosphate, and Phosphoenolpyruvic acid). 

For change in metabolite concentrations in response to schistosome infection, the change in 

concentration of metabolites between the two time points at baseline (C1) and at follow up for 

infection (C2) was calculated as ∆C μM = C2-C1 (μM) and used for subsequent analysis. The 

resulting data set was then processed to exclude data for metabolites with a constant value 

across all samples. Similarly, the six metabolites which were found and removed from the 

baseline metabolite data set were also removed by default. To improve statistical power, eight 

additional metabolites with less than n=10 non-zero ∆C μM values across all samples were 

excluded from analysis with the change in concentration metabolite data set (14 metabolites in 

total; 2-Phosphoglyceric acid, Anthranilic acid, ATP, Betaine aldehyde +H2O, 

Dihydroxyacetone phosphate, Fumaric acid, GDP, Glucose 1-phosphate, Glycerol 3-

phosphate, Glyoxylic acid, Guanine, Phosphoenolpyruvic acid, UDP, and Uracil). 

For all analyses, data were processed by range scaling (mean-centred and divided by the value 

range of each variable); this allows for biologically-related scaling and ensures that all 

metabolites are treated as equally important [8]. 

Multivariate analysis of variance (MANOVA) using SPSS. To determine if the mean 

differences between groups in the sample metadata on the metabolite data set were likely due 

to chance, a Multivariate analysis of variance (MANOVA; SPSS) with sequential sums of 

squares was used, as recommended for pathogen related studies [9]. In this case, the effects of 

each term are adjusted only for the effects of terms preceding it in the model; the variables of 

interest are thus entered other confounding variable [9]. Where a variable was found to be 

significant, the model was re-run excluding the significant variable, to account for the effects 

of all other variables. This was to ensure that the confounding effects of factors such as age 



and sex were already accounted for, prior to downstream analysis to determine to determine 

the most relevant metabolites accounting for differences in metabolite profiles between groups 

of interest. The residuals from the resulting model were saved and subjected to further 

univariate and multivariate analysis to identify significant metabolites (MetaboAnalyst).  

Age and sex-dependent effects exist for metabolites [10, 11] and for schistosome infection [12, 

13]. A MONOVA model for age (years), sex, and their interaction (in that order) was used to 

determine any underlying age and sex-related associations at baseline, which may account for 

difference in metabolite concentrations post-infection; sex remained significant. To further 

identify specific metabolites associated with sex at baseline (significant in the initial model), 

the MANOVA model was re-run with age and the residuals saved for further analysis in 

MetaboAnalyst. To determine if the change in metabolite concentrations due to schistosome 

infection are is likely due by chance, a MONOVA model for age (years), sex, infection status 

and all interactions was run (in that order); infection status remained significant. To further 

identify metabolites associated with schistosome infection at follow-up (significant in the 

initial model), the MANOVA model was re-run with age, sex, and their interactions, and 

residuals saved for further analysis. 

Fold change and correlation analysis. Univariate analysis was first used to obtain an 

overview about features that are potentially significant in discriminating the conditions under 

study (MetaboAnalyst). A fold change (FC) analysis was first done to compare absolute value 

changes in metabolites between two group means. A concentration ratio (i.e. between the two 

groups) of at least a 2-fold was considered significant [14]. A Pearson’s pattern correlation 

analysis with FDR correction (<0.05) [15] was also used to determine linear/periodic trends, 

and to show metabolite variation patterns under different conditions. 



PCA and OPLSDA. More stringent multivariate analysis was then used to identify significant 

metabolites associated with sex and schistosome infection. For an informative first-hand look 

at the data set, an unsupervised Principal Component Analysis (PCA) was employed to assess 

clustering trends and group separation in the data set. To test the hypothesis that specific 

metabolite signatures are associated with schistosome infection, a supervised multiple 

regression analysis method, Orthogonal Projections to Latent Structures Discriminant Analysis 

(OPLSDA) was used to discriminate groups and identify the differentially expressed 

metabolites that drive group separation [16]. OPLSDA is modified version of the Partial Least 

Squares - Discriminant Analysis (PLSDA) [17], and has the capability to distinguish between 

variations in a data set both relevant and irrelevant to predicting groups, while incorporating 

an Orthogonal Signal Correction (OSC) filtering [18] into a Partial Least Squares (PLS) model. 

The model relates numerous response variables (Y), in this case the metabolite data set, and X 

blocks of matrices (in this case, using dummy variables 0/1 for groups) by a linear multivariate 

model. It then separates the systematic variation between groups into two predictive 

(covariance between X and Y; between group variation) and orthogonal (systematic variation 

in X that is unrelated to Y; within group variation) components, free of interfering structured 

variation. Model statistics, R2 and Q2, were calculated for each model and used to assess the 

degree of fit and predictive reliability of the OPLSDA model respectively [19]. R2 represents 

the fraction of the variance explained by a component in the model and is expressed as R2= 

(1−RSS/SS), where RSS/SS is the fitted residual sum of squares or the sum squares of the 

response variables respectively. The Q2 is the cross-validated R2, expressed as (1-PRESS/SS), 

where PRESS is prediction error of the sum of squares and SS is the sum squares of the 

response variables [19].  

A permutation testing that assumes there is no difference between any two groups compared 

was used to cross-validate and ensure the model was reliable and not over-fitted [17]. In 



summary, sample groups were randomly permuted, and a new classification model calculated. 

Model performance was then assessed by the Q2 and R2 diagnostic statistics, expected to be 

lower than that obtained for the original unpermuted data set. The permutations were repeated 

1000 times and the diagnostic statistics obtained were used to create a null distribution, H0, of 

models expected to be non-significant. The diagnostic statistics for the OPLSDA model from 

the original data set was related to that of the H0 distribution from the permuted data sets to 

determine the statistical significance (p-value with threshold <0.05) of the OPLSDA model: 

𝑝 =
1 + #(𝑄!𝑝 ≥ 𝑄!)

𝑁  

Where N is the number of permutations, #(Q2p≥Q2) is the number of elements in the null 

distribution H0 which are greater or equal to the Q2 for the original data set (or otherwise R2). 

Selection of significant metabolites. For all valid OPLSDA models, an S-plot showing the 

variable importance in a model, combining the covariance or contributions [X-axis; p(1)] and 

the correlation or reliability coefficient [Y-axis; p(corr)] loading profile was generated. This 

was used to identify and select significant metabolites with the highest correlation coefficient 

within groups and with the highest contribution to the model separation between groups. The 

p(corr) values are robust to variable selection in the OPLSDA model and are thus comparable 

between models [20]. The variable importance in the projection (VIP), a weighted sum of 

squares of the PLS loadings, taking into account the amount of explained group variation in 

each dimension, was calculated for each component. As recommended, a combination of the 

S-plot, using an absolute p(corr) >0.5 and a VIP value cut-off ≥1.5 were used to select 

significant metabolites [20, 21].  

Pathway enrichment analysis and topology analysis. We used the pathway enrichment 

analysis (quantitative enrichment analysis using the compound concentration values). This is a 

sensitive method with the potential to identify subtle but consistent changes amongst 



metabolites involved in the same biological pathway. As MetaboAnalyst is a web-based tool, 

the Global Test was used and p-values were approximated based on the asymptotic distribution 

without using permutations; this is suitable when most relevant pathways are to be identified, 

and thus the rank of the pathway is most essential. The Global Test allows the use of 

metabolites selected based on prior analysis, and to investigate groups of differentially 

expressed metabolites of biological interest [22]. The pathway topology analysis in 

MetaboAnalyst takes into consideration the structure of biological pathways to estimate 

significant pathways that change under different conditions. We used the out-degree centrality, 

which represents the number of links that are initiated from a node (metabolite); it is assumed 

that nodes upstream will have regulatory roles for the downstream nodes, not vice versa (i.e. 

assuming that upstream metabolites will have regulatory effects on downstream metabolites 

but not vice versa, and that changes in more important positions of a network will trigger a 

more severe impact) [23]. 
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