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Supporting Figures

’@ 0 mM SPM
3 — 0.05 mM SPM
£ — 0.05 mM SPM_1h
E — 0.05 mM SPM_24 h
°
=
o
=]
5
3 -10.0
=
(& ]
12.5-1—

T T T T T 1
200 220 240 260
Wavelength (nm)

Figure S1. Circular dichroism spectra of Acidic-(HhH)2 upon incubation with
spermine (SPM). Spectra were taken immediately after addition of 0.05 mM spermine and
again after 1 h and 24 h of incubation. The resulting spctrea are very similar, demonstrating
that for Acidic-(HhH)2 polyamine-induced structure formation is very fast.
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Figure S2. Spermine titration of acidified Primordial-(HhH)2. Shown are titrations of
5 UM protein with spermine (SPM); the protein sequences are shown above the respective
titrations graphs. A. Complete acidification of Primordial-(HhH). (replacement of all Arg
residues to Glu) resulted in an unfolded protein that is only weakly responsive to spermine
addition. B. Based on previous experience with the (HhH). fold (see Main Text) we
reverted two positions to arginine (colored blue in the sequence), which resulted in
acquisition of an a-helical structure upon addition of spermine.
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Figure S3. A 2D 'H NMR TOCSY spectrum of Acidic-(HhH)2 in the presence of 250
fold excess spermine at 293 K. The spectrum was acquired on a 600 MHz NMR
spectrometer using 120-ms mixing time and reports on intra-residue interactions of amide
groups with aliphatic groups as well as interactions within aromatic sidechains. The
fingerprints region of the spectrum, revealing intra-residue *HN-H® correlations, is marked

with a box (see the main text).
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Figure S4: Titration of Acidic-(HhH)2 with various polyamines. Circular dichroism
spectra of 10 uM Ni-NTA-purified Acidic-(HhH)2 were collected upon addition of various
concentrations of polyamines. Plotted here is the CD signal at 222 nm, a reporter of a-
helical structure, after buffer subtraction and dilution correction. Estimated midpoint
concentrations are: spermine = 0.09 mM, spermidine = 0.6 mM, putrescine = 23 mM; these
values and the midpoints concentrations from the independent titration in Figure 5 are
within £20% (the midpoint for propylamine could not be reliably estimated from this
dataset, but the plot is qualitatively very similar to the titration in Figure 5). Midpoint
values were estimated from a linear interpolation between points and assuming a saturated
folded signal of -19 mdeg at 222 nm.
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Figure S5. Circular dichroism spectra of Acidic-(HhH)2 titrated with salts and
polyamines. Circular dichroism spectra of 5 uM Acidic-(HhH). were monitored upon
addition of: A, MgCly; B, CaCl,; C, NaCl; D, propylamine (PA); E, putrescine (Put); F,
spermidine (SPD). Spectra from the titration with spermine are presented in Figure 3. Each
curve represents the average of two spectra after buffer subtraction and correction for
dilution due to titration. Data points exceeding 700 V of applied voltage to the
photomultiplier tube (PMT) were discarded. These data were used to generate the titration

curves presented in Figure 5.
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