Supporting Information: Dopamine-decorated TiO2 nanoparticles in water: a QM/MM vs an MM description

Paulo Siani,¹ Stefano Motta,² Lorenzo Ferraro,¹ Asmus O. Dohn,³ Cristiana Di Valentin^{1,*}

¹Dipartimento di Scienza dei Materiali, Università di Milano Bicocca Via Cozzi 55, 20125 Milano Italy

²Dipartimento di Scienze dell'Ambiente e della Terra, Università di Milano Bicocca Piazza della Scienza 1, 20125 Milano Italy

³ Faculty of Physical Sciences and Science Institute, University of Iceland, 107 Reykjavík, Iceland & Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

^{*} Corresponding author: cristiana.divalentin@unimib.it

Table S1. Partial atomic charges on the atoms of a dissociated dopamine on the NP from HF, DFT, and SCC-DFTB calculations. (Atomic charge is in unit e).

†single-dopamine molecule in vacuum

‡ partial atomic charges averaged over all dopamine molecules on the nanoparticle.

* undissociated hydrogen atoms bonded to the O1 and O2 atoms, respectively.

Table S2. Comparison of binding energy (in eV) of a single molecular water at three Ti sites on the bare anatase TiO₂ NP surface calculated at the DFT, DFTB, QM(DFTB)/MM and MM level of theory with the original Matsui-Akaogi (MA) or reparametrized Matsui-Akaogi (OPT) force fields. For the Ti sites numbering and for DFT and DFTB data see Ref.: Fazio, G. et al. *ACS Appl. Mater. Interfaces* **2018**, *10*, 29943−29953.

Table S3. Comparison of Ti-O_w distance (in \AA) of a single molecular water at three Ti sites on the bare anatase TiO₂ NP surface calculated at the DFT, DFTB, QM(DFTB)/MM and MM level of theory with the original Matsui-Akaogi (MA) or reparametrized Matsui-Akaogi (OPT) force fields. For the Ti sites numbering and for DFT and DFTB data see Ref.: Fazio, G. et al. *ACS Appl. Mater. Interfaces* **2018**, *10*, 29943−29953.

Numbers in italic indicate that there is no $Ti-O_w$ bond but only H-bond intraction.

*single H-bond with the exposed Oxygen atoms nearby the Ti site.

**two H-bonds with the exposed Oxygen atoms nearby the Ti site.

Table S4. Comparison of tilt angle (θ, degrees) between surface-bonded dopamine ligands with the NP surface in vacuum (T=300K). Experimental Carbon K-edge X-ray absorption fine structure (NEXAFS) and high-level DFTB predictions are compared with *in silico* low-level MM-MD predictions with the original Matsui-Akaogi (MA) or reparametrized Matsui-Akaogi (OPT) force fields with the HF point-charge model. Percentage of dopamine ligands for each state are shown in parenthesis. Open-state corresponds to dopamine ligands with θ < 20°. Intermediate means dopamine ligands within the range of 20°< θ < 45°. Closed-state refers to dopamine ligands with θ > 45°. Experimental tilt angle value from Ref.: Syres, K. et al. *Langmuir* **2010**, *26*, 14548–14555.

Figure S1. Effect of increasing nonbonded cutoff on the molecular height of bonded-dopamine on the NP surface. Three different nonbonded cutoffs were tested (10 Å, 12 Å, and 14 Å) in the MM-MD simulations. Increasing of the non-bonded cutoff broader the distribution of molecular height of dopamine for larger values, although no significant changes has been found on their average values.

Figure S2. Final MD snapshots of molecular structures for a) bidentate and b) chelated binding modes of dopamine anchored to the TiO₂-NP and immersed in bulk water. Atom colors are: Oxygen (red), Carbon (cyan), Hydrogen (white), and Titanium (pink). Solvating water molecules within a radius of 5 Å around the dopamine ligand are highligthed in green.

Figure S3. Average tilt angle versus dipole moment of dopamine ligands on the anatase TiO₂ NP surface estimated at QM(DFTB) and MM levels of theory in vacuum. At MM level, we tested OPT and MA force fields. Color coding: cyan (DFTB), brown (OPT, q_{HF}), yellow (MA, q_{DFT}) and blue (MA, q_{HF}).