Supporting Information

to

Unifying conceptual density functional and valence bond theory: The hardness-softness conundrum associated with protonation reactions and uncovering complementary reactivity modes

Thijs Stuyver,*a and Sason Shaik*a

^{a.} Institute of Chemistry, Edmond J. Safara Campus at Givat Ram, The Hebrew University, Jerusalem 9190401, Israel

S1. Comparison of the BOVB results with the DFVB results for a selected subset of considered systems

From Table S1 it is clear that the bonding situations are equally well described by BOVB and DFVB level-of-theory; the only quantity that differs significantly between both methods is the bonding energy. The latter finding is in line with expectations, since DFVB generally does a better job at recovering the full bonding energy than BOVB (see also Section S2; cf. Ref. 46 in the main text).

Table S1. The weights of the HL and the main ionic structures (w_{HL} and $w_{ion,1}$), the resonance energy (RE) and the spacing between the HL and main ionic state (ΔE_{HL} -ion,1) at the optimal bonding distance and the adiabatic bonding energy obtained for $[H_3N-H]^+$, $[H_2S-H]^+$ and $[H_2O-H]^+$ H]+ at respectively BOVB-d/6-311++G**//(U)B3LYP/def2-TZVP and DFVB(LYP)/6- 311++G**//(U)B3LYP/def2-TZVP level-of-theory.

	WHL	$W_{\text{ion},1}$	RE^a	ΔE_{HL} -ion,1 ^a	Bonding energy ^a
$[H3N-H]+$ - BOVB	0.61	0.33	39.0	58.7	130.6
$[H3N-H]+$ - DFVB	0.62	0.36	34.8	56.3	138.6
$[H2S-H]^{+}$ - BOVB	0.68	0.26	21.1	101.8	85.9
$[H2S-H]+$ - DFVB	0.68	0.26	21.7	98.7	95.4
$[H_2O-H]^+$ - BOVB	0.55	0.41	70.7	11.8	132.8
$[H_2O-H]^+$ - DFVB	0.56	0.44	63.8	9.3	146.8
^a in kcal/mol					

S2. Comparison of the DFVB results with the DFT results and experimental data

Table S2. The bonding energy and $A_H + - I_R$ (in kcal/mol) computed at respectively DFVB(LYP)/6-311++G**//(U)B3LYP/def2-TZVP, (U)B3LYP/def2-TZVP(+ZPE) [DFT(a)], (U)B3LYP/6-311++G**//(U)B3LYP/def2-TZVP(+ZPE) [DFT(b)] level-of-theory and (experimental) literature values for A_H + – I_R for each of the systems considered in the main text. Note the significant overestimation of the A_H + – I_R value calculated with the DFVB method.

	Bonding		Bonding		Bonding		
	energy	$A_H + -I_R$	energy	$A_H + -I_R$	energy	$A_H + -I_R$	$A_H + -I_R$
	DFVB	DFVB	DFT(a)	DFT(a)	DFT(b)	DFT(b)	literature
$[H2S-H]+$	95.4	83.9	95.1	73.6	93.7	73.1	72.5 ¹
$[H2O-H]+$	146.8	39.3	143.2	21.0	143.9	19.7	22.6^1
$[H3N-H]+$	138.6	80.0	140.0	62.7	140.6	62.7	66.8^2
$[H_2NOH_2]^+$	97.6°	$106.0^{\rm a}$	98.3	70.1	98.5	68.7	$\overline{ }$
$[H3NOH]+$	123.9^{a}	$106.0^{\rm a}$	123.6	70.1	123.6	68.7	$\sqrt{2}$
$[H_2NSH_2]^+$	98.5	106.0	93.3	90.8	100.7	77.9	$\sqrt{2}$
$[H3NSH]+$	117.3	106.0	105.8	90.8	119.8	77.9	$\sqrt{2}$
$\left[\mathrm{C}_6\mathrm{H}_5\mathrm{N}\text{-}\mathrm{H}\right]^+$	135.8^{b}	120.6^{b}	125.5	97.1	125.5	96.8	100.2 ¹
$[C_6H_6N]^+$ _{ortho}	71.2^{b}	120.6^{b}	69.5	97.1	70.4	96.8	100.2 ¹

^aThe geometry of dissociated H₃NOH was selected to evaluate the energetics in the asymptotic limit

^b The geometry of dissociated N-protonated pyridine was selected to evaluate the energetics in the asymptotic limit

S3. Bond scanning profiles for the protonation reactions

Figure S1. Evolution of the energy of Φ _{HL}, Φ _{ion1} and Ψ _{adiabatic} as a function of the N-H bond distance in NH₄⁺, calculated at DFVB(LYP)/6-311++G**//(U)B3LYP/def2-TZVP level-oftheory.

Figure S2. Evolution of the energy of Φ_{HL} , Φ_{ion1} and $\Psi_{adiabatic}$ as a function of the S-H bond distance in H₃S⁺, calculated at DFVB(LYP)/6-311++G**//(U)B3LYP/def2-TZVP level-oftheory.

Figure S3. Evolution of the energy of Φ_{HL} , Φ_{ion1} and $\Psi_{adiabatic}$ as a function of the O-H bond distance in H₃O⁺, calculated at DFVB(LYP)/6-311++G**//(U)B3LYP/def2-TZVP level-oftheory.

S4. Connection between the presented VB framework and the empirical factors previously identified as driving pKa values

In a set of recent papers, cf. Ref. $57 - 59$ in the main text, Liu and co-workers connected a variety of electronic and reactivity descriptors emerging from a CDFT framework to the experimental acid strengths of a variety of structurally related sets of acidic compounds and complexes. Interestingly, the main factors probed/identified in these studies also emerge (in a modified version) in our own VB-based framework to describe protonation propensities:

- (a) The authors observed a (negatively sloped) linear correlation between the MEP value on the association site and the experimental pK_a values. As indicated in the main text, MEP values are good descriptors of the electrostatic part of the interaction energy. Hence, when a set of compounds with common structural features in close proximity of the protonation site (but varying substituents in more distant positions of the molecule or complex) are considered – resulting in a more or less constant spin-pairing/ (frontier) orbital contribution across the series but a variable electrostatic (long-range) contribution – then this descriptor can be expected to correlate well with the experimental pK_a values.
- (b) The authors observed a (positively sloped) linear correlation between the chemical potential of the reaction partner R ($\mu_R = \frac{1}{2}[I_R + A_R]$) and the experimental pK_a values. This finding can also be connected to our model through realization that μ_R acts as a probe for the spacing between the HL and ionic structure in our model, i.e. $I_H - I_R$ (cf. Eq. 2 in the main text): since A_R is a rather small quantity in most (saturated) organic compounds (relative to I_R) and I_H is by definition a constant for all protonation processes, the magnitude of μ_R effectively acts as an indicator of the magnitude of I_R . Hence, this quantity tells us something about the magnitude of the

spin-pairing interaction when a single elemental type is considered for the association site within a set of structurally related acids. This realization is further corroborated by the finding in other studies that the pK_a correlates with $E_{HOMO,R}$ (another quantity connected to I_R), cf. Ref. 65.

S5. Comparison between the VB-analogue of the Fukui function and the conventional Fukui function

Throughout the main text, we focus on the VB-inspired analogue of the Fukui function, i.e. the spin density of the (positively) charged compound, as a descriptor of the spin-pairing/orbital interaction. In the literature, this descriptor is often referred to as a so-called "Parr function". As indicated in Ref. 61 and 62 in the main text, this descriptor corresponds – within reasonable bounds – to the traditional (CDFT) definition of the Fukui function (in its finite difference approximation), i.e. $f^-(\mathbf{r}) = \rho_N(\mathbf{r}) - \rho_{N-1}(\mathbf{r})$. Below, this finding was verified for each of the systems considered in the present study. Note that while there are numerical shifts between the two spin-pairing/orbital interaction descriptors, the emerging trends are identical.

Table S3. Comparison between the atom-condensed conventional Fukui function and its VBinspired analogue for NH3, derived from the ground-state wavefunctions calculated at (U)B3LYP/def2-TZVP level-of-theory.

		Conventional Fukui VB-inspired analogue of the	
	function (in au)	Fukui function (in au)	
N	0.81261	1.04088	
н	0.06246	-0.01363	
н	0.06246	-0.01363	
н	0.06246	-0.01363	

Table S4. Comparison between the atom-condensed conventional Fukui function and its VBinspired analogue for H2S, derived from the ground-state wavefunctions calculated at (U)B3LYP/def2-TZVP level-of-theory.

		Conventional Fukui VB-inspired analogue of the
	function (in au)	Fukui function (in au)
S	0.92495	1.04124
н	0.03752	-0.02062
н	0.03752	-0.02062

Table S5. Comparison between the atom-condensed conventional Fukui function and its VBinspired analogue for H2O, derived from the ground-state wavefunctions calculated at (U)B3LYP/def2-TZVP level-of-theory.

Table S6. Comparison between the atom-condensed conventional Fukui function and its VBinspired analogue for H2NOH, derived from the ground-state wavefunctions calculated at (U)B3LYP/def2-TZVP level-of-theory.

Table S7. Comparison between the atom-condensed conventional Fukui function and its VBinspired analogue for H2NSH, derived from the ground-state wavefunctions calculated at (U)B3LYP/def2-TZVP level-of-theory.

Table S8. Comparison between the atom-condensed conventional Fukui function and its VBinspired analogue for HONHOH, derived from the ground-state wavefunctions calculated at (U)B3LYP/def2-TZVP level-of-theory.

		Conventional Fukui VB-inspired analogue of the
	function (in au)	Fukui function (in au)
N	0.37779	0.59123
н	0.08587	-0.00746
O	0.2049	0.20265
н	0.06327	0.00547
O	0.20491	0.20266
Η	0.06327	0.00546

Table S9. Comparison between the atom-condensed conventional Fukui function and its VBinspired analogue for HSNHSH, derived from the ground-state wavefunctions calculated at (U)B3LYP/def2-TZVP level-of-theory.

S	0.46203	0.51894
н	0.03894	-0.00933
S	0.462	0.51891
н	0.03893	-0.00933

Table S10. Comparison between the atom-condensed conventional Fukui function and its VBinspired analogue for pyridine, derived from the ground-state wavefunctions calculated at (U)B3LYP/def2-TZVP level-of-theory.

S6. Spin densities of the ground-state and first excited state for [HSHNSH]+• in its optimal and twisted geometry

Figure S4. The spin density associated with the ground-state and first excited state of [HSHNSH]^{+•} in its optimal geometry ($\Delta E_{\text{excitation}} = 11.7 \text{ kcal/mol}$) and the geometry in which the dihedral angle H-S-N-H has been twisted to maximize the overlap between the lone pairs $(\Delta E_{\text{excitation}} = 22.5 \text{ kcal/mol}).$

S7. Tuning the state ordering through captodative substitution

Figure S5. a) Spin density contour maps for the ground- and first excited state of [4-cyano] pyridine]^{+•}; b) spin density maps for the ground- and first excited state of $[C_2B_2N_2H_4]$ ^{+•}.

S8. Utility to scan for a minimum electrostatic potential value

As indicated in the main text, a small utility was written to scan for the minimum value of the electrostatic potential along a specific axis away from the atom center for pyridine. The utility takes a regular Gaussian .cube file as input. Because the pyridine molecule in our calculation was aligned with the xy-plane, the electrostatic potential for the C-sites could simply be scanned in the z-direction; the electrostatic potential for the in-plane lone pair associated with the N-site was scanned in the y-direction.

For the ortho-site, the minimum of the electrostatic potential (reached at a distance of 2.3 Å from the atomic center) amounted to -6.7 kcal/mol. For the meta-site, this quantity amounted to -5.1 kcal/mol and for the para-site to -3.9 kcal/mol (reached at 2.2 Å and 2.1 Å respectively). For the N-site, the minimum, amounting to -59.0 kcal/mol, was reached at a distance of 1.4 Å away from the atom center.

The full code is displayed below.

```
import math
def read_cube_file(filename, N1, N2, N3):
     """ reads in the .cube file into a 3D-matrix object by iterating 
through the N1, N2 and N3 dimensions """
    matrix = [] with open(filename, 'r') as f_obj:
 contents = f_obj.read()
        line_list = <math>\overline{contents.split("\\n")}f_0<sub>b</sub>\overline{g}.close()
     for i in range(N1):
         matrix.append([])
         for j in range(N2):
              matrix[i].append([])
     full_value_list = []
     for line in line_list:
        temp\_list = \bar{1}ist(map(float, tuple(line.split());for number in temp list:
              full_value_list.append(number)
```

```
 for i in range(N1):
         for j in range(N2):
             for k in range(N3):
                matrix[i][j].append(full_value_list[i * N2 * N3 + j * N3 +
k])
     return matrix
def convert_point_to_matrix_element(pointx, pointy, pointz, incrementx, 
incrementy, incrementz, startx, starty, startz):
    """ Converts (pointx, pointy, pointz) into the corresponding matrix 
element in the 3D-matrix """
    i = (pointx - startx)/incrementx j = (pointy - starty) / incrementy
 k = (pointz - startz) / incrementz
    return int(i), int(j), int(k)def determine_minimum_in_direction(matrix, x, y, z, dir):
     """ Scans the 3D-matrix from (x, y, z) along dir to find the minimum 
value """
    minimum = matrix[x][y][z]if dir == "z": for i in range(30):
            if minimum > matrix[x][y][z+i]:
                minimum = matrix[x][y][z+i]a, b, c = x, y, z+ielif dir == "y":
         for i in range(20):
            if minimum > matrix[x][y+i][z]:
                minimum = matrix[x][y+i][z]a, b, c = x, y+i, z
     return a, b, c, minimum
def determine_distance(i, j, k, a, b, c, incrementx, incrementy, 
incrementz):
     """ Determines the distance between the atom center and the point at 
which the minimum
     in the electrostatic potential is found """
    distance = math.sqrt((i-a) * incrementx)**2 + ((i-b) * incrementy)**2+ ((k-c) * incrementz)**2)
     return distance
#____________________________________________________________________
matrix = read cube file("pyridine potential.cube", 89, 87, 66)
#ortho
i, j, k = convert_point_to_matrix_element(-
2.152577,1.359378,0.000186,0.200015,0.200015,0.200015,-8.767684,-9.118581,-
6.513126)
a, b, c, minimum = determine_minimum_in_direction(matrix, i, j, k, "z")
distance = determine_distance(i, j, k, a, b, c, 0.200015,0.200015,0.200015)
print("Minimum electrostatic potential for the ortho-position: ", minimum, 
 au, reached at a distance of \overline{ }, distance)
#meta
i, j, k = convert_point_to_matrix_element(-2.254932, -1.265736,
0.000396,0.200015,0.200015,0.200015,-8.767684,-9.118581,-6.513126)
```
a, b, c, minimum = determine_minimum_in_direction(matrix, i, j, k, "z") distance = determine_distance(i, j, k, a, b, c, 0.200015,0.200015,0.200015) print("Minimum electrostatic potential for the meta-position: ", minimum, " au, reached at a distance of ", distance)

#para

 $i, j, k =$ convert_point_to_matrix_element(0.000054,-2.605829,0.000171,0.200015,0.200015,0.200015,-8.767684,-9.118581,-6.513126) a, b, c, minimum = determine minimum in direction(matrix, i, j, k, "z") distance = determine_distance(i, j, k, a, b, c, 0.200015,0.200015,0.200015) print("Minimum electrostatic potential for the para-position: ", minimum, " au, reached at a distance of ", distance)

#N-site

 $i, j, k =$ convert_point_to_matrix_element(-0.000055,2.669695,-0.000173,0.200015,0.200015,0.200015,-8.767684,-9.118581,-6.513126) a, b, c, minimum = determine_minimum_in_direction(matrix, i, j, k, "y") distance = determine_distance(i, j, k, a, b, c, 0.200015,0.200015,0.200015) print("Minimum electrostatic potential for the N-position: ", minimum, " au, reached at a distance of ", distance)

S9. Geometries and Energies

Units:

- Coordinates are expressed in Å
- Energies are expressed in a.u.

H2

(U)B3LYP/def2-TZVP energy = -1.1796489903919316

NaCl

(U)B3LYP/def2-TZVP energy = -622.6050541289729

NH3

(U)B3LYP/def2-TZVP energy = -56.585678339117926

$[NH_4]^+$

(U)B3LYP/def2-TZVP energy = -56.92385303636355

H2O

(U)B3LYP/def2-TZVP energy = -76.4629947772201

[H3O]+

(U)B3LYP/def2-TZVP energy = -76.7375601749838

H2S

(U)B3LYP/def2-TZVP energy = -399.425346346739

[H3S]

(U)B3LYP/def2-TZVP energy = -399.7048610444624

H2NOH

(U)B3LYP/def2-TZVP energy = -131.7778760266885

[H2NOH2] +

(U)B3LYP/def2-TZVP energy = -132.058357824404

[H3NOH]+

(U)B3LYP/def2-TZVP energy = -132.10069622405916

H2NSH

(U)B3LYP/def2-TZVP energy = -454.7852277958409

[H3NSH]+

(U)B3LYP/def2-TZVP energy = -455.11232949317673

[H2NSH2] +

(U)B3LYP/def2-TZVP energy = -455.0888253933681

C5H5N

(U)B3LYP/def2-TZVP energy = -248.3789997769894

[C5H5N-H]+

(U)B3LYP/def2-TZVP energy = -248.74802257398377

[C5H6N]+ ortho

(U)B3LYP/def2-TZVP energy = -248.6537621

[C5H6N]+ para

(U)B3LYP/def2-TZVP energy = -248.6441624748297

[C5H6N]+ meta

(U)B3LYP/def2-TZVP energy = -248.6639278746687