Supplementary Information

Giant Transition-State Quasiparticle Spin-Hall Effect in an Exchange-Spin-Split Superconductor Detected by Nonlocal

Magnon Spin Transport

Kun-Rok Jeon,* Jae-Chun Jeon, Xilin Zhou, Andrea Migliorini,

Jiho Yoon and Stuart S. P. Parkin*

Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany

*To whom correspondence should be addressed: jeonkunrok@gmail.com, stuart.parkin@halle-mpi.mpg.de

This PDF file includes:

Supplementary Text

Figs. S1 to S6

References (S1-S22)

Section S1. Estimation of the magnon spin-diffusion length of YIG.

In this section, we estimate the magnon spin-diffusion length l_{sd}^m of 200-nm-thick singlecrystalline YIG films used in the present study. According to the fabrication process outlined in Method, we prepare reference devices composed of Pt injector and detector only (Fig. S1a-d). These Pt are separated by a center-to-center distance d^{Pt-Pt} of 9–18 µm, which corresponds to the regime where magnon spin currents decay exponentially.^{S1} One can thus estimate l_{sd}^m from the d^{Pt-Pt} -dependent non-local voltages (ΔV_{nl}^{el} and ΔV_{nl}^{th} in Fig. S1e-h) using simple formulas:

$$\Delta V_{nl}^{el} = A \exp\left(-\frac{d^{Pt-Pt}}{l_{sd}^m}\right), \qquad (S1a)$$
$$\Delta V_{nl}^{th} = B \exp\left(-\frac{d^{Pt-Pt}}{l_{sd}^m}\right), \qquad (S1b)$$

where *A* and *B* are the proportional factor that is irrelevant to d^{Pt-Pt} . By fitting Eq. (S1) to the summarized data of $\Delta V_{nl}^{el}(d^{Pt-Pt})$ and $\Delta V_{nl}^{th}(d^{Pt-Pt})$ in Fig. S1i, we get $l_{sd}^m = 11$ and 9 μ m for the electrically and thermally driven magnons, respectively, at room temperature. Both cases appear to be almost independent of T_{base} (Fig. S1j). These are in good agreement with previous experiments^{S2,S3} based on YIG thin films of similar quality and thickness.

Figure S1. Non-local magnon spin-transport signals in the Pt-only reference devices. a-d, Optical micrographs of the fabricated reference devices with different d^{Pt-Pt} (9–18 µm). e-h, Corresponding IP field-angle α dependence of non-local voltages, ΔV_{nl}^{el} (top) and ΔV_{nl}^{th} (bottom) driven electrically and thermally, respectively, at 300 K. In these measurements, I_{dc} is fixed at [0.5] mA and the magnetic field $\mu_0 H_{ext}$ at 5 mT. i, Summary of ΔV_{nl}^{el} (top) and ΔV_{nl}^{th} (bottom) as a function of d^{Pt-Pt} . The black solid line represents an exponential fit to estimate l_{sd}^m . j, Base temperature T_{base} evolution of the estimated l_{sd}^m .

<u>Section S2. Quantification of spin currents leaking into the central Nb at room</u> temperature.

Using the non-local magnon spin transport theory, S4,S5,S6 we here quantify how much spin current density J_{s0}^{Pt} reaching at the YIG/Pt interface is reduced due to the presence of the

central Nb. The iSHE voltages V_{iSHE}^{Pt} read in the Pt detector with and without the Al₂O₃ spin-blocking layer are, respectively, expressed as

$$V_{iSHE}^{Pt, with Al_2O_3} = \theta_{SH}^{Pt} J_{s0}^{Pt, with Al_2O_3} \left(\frac{l_{sd}^{Pt}}{t_{Pt}}\right) \tanh\left(\frac{t_{Pt}}{2l_{sd}^{Pt}}\right) \left(\frac{2e}{\hbar}\right) \rho_{Pt} l_y^{Pt}, \qquad (S2a)$$

$$V_{iSHE}^{Pt, no Al_2O_3} = \theta_{SH}^{Pt} J_{s0}^{Pt, no Al_2O_3} \left(\frac{l_{sd}^{Pt}}{t_{Pt}}\right) \tanh\left(\frac{t_{Pt}}{2l_{sd}^{Pt}}\right) \left(\frac{2e}{\hbar}\right) \rho_{Pt} l_y^{Pt}, \qquad (S2b)$$

where θ_{SH}^{Pt} (l_{sd}^{Pt}) is the spin-Hall angle (spin-diffusion length) of the Pt detector, assumed to be 0.1 (1.5 nm).^{S4,S6} ρ_{Pt} is the resistivity of the Pt, which is ~28 $\mu\Omega$ -cm at 300 K extracted from the two-terminal Pt resistance of different thicknesses (6–10 nm). t_{Pt} (l_{y}^{Pt}) is the thickness (length) of the Pt. Accordingly, the reduced spin current density is

$$\Delta J_{s0}^{Pt} = J_{s0}^{Pt, \text{ with } Al_2O_3} - J_{s0}^{Pt, \text{ no } Al_2O_3} = \left[\frac{V_{iSHE}^{Pt, \text{ with } Al_2O_3} - V_{iSHE}^{Pt, \text{ no } Al_2O_3}}{\theta_{SH}^{Pt} \binom{l_{sd}^{Pt}}{t_{Pt}} \tanh\left(\frac{t_{Pt}}{2l_{sd}^{Pt}}\right) \left(\frac{2e}{\hbar}\right)\rho_{Pt}l_y^{Pt}} \right].$$
(S3)

Using Eq. S3 with the measured values $(\left[\Delta V_{nl}^{el}\right]^{Pt, no Al_2O_3}, \left[\Delta V_{nl}^{el}\right]^{Pt, with Al_2O_3}, \left[\Delta V_{nl}^{th}\right]^{Pt, with Al_2O_3})$ in Fig. 1e,f,h,i of the main text, we find $\Delta j_{s0}^{Pt} = 2.3 \text{ A/cm}^2$ for electrically driven magnons and $\Delta j_{s0}^{Pt} = 2.2 \text{ A/cm}^2$ for thermal driven magnons at $I_{dc} = |1.0| \text{ mA} (J_{dc} = |6.6| \text{ MA/cm}^2)$. We note that the spin transfer efficiency η_s of our device $(d_x^{Pt-Pt} = 15 \text{ }\mu\text{m})$, defined as $\eta_s = \frac{J_{s0}^{Pt}}{\theta_{sH}^{Pt}J_{dc}}$, is of the order of 10⁻⁵, similar to reported from previous studies.^{S4,S6}

<u>Section S3. First-order estimate of the YIG-induced internal field at the Nb/YIG interface.</u>

In this section, we attempt to get a first-order estimate of the YIG-induced internal field $\mu_0 H_{int}$ at the Nb/YIG interface from the measured T_c data (Fig. S2a), with *versus* without the presence of Al₂O₃ barrier between Nb and YIG films, in the framework of Ginzburg-

Landau theory:^{S7,S8}

$$\mu_0 H_{int} \approx \frac{\phi_0}{2\pi [\xi(0)]^2} \cdot \left\{ \left[\frac{T_c^{w/Al_2 O_3}}{T_c^{w/o Al_2 O_3}} \right]^2 - 1 \right\}$$
(S4)

Here k_B is Boltzmann's constant, ϕ_0 is the flux quantum $(2.07 \times 10^{-15} T \cdot m^2)$, and $\xi(0)$ is the zero-temperature (Ginzburg-Landau) coherence length of Nb thin film (~15 nm)^{S9} in the dirty limit. Since *in-plane* stray fields (from the *un-patterned/continuous* YIG) at the Nb interface do not decay significantly by the presence of the 10-nm-think Al₂O₃ barrier and their strength is in the range of 0.01 - 0.1 T,^{S10,S11} we consider $\mu_0 H_{\text{int}}$ as the effective value for the exchange field h_{ex} . For the 15-nm-thick Nb layer, T_c^{w/Al_2O_3} ($T_c^{w/0 Al_2O_3}$) with (without) the Al₂O₃ barrier at $I_{\text{dc}} = 0.0$ mA is 5.50 K (4.42 K) in Fig. S2b, being as large as $\mu_0 H_{int} \approx h_{\text{ex}} = 1.205$ T. The YIG-induced exchange spin-splitting at the Nb/YIG interface is then of 105 μ eV.

It is also important to note that for the Al₂O₃-absent device in Fig. S2b, the decay of T_c with increasing I_{dc} becomes more dramatic for $I_{dc} > 0.5$ mA (black dashed line) than that extrapolated from direct heating of the whole device. This suggests that the strongly depressed superconductivity at a higher heating power (Fig. 3d of the main text) is likely caused by the spin-polarized QP injection/excitation into the Nb layer.

Figure S2. a, Nb resistance R^{Nb} versus T_{base} plots for the Al₂O₃-present (top) and Al₂O₃-

absent (bottom) devices, measured using a four-terminal current-voltage method (using leads 3,4,5,6 in Fig. 1b of the main text) while applying various $I_{dc} = 0.0-1.0$ mA to the Pt injector. **b**, Summary of the measured T_c as a function of I_{dc} . Note that for $I_{dc} \le 0.5$ mA, the suppression of superconductivity by the spin-polarized QP injection/excitation is masked by the exchange spin-splitting effect (red arrow). So, the exchange spin-splitting plays a dominant role and determines the superconducting properties of the Nb layer.

<u>Section S4. Theoretical description of the conversion efficiency of magnon spin to</u> <u>OP charge in the superconducting Nb.</u>

According to the recent models^{S12,S13} which explicitly take superconducting coherence peaks into account for the effective spin mixing/transfer conductance of a FMI/SC interface, the excited QP spin current density J_{s0}^{qp} from incoherent magnons is given by

$$\frac{J_{s0}^{qp}}{J_{s0}} = \frac{\int_{-\infty}^{\infty} \left[1 + \frac{\left(\Delta^{SC}\right)^2}{E(E + \Delta\mu_m)} \right] [f(E) - f(E + \Delta\mu_m)] n(E) n(E + \Delta\mu_m) dE}{\Delta\mu_m}, \quad (S5)$$
$$n(E) = \frac{|E|}{\sqrt{E^2 - \left(\Delta^{SC}\right)^2}} \theta [E^2 - \left(\Delta^{SC}\right)^2], \quad (S6)$$

where $\left[1 + \frac{(\Delta^{SC})^2}{E(E + \Delta \mu_m)}\right]$ is the superconducting coherence factor^{S14}. $\Delta^{SC}(T) = 1.76k_BT_c \tanh\left(1.74\sqrt{1-\frac{T}{T_c}}\right)$ is the superconducting energy gap, k_B is the Boltzmann constant and $f(E) = \frac{1}{\exp\left(\frac{E}{k_BT}\right) + 1}$ is the Fermi-Dirac (FD) distribution function. n(E) is the normalized QP DOS and $\theta(E)$ is the Heaviside step function. $\Delta \mu_m$ is the magnon spin accumulation underneath the Nb detector. J_{s0} is the normal-state spin current which is directly proportional to $\Delta \mu_m$. Assuming the interface spin Seebeck coefficient $S_s = 4.5 \mu V/K$ for the Pt/YIG interface^{S6} and using our data set (Fig. 3,4 of the main text), we infer the J_{dc} and t_{Nb} dependence of $\Delta \mu_m$ for the calculations in Fig. 5 of the main text.

Combining Eq. S5 with Eq. S2 (but now for the Nb), we get the QP-mediated iSHE

voltage^{S15,S16} V_{iSHE}^{qp} in the SC detector. We have previously used this model for *metallic/conducting* Nb/Ni₈Fe₂ bilayers,^{S17} but now include the superconducting coherence effect described above:

$$\begin{split} V_{iSHE}^{qp} &= \theta_{SH}^{qp} j_{s0}^{qp} \left(\frac{t^{qp}}{t_{sc}} \right) \tanh\left(\frac{t_{sc}}{2t_{sc}^{qp}} \right) \left(\frac{2e}{\hbar} \right) \rho_{sc}^* l_y \exp\left(-\frac{d_y}{\lambda_Q} \right), \quad (S7a) \\ V_{iSHE} &= \theta_{SH} j_{s0} \left(\frac{l_{sd}}{t_{sc}} \right) \tanh\left(\frac{t_{sc}}{2t_{sd}} \right) \left(\frac{2e}{\hbar} \right) \rho_0 l_y, \quad (S7b) \\ \frac{v_{iSHE}^{qp}}{v_{iSHE}} &= \left(\frac{\theta_{SH}^{qp}}{\theta_{SH}} \right) \left(\frac{j_{s0}^{qp}}{l_{s0}} \right) \left[\frac{l_{sd}^{qp} \tanh\left(\frac{t_{sc}}{2t_{sd}^{qp}} \right)}{l_{sd} \tanh\left(\frac{t_{sc}}{2t_{sd}^{qp}} \right)} \right] \left[\frac{\rho_{sc}^*}{\rho_0} \right] \exp\left(-\frac{d_y}{\lambda_Q} \right), \quad (S7c) \\ \theta_{SH} &= \theta_{SH}^{SJ} + \theta_{SH}^{SS}, \quad (S8a) \\ \theta_{SH}^{qp} &= \theta_{SH}^{SJ} + \left[\frac{\chi_{S}^{Q(T)}}{2t_0 (\Delta^{SC})} \right] \cdot \theta_{SH}^{SS}, \quad (S8b) \\ l_{sd} &= \sqrt{D\tau_{sf}}, \quad (S9a) \\ l_{sd}^{qp} &= \sqrt{D_s \left(\frac{1}{\tau_{sf}^{qp}} + \frac{1}{\tau_{AR}} \right)^{-1}}, \quad (S9b) \\ \rho_{sc}^* &= \rho_{SC}^{qp} v_Q, \quad (S10a) \\ v_Q &= \left(\frac{2\lambda_Q}{l_y} \right) \tanh\left(\frac{l_y}{2\lambda_Q} \right), \quad (S10b) \\ \lambda_Q &= \sqrt{D_Q \tau_Q}, \quad (S11) \\ D_S &= \left[\frac{\chi_{S}(T)}{\chi_Q(T)} \right] D, \quad (S12b) \\ \chi_S(T) &= 2 \int_{\Delta^{Sc}}^{\infty} \frac{\sqrt{E^2 - (\Delta^{SC})^2}}{E} \left[-\frac{\partial f(E)}{\partial E} \right] dE, \quad (S13b) \end{split}$$

where $l_y \approx l_y^{Pt} + l_{sd}^m$ is the spin-active length of the Nb detector, given approximately by the sum of the length of the Pt injector l_y^{Pt} and l_{sd}^m in our device geometry (see Fig. S5).

The postfactor $\exp\left(-\frac{d_y}{\lambda_0}\right)$ in Eq. (S7a) represents the spatial decay of the QP chargeimbalance effect *outside* the spin-active regime of the Nb detector, where d_y is the distance between the inner edges of the QP-spin-excited Nb and the Au/Ru electrical lead (see Figs. 1b and S5b). In the following calculation, we ignore this factor as it is fundamentally linked to the QP charge-imbalance relaxation. θ_{SH} (θ_{SH}^{qp}) is the electron (QP) spin-Hall angle of the Nb in the normal (superconducting) state. We assume that the Nb spin-Hall angle is given by two extrinsic components^{S15,S16} of the side jump θ_{SH}^{SJS18} and the skew scattering θ_{SH}^{SSS19} . $D_S(D_Q)$ is the spin (charge) diffusion coefficient of the QPs and D is the electron diffusion coefficient in the normal state. l_{sd} (τ_{sf}) is the electron spin-imbalance relaxation length (time) in the normal state. l_*^{qp} is the effective QP spin transport length considering the conversion time τ_{AR} of QPs into singlet Cooper pairs by And reev reflection in addition to their τ_{sf}^{qp} . ρ_{sc}^{*} is the effective resistivity of the superconducting Nb and v_Q is the volume fraction of the QP charge imbalance.^{S15,S17} $\rho_{SC}^{qp} = \frac{\rho_0}{2f_0(\Delta^{SC})}$ is the QP resistivity, ρ_0 is the residual resistivity of the Nb detector immediately above T_c and $f(\Delta^{SC}) = \frac{1}{\exp(\frac{\Delta^{SC}}{k_D T}) + 1}$ is the FD distribution function at Δ^{SC} . $\lambda_Q(\tau_Q)$ is the QP charge-imbalance relaxation length (time). $\chi_Q(T)[\chi_S(T)]$ is the normalized charge (spin) susceptibility of the QPs.

To assure that j_{s0}^{qp} (Fig. 5a,b of the main text) and ρ_{SC}^* (insets of Fig. 5e,f of the main text) are governing parameters in V_{iSHE}^{qp} , we calculate how other terms $\left[\theta_{SH}^{qp}, l_*^{qp} \tanh\left(\frac{t_{SC}}{2l_*^{qp}}\right)\right]$ in Eq. (S7c) evolve across T_c . Figure S3 shows the calculated values of $\frac{\chi_S^0(T)}{2f_0(\Delta^{SC})}$ and $l_*^{qp} \tanh\left(\frac{t_{SC}}{2l_*^{qp}}\right)$. As the superconducting transition does not influence θ_{SH}^{SJ} , S15,S16 we only consider $\theta_{SH}^{SS} \propto \frac{\chi_S^0(T)}{2f_0(\Delta^{SC})}$ [Eq. (S8b)]. We also note that if τ_{AR}

 $< \tau_{sf}^{qp}$ [Eq. (S9b)], the effective transport length of QP spin is limited by the coherence length:^{S20,S21} $l_*^{qp} \approx \xi_{SC}$.

Figure S3. Model calculation. Calculated values of $\frac{\chi_S^0(T)}{2f_0(\Delta^{SC})}$ (**a**,**b**) and $l_*^{qp} \tanh\left(\frac{t_{SC}}{2l_*^{qp}}\right)$ (**c**,**d**) as a function of T/T_c . In the calculation, we use $l_{sd} = 50$ nm for the Nb.^{S20} As can be seen in **d**, in the zero-*T* limit ($T/T_c \rightarrow 0$), l_*^{qp} is limited by $\xi_{SC}^{S20,S21}$ if t_{SC} is thicker.

It is evident from Fig. S3 that none of $\frac{\chi_s^0(T)}{2f_0(\Delta^{SC})}$ and $l_*^{qp} \tanh\left(\frac{t_{SC}}{2l_*^{qp}}\right)$ vary significantly in the vicinity of T_c . We therefore conclude that the giant transition-state QP iSHE observed in our system comes predominantly from a trade-off of j_{s0}^{qp} and ρ_{sC}^* , linked respectively to the superconducting coherence and the QP charge-imbalance relaxation.

<u>Section S5. Spatially resolved measurements by varying the separation of electrical</u> contacts on the spin-split Nb layer.

For the spatially resolved measurements presented in Fig. 6 of the main text, we prepared several independent devices on a single-piece YIG film, where only the separation distance d_s of Au/Ru electrical contacts on the 15-nm-thck Nb layer is different and it is

systematically controlled by depositing a 20-nm-thick Al_2O_3 insulating layer in-between Au/Ru and Nb layers. Note that we observed d_s -independent non-local spin signals at 300 K when using the Pt detector, indicating almost similar magnon spin-transport properties in the fabricated devices (Fig. S4).

Figure S4. Non-local magnon spin-transport signals in the *d*_s-varying devices probed by the Pt detector. **a**, IP field-angle α dependence of non-local voltages, $\left[\Delta V_{nl}^{el}\right]^{Pt}$ (top) and $\left[\Delta V_{nl}^{th}\right]^{Pt}$ (bottom) driven electrically and thermally, respectively, at 300 K. In these measurements, *I*_{dc} is fixed at |1.0| mA and the magnetic field $\mu_0 H_{ext}$ at 5 mT. **b**, Summary

of $\left[\Delta V_{nl}^{el}\right]^{Pt}$ (blue) and $\left[\Delta V_{nl}^{th}\right]^{Pt}$ (red) as a function of d_s . The black dashed lines are given as guides to the eye. **c**, Overall base temperature T_{base} dependence of Nb resistance R^{Nb} for the devices with different d_s , measured using a four-terminal current-voltage method (using leads 3,4,5,6 in Fig. 6a of the main text). Note that a relatively higher T_c of the 15-nm-thick Nb layer in these devices than that of the prior device (Fig. 3d of the main text) is due to the better initial base pressure (< 1 × 10⁻⁹ mbar) before film deposition. The inset exhibits the d_s dependence of Nb resistance at 300K, along with a linear fit (black solid line).

As illustrated in Fig. S5, if the Au/Ru electrical contacts are placed *within* the spinactive length of the Nb detector, $d_s < l_y$, Eqs. (S7a) and (S7b) can be respectively rewritten as:

$$V_{iSHE}^{qp} = \theta_{SH}^{qp} j_{s0}^{qp} \left(\frac{l_*^{qp}}{t_{SC}}\right) \tanh\left(\frac{t_{SC}}{2l_*^{qp}}\right) \left(\frac{2e}{\hbar}\right) \rho_{SC}^* d_s \exp\left[-\frac{(l_y - d_s)}{\lambda_Q}\right], \quad (S14a)$$
$$V_{iSHE} = \theta_{SH} j_{s0} \left(\frac{l_{sd}}{t_{SC}}\right) \tanh\left(\frac{t_{SC}}{2l_{sd}}\right) \left(\frac{2e}{\hbar}\right) \rho_0 d_s, \quad (S14b)$$

Here, $\exp\left[-\frac{(l_y-d_s)}{\lambda_Q}\right]$ describes the characteristic spatial dependence of QP chargeimbalance relaxation effect^{S16} *inside* the spin-active regime of the Nb detector.

Figure S5. Transverse spatial profile of the iSHE voltage $V_{iSHE}^{(qp)}$ induced by nonlocal magnon spin-transport in Nb/YIG layers above (a) and below (b) the

superconducting transition T_c of Nb. In b, $\exp\left[-\frac{(l_y-d_s)}{\lambda_Q}\right]$ describes the characteristic spatial dependence of QP charge-imbalance relaxation effect^{S16} inside the spin-active regime of the Nb layer, where d_s is the separation distance of electrical contacts on the Nb and λ_Q is the QP charge-imbalance relaxation length. The wine dashed line represents the spin-active regime that is given approximately by the sum of the length of the Pt injector l_y^{Pt} and the magnon spin-diffusion length l_{sd}^m in our device geometry. Note that if the electrical contacts are placed *outside* the spin-active regime, $V_{iSHE}^{qp} \propto \exp\left(\frac{-d_y}{\lambda_Q}\right)$.^{S16,S17,S22} Here, d_y is the distance between the inner edges of the QP-spinexcited Nb and the electrical contact.

Figure S6. Non-local magnon spin-transport signals in the d_s -varying devices measured by the Nb detector. Typical examples of thermally driven non-local voltages $\left[\Delta V_{nl}^{th}(\alpha)\right]^{Nb}$ as a function of IP field angle α for the devices with different d_s , taken above (top), immediately below (middle), and far below (bottom) T_c of the Nb layer, from which the data presented in Fig. 6b of the main text was extracted. The black solid lines are $\sin(\alpha)$ fits. In these measurements, I_{dc} is fixed at |0.5| mA and the magnetic field $\mu_0 H_{ext}$ at 5 mT.

References

(S1) Shan, J.; Cornelissen, L. J.; Liu, J.; Ben Youssef, J.; Liang, L.; van Wees, B. J. Criteria for Accurate Determination of the Magnon Relaxation Length from the Nonlocal Spin Seebeck Effect. *Phys. Rev. B* **2017**, *96*, 184427.

(S2) Cornelissen, L. J.; Liu, J.; Duine, R. A.; Ben Youssef, J.; van Wees, B. J. Long-Distance Transport of Magnon Spin Information in a Magnetic Insulator at Room Temperature. *Nat. Phys.* **2015**, *11*, 1022–1026.

(S3) Cornelissen, L. J.; Shan, J.; van Wees, B. J. Temperature Dependence of the Magnon Spin Diffusion Length and Magnon Spin Conductivity in the Magnetic Insulator Yttrium Iron Garnet. *Phys. Rev. B* **2016**, *94*, 180402(R).

(S4) Cornelissen, L. J.; Peters, K. J. H.; Bauer, G. E. W.; Duine, R. A.; van Wees, B. J. Magnon Spin Transport Driven by the Magnon Chemical Potential in a Magnetic Insulator. *Phys. Rev. B* **2016**, *94*, 014412.

(S5) Bender, S. A.; Duine, R. A.; Tserkovnyak, Y. Electronic Pumping of Quasi Equilibrium Bose-Einstein-Condensed Magnons. *Phys. Rev. Lett.* **2012**, *108*, 246601.

(S6) Shan, J.; Cornelissen, L. J.; Vlietstra, N.; Youssef, J. B.; Kuschel, T.; Duine, R. A.; van Wees, B. J. Influence of Yttrium Iron Garnet Thickness and Heater Opacity on the Nonlocal Transport of Electrically and Thermally Excited Magnons. *Phy. Rev. B* **2016**, *94*, 174437.

(S7) Landau, L. D.; Ginzburg, V. L. On the Theory of Superconductivity. *Zh. Eksp. Teor. Fiz.* **1950**, *20*, 1064–1082.

(S8) Banerjee, N.; Ouassou, J. A.; Zhu, Y.; Stelmashenko, N. A.; Linder, J.; Blamire, M.G. Controlling the Superconducting Transition by Spin-Orbit Coupling. *Phys. Rev. B*2018, 97, 184521.

(S9) Gu, J. Y.; Caballero, J. A.; Slater, R. D.; Loloee, R.; Pratt, W. P. Direct Measurement of Quasiparticle Evanescent Waves in a Dirty Superconductor. *Phys. Rev. B* **2002**, *66*, 140507(R).

(S10) Nogaret, A. Electron Dynamics in Inhomogeneous Magnetic Fields. J. Phys.: Condens. Matter 2010, 22, 253201.

(S11) Dash, S. P.; Sharma, S.; Le Breton, J. C.; Peiro, J.; Jaffrès, H.; George, J.-M.; Lemaître, A.; Jansen, R. Spin Precession and Inverted Hanle Effect in a Semiconductor near a Finite-Roughness Ferromagnetic Interface. *Phys. Rev. B* **2011**, *84*, 054410.

(S12) Inoue, M.; Ichioka, M.; Adachi, H. Spin Pumping into Superconductors: A New Probe of Spin Dynamics in a Superconducting Thin Film. *Phys. Rev. B* 2017, *96*, 024414.
(S13) Kato, T.; Ohnuma, Y.; Matsuo, M.; Rech, J.; Jonckheere, T.; Martin, T. Microscopic Theory of Spin Transport at the Interface between a Superconductor and a Ferromagnetic Insulator. *Phys. Rev. B* 2019, *99*, 144411.

(S14) Klein, O.; Nicol, E. J.; Holczer, K.; Gru⁻ner, G. Conductivity Coherence Factors in the Conventional Superconductors Nb and Pb. *Phys. Rev. B* **1994**, *50*, 6307.

(S15) Takahashi, S.; Maekawa, S. Hall Effect Induced by a Spin-Polarized Current in Superconductors, *Phys. Rev. Lett.* **2002**, *88*, 116601.

(S16) Takahashi, S.; Maekawa, S. Spin Hall Effect in Superconductors. *Jpn. J. Appl. Phys.* **2012**, *51*, 010110.

(S17) Jeon, K.-R.; Ciccarelli, C.; Kurebayashi, H.; Wunderlich, J.; Cohen, L. F.; Komori, S.; Robinson, J. W. A.; Blamire, M. G. Spin-Pumping-Induced Inverse Spin-Hall Effect in Nb/Ni₈₀Fe₂₀ Bilayers and Its Strong Decay across the Superconducting Transition Temperature. *Phys. Rev. Applied* **2018**, *10*, 014029.

(S18) Berger, L. Side-Jump Mechanism for the Hall Effect of Ferromagnets. *Phys. Rev. B* **1970**, *2*, 4559.

(S19) Smit, J. The Spontaneous Hall Effect in Ferromagnetics I, *Physica* 1955, 21, 877(1955); Smit, J. The Spontaneous Hall Effect in Ferromagnetics II, *Physica* 1958, 24, 39.

(S20) Gu, J. Y.; Caballero, J. A.; Slater, R. D.; Loloee, R.; Pratt, W. P. Direct Measurement of Quasiparticle Evanescent Waves in a Dirty Superconductor. *Phys. Rev. B* **2002**, *66*, 140507.

(S21) Yamashita, T.; Takahashi, S.; Imamura, H.; Maekawa, S. Spin Transport and Relaxation in Superconductors. *Phys. Rev. B* **2002**, *65*, 172509.

(S22) Wakamura, T.; Akaike, H.; Omori, Y.; Niimi, Y.; Takahashi, S.; Fujimaki, A.; Maekawa, A.; Otani, Y. Quasiparticle-Mediated Spin Hall Effect in a Superconductor. *Nat. Mater.* **2015**, *14*, 675–678.