Real-time monitoring of cellular oxidative stress during aerosol sampling: a proof of concept study

Lynn E. Secondo^{1,a}, Vitaliy Avrutin², Umit Ozgur², Erdem Topsakal², and Nastassja A. Lewinski^{1,*}

¹ Virginia Commonwealth University, Department of Chemical and Life Science Engineering, Richmond, VA, USA

² Virginia Commonwealth University, Department of Chemical and Life Science Engineering, Richmond, VA, USA

^a Rutgers University, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA

* Corresponding author. E-mail: nalewinski@vcu.edu

Supplemental Information

Electrochemical testing was performed using CV and amperometry. Following Table S1, the hydrogen peroxide concentration of an initial volume of 20 mL buffer solution was systematically increased between 0.01 μ M and 10 μ M. The solution was stirred after each addition of H2O2 to ensure a uniform concentration throughout the solution. Amperometric testing was performed following Table S2. Unlike CV experiments, which regenerate the reactant by completing the reduction and oxidation of the reactant, amperometric measurements are consuming. This leads to the difference in volumes provided in Table S2.

H_2O_2 Concentration (μ M)	Volume Added of H ₂ O ₂ (mL)	Total Volume (mL)
0	0.0000	20.0000
0.01	0.0020	20.0020
0.05	0.0120	20.0040
0.1	0.0300	20.0160
0.2	0.0602	20.0460
0.4	0.1208	20.1062
0.5	0.1819	20.2270
0.75	0.2547	20.4088
1	0.3608	20.6636
3	0.8521	21.0243
5	1.7705	21.8765
7.5	2.9563	23.6469
10	4.5980	26.6032

Table S1. Experimental scheme for calibration curve using CV.

Time (s)	H_2O_2 Concentration (μM)	Volume Added of H ₂ O ₂ (mL)	Total Volume (mL)
0	0	0.0000	20.0000
180	0.01	0.0020	20.002
360	0.05	0.0100	20.012
540	0.1	0.0200	20.032
720	0.2	0.0401	20.072
900	0.4	0.0803	20.152
1080	0.5	0.1005	20.253
1260	0.75	0.1511	20.404
1440	1	0.2020	20.606
1620	3	0.6186	21.225
1800	5	1.0526	22.277
1980	7.5	1.6216	23.899
2160	10	2.2222	26.121

Table S2. Experimental scheme for amperometric testing of the biosensor.

To determine the cellular response in real-time, the sensor was placed on the basolateral side of the cell culture insert within the PIVEC. The electrode leads were then connected to the potentiostat and the change in current was observed on a computer. A schematic of this set-up is observed in Figure S1a. The entire set-up is found in Figure S1b, including the dry dispersal system and PIVEC.

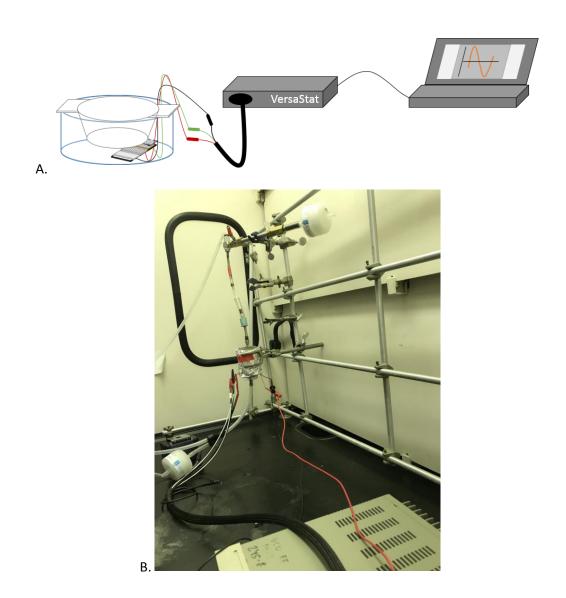
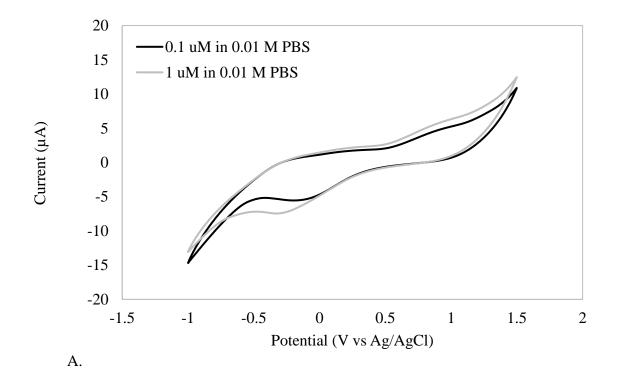
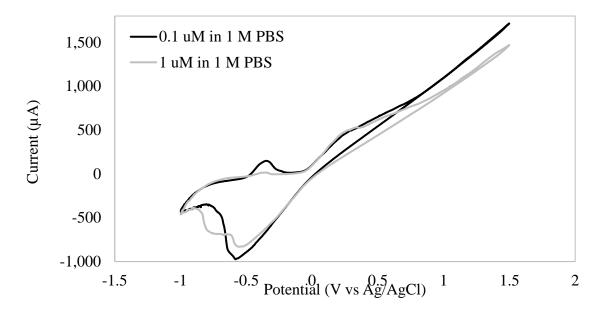




Figure S1. Experimental set-up of real-time ROS generation monitoring. A. Schematic of placement and connection of biosensor. B. Bench top set-up with aerosol generation system and PIVEC.

The sensor was tested in solutions of 0.01 M PBS, 1 M PBS, and HBSS to determine the effects of buffer ionic strength on the sensor response. A low buffer ionic strength, near 1.5 mM, was used and no reaction peaks were observed within the low current measured, Figure S2a. A proportional increase in current was observed when the ionic strength was increased through the

use of 1 M PBS; however no significant reaction peaks were observed, Figure S2b. Through comparing these buffer solutions, Figure S2c, the sensor response within HBSS was the most appropriate for the design used within this study.

В.

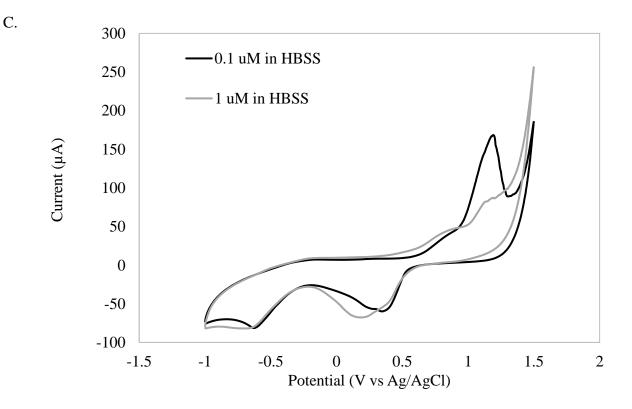


Figure S2. CV response of biosensor to hydrogen peroxide in different buffer solutions. A. Response of 0.1 μ M and 1 μ M H₂O₂ in 0.01 M PBS. B. Response of 0.1 μ M and 1 μ M H₂O₂ in 1 M PBS. C. Response of 0.1 μ M and 1 μ M H₂O₂ in HBSS.