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1.  Supplementary Methods 
 
a. Methods and materials. 

i. UK Biobank. A large-scale population epidemiology study, UK Biobank (UKB) involved 
the recruitment of approximately 500,000 individuals across Great Britain for medical, 
psychosocial, and biological data collection1. A subset of around 100,000 UKB participants were 
invited to complete brain MRI scanning (scanner details are provided in the next section); as of 
this writing, data collection is still in progress, but portions of the data have been made available. 
A total of 9,858 participants with compatible T1-weighted and diffusion tensor (dMRI) data were 
selected from the UK Biobank (exclusion criteria provided below). In the present study, 8,185 
participants (4,315 female) who had usable MRI data were included, with an average age of 61.9 
years (SD = 7.5, range = 44.64 – 78.17). All participants had usable volume data and reported their 
age at the time of scanning. 157 of the total 8,185 participants (< 2%) met for potentially 
confounding dementias and neurological syndromes (e.g., multiple sclerosis, stroke), though 
excluding these participants from the sample did not change primary outcome measures (rage 

correlations (before and after exclusion) > 0.999, mean absolute difference = 0.001 for both edges and nodes). 
As such, we retain the full sample for our analyses. Despite previous research that has 
demonstrated neuroanatomical sex differences in men and women2,3, we found largely similar 
patterns of connectome aging across men and women (redge-age correlations = 0.892; rnode-age correlations = 
0.974, all p’s < 0.0005). We did not further correct for biological sex. All the data from the present 
study come from the UK Biobank recruitment center in Manchester, UK. UKB received ethical 
approval from the Research Ethics Committee (reference 11/NW/0382). All participants provided 
informed consent to participate. 

ii. Lothian Birth Cohort 1936. In 1947, almost all children attending schools in Scotland 
and born in 1936 completed an intelligence test as part of the Scottish Mental Survey 19474. 1,091 
of these individuals living mostly in the Edinburgh and Lothians area of Scotland were contacted 
and returned for re-testing at an average age of 69.5 years, becoming the Lothian Birth Cohort 
1936 (LBC1936)5,6, a longitudinal study of aging. As part of the second wave of testing, at age 
72.8 years (SD = 0.70), 731 LBC1936 members underwent brain MRI scanning, of whom 528 
(246 female) had reliable brain and cognitive data for the cognitive prediction analysis. Only age 
11 IQ data, and data from this second wave of test (first wave of brain MRI) are included in the 
present study. 

iii. UKB MRI. MRI data for all participants was collected on the same 3T Siemens Skyra 
MRI scanner (see Miller et al.7 & Alfaro-Almagro et al.8 for full details). A total of 9,858 
participants with compatible T1-weighted data were selected from the UK Biobank. T1-weighted 
volumes were acquired in the sagittal plane using a 3D MP-RAGE sequence and preprocessed and 
analyzed using FSL tools (http://www.fmrib.ox.ac.uk/fsl) by the UKB brain imaging team. A full 
overview of the preprocessing and analysis pipeline is available at 
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf. Upon acquiring the raw data 
from UKB, FoV-reduced T1-weighted volumes were used to reconstruct and segment the cortical 
mantle using default parameters in FreeSurfer v5.39 (http://surfer.nmr.mgh.harvard.edu/) based on 
the Desikan-Killiany atlas10. Automated anatomical segmentation of subcortical structures 
(accumbens area, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, ventral 
diencephalon, and brainstem) was also conducted in FreeSurfer using default settings and atlas11. 
Each output underwent visual assessment and participants with substantial motion artifact or major 
errors in skull stripping, tissue segmentation, or cortical parcellation were excluded. 8,185 

http://www.fmrib.ox.ac.uk/fsl
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
http://surfer.nmr.mgh.harvard.edu/
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participants remained after 842 were excluded due to incomplete FreeSurfer output or failure at 
QC. 

iv. LBC1936 MRI. MRI data for all participants was collected on the same GE Signa 
Horizon HDx 1.5T clinical scanner (General Electric, Milwaukee, WI) equipped with a self-
shielding gradient set (33 mT/m maximum gradient strength) and manufacturer supplied eight-
channel phased-array head coil (see Wardlaw et al.12 for full details). High-resolution T1-weighted 
volumes were acquired in the coronal plane using a 3D fast-spoiled gradient echo (FSPGR) and 
subsequently processed in FreeSurfer v5.1. As with the UK Biobank data, reconstruction and 
segmentation were based on the Desikan-Killiany atlas10,11. Segmentation and parcellation errors 
were corrected manually after visual inspection of each image.  

v. Tractography. Probabilistic tractography pipelines were identical across both datasets, 
though acquisition procedures differed slightly. For UKB, dMRI acquisitions are publicly 
available from the UKB website in the form of a Protocol 
(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367), Brain Imaging Documentation (and in 
Miller et al.7)). The dMRI data were acquired using a spin-echo echo-planar imaging sequence (50 
b = 1000 s/mm2, 50 b = 2000 s/mm2 and 10 b = 0 s/mm2) resulting in 100 distinct diffusion-
encoding directions. The field of view was 104 × 104 mm with imaging matrix 52 × 52 and 72 
slices with slice thickness of 2 mm resulting in 2 × 2 × 2 mm voxels. 831 participants were 
excluded due to missing dMRI data or processing failure. For LBC1936, dMRI data was acquired 
from both T2-weighted and sets of diffusion-weighted (b = 1000 s/mm2) axial single-shot spin-
echo echo-planar (EP) volumes acquired with diffusion gradients applied in 64 noncollinear 
directions12. Both datasets were corrected for head motion and eddy currents, and processed using 
BEDPOSTx, with within-voxel modeling of multi-fibre tract orientation structure. BEDPOSTx 
processing was carried out by the UKB team prior to receiving the data. Upon acquiring the dMRI 
data, probabilistic tractography with crossing fiber modeling was carried out using 
PROBTRACKx13. Streamlines were seeded from all white matter voxels using 100 Markov Chain 
Monte Carlo iterations with a fixed step size of 0.5 mm between successive points. 

vi. Statistical software. All analyses were run in R14. Graphics were created using the 
ggplot2 package15. Anatomical network plots were created using BrainNet Viewer16. Factor 
modeling and structural regression models were estimated using the lavaan package17. LASSO 
model fitting and associated cross-validation was conducted within the cv.glmnet package18, with 
wrapper functions from the caret package19 in R. For graph-theory analyses, we used the igraph20 
package in R to compute network parameters. 
 
b. Sensitivity analyses. To probe the uniqueness of signatures of whole-brain and network-
specific connectome integrity in predicting cognitive function, we ran a series of sensitivity 
analyses.  
 i. Thresholding analyses. We probed whether associations between indices of connectome 
integrity and cognitive function were likely to be inflated by potentially spurious connections 
arising from the use of unthresholded data. In UKB, we re-estimated each connectome using a 
consistency-based thresholding approach21, wherein connections are retained only if they have 
sufficiently low inter-subject variability in their weight and if their weight is plausibly strong for 
its length, which has been suggested as a method for removing connections that are most likely to 
be spurious. We correlated the age correlations and the PC loadings estimated in the unthresholded 
connectomes, either when the thresholded edges were set to 0, or when they were deleted entirely 
(1,071 edges retained). 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367
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 ii. Permuted composites. We were interested in assessing whether the observed association 
between indices of connectome integrity and cognitive function were superior to those that would 
have been obtained had the weights used to create the indices been shuffled. We compared the 
observed associations between composite scores and all domains of cognitive function to 
associations with composite scores weighted by randomly-shuffled age correlations or PC loadings 
in the whole-brain. We shuffled weights for both edges and nodes in UKB (k = 1000 for each) by 
sampling with replacement from the observed age correlations or PC loadings (see Fig. 3). We 
then weighted and summed the LBC1936 connectomes by the shuffled weights, resulting in four 
random composite scores (edges and nodes weighted by either shuffled age correlations or shuffled 
PC loadings) for each participant. We calculated the association between processing speed, 
visuospatial ability, and memory and each of the 1000 permuted composites to arrive at an 
empirical null distribution. Observed associations were determined to be significant if they were 
smaller than the bottom 2.5%-ile or larger than the top 97.5%-ile of the empirical null distribution.  
 

c. Regularized LASSO regression models. We first trained models to predict age in UK 
Biobank, and used the resulting predictive model to compute indices of connectome age in 
LBC1936, which we used to predict cognitive function. 

i. Age prediction in UK Biobank. We fitted LASSO models predicting chronological age 
using connectome elements, as well as dummy variables representing the presence or absence of 
an element, in 80% of the UKB sample (~6,500 participants), with 10-fold cross-validation to 
select the optimal penalization parameter (λ) that provided the lowest prediction error. 10-fold 
cross-validation has been heralded as the gold-standard for obtaining accurate estimates from 
predictive models22. We then used the obtained coefficients to produce a score on connectome age 
in the 20% UKB holdout sample (~1,600 participants), which we used to predict chronological 
age. This process was repeated 100 times – reported coefficients were averaged across each of the 
100 runs. For the whole-brain connectome, and for each network-of-interest (NOI), we ran 
analyses separately for edges and nodes, with all edges and nodes together, and with a novel 
topologically-constrained weighting scheme that takes into account the interactive effects of edges 
and nodes. 

This procedure was run for each NOI, separately for the network’s edges, nodes, and then 
with multiple weighting schemes reflecting the joint contribution edges and nodes together (see 
below for description). For edges, we included both the FA-weighting of each edge, as well as a 
binary dummy variable indicating whether or not the edge was present in a given participant.  

Each iteration split a different random shuffle of the full dataset into training and testing 
samples. The results reported below for the variance explained in age by each network are the 
average R2 values from this resampling procedure, and the standard error for each R2 is the standard 
deviation of the values across all 100 iterations. We also report the R2 adjusted by the size of the 
network by dividing by the number of elements in the included predictor set. 

ii. Cognitive function prediction in LBC1936. For the final predictive analysis, we 
employed a similar pipeline to train for predicting cognitive function in LBC1936 from 
connectome elements, using LASSO models trained in UKB. We first fitted LASSO models 
predicting chronological age using connectome elements in UKB participants, with 10-fold cross-
validation to select the optimal penalization parameter (λ). We then used the obtained coefficients 
to produce a score on connectome age in the narrow-aged LBC1936 sample, which we used to 
predict processing speed and visuospatial ability. Note that, because participants were virtually 
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identical in their age in LBC1936, any differences in their connectome age could not be attributable 
to actual differences in chronological ages.  
 iii. Alternative weighting schemes. To investigate whether edges and nodes, when 
considered jointly, were more strongly predictive of connectome or cognitive aging, we ran the 
LASSO-regression prediction analyses using elements from three joint-element weighting 
schemes: node + edge, node*edge, node*edge + node. 
 Node + edge. First, we sought to examine the contribution of nodes and edges considered 
additively. Under this weighting scheme, we included the raw elements from the structural 
connectome: node volumes (k = 85) and FA-weighted edges (k = 3,570). This weighting scheme 
thus allows us to prune our estimates of potentially redundant information provided across nodes 
and edges. 
 Node*edge. Next, we sought to examine the holistic interaction of nodes and edges as 
tripartite systems. That is, we were interested not only in how nodes and edges collectively 
contributed to connectome and cognitive aging, but how their interactions predicted these 
outcomes. The steps of this weighting scheme, with accompanying mathematical representations, 
are detailed below. To summarize, we began by creating a vector of the square root of the 85 node 
volumes for each participant in UKB. We then multiplied this vector by its transpose to create an 
85x85 matrix of pairwise node weights in each participant. The off-diagonal elements in this 
matrix therefore encapsulate information about node integrity for pairwise combinations of nodes. 
Finally, we element-wise multiplied the pairwise node-weighted matrices by the edge-weighted 
(i.e., fractional anisotropy) matrices to create an 85x85 node*edge-weighted matrix in each 
participant. Elements in the resulting matrix are thus reflective of the strength of the connection 
between two nodes, as well as the structural integrity of these nodes. Our focus was on 
multiplicative, rather than additive, interactions between edges and nodes as we were interested in 
the holistic integrity of each pair of nodes and the connections between them, rather than merely 
the sum of their constituent parts. For example, if Node A has a robust volume and is strongly 
connected to Node B, but Node B is highly atrophied, then a coefficient measuring the systemic 
integrity of this neural pathway should adequately reflect the depreciable contribution of Node B 
to the system. That is, small values within a tripartite system should nullify larger values as we are 
interested in the unified structure of these systems. Thus, these matrices were used to estimate a 
network wherein edges represent not just white matter connections between regions, but the 
multiplicative effect of (sub)cortical volume by white matter connection strength.  
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Step 1: Create a vector of the square root of each node volume (k = 85) for each participant. 
    

 

Step 2: Multiply the vector of node volumes by its transpose to create an 85x85 matrix, where 
cells represent the product of pairwise volumes. 

 

 

Step 3: Assemble the 85x85 edge-weighted matrix, where cells represent the microstructural 
connections between pairwise nodes.  
 

 

Step 4: Element-wise multiply the node-weighted matrix by the edge-weighted matrix to create an 
edge & node weighted matrix, where cells represent the multiplicative interaction between 
pairwise node volumes and the connection strength between those nodes. 
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 Node*edge + node. Lastly, we were interested in assessing whether the node*edge 
weighting scheme contributed more predictive power when nodes were included. Theoretically, if 
all useful information provided by nodes was captured in the node*edge weights, then the 
contribution of node volumes would have been redundant and dropped during the regularization 
process. Like the node + edge weighting scheme, this weighting scheme includes the 85 node 
volumes and the 3,570 node*edge weights. 
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2. Supplementary Results 
 
a. Sensitivity analyses. 

i. Thresholding analyses. Both unthresholded age correlations and loadings showed very 
strong linear relationships with thresholded versions of these metrics (rs > 0.999; Fig. S1). When 
thresholded edges were fixed to 0, rather than discarded, unthresholded age correlations correlated 
with thresholded age correlations at r = 0.790, and unthresholded loadings correlated with 
thresholded loadings at r = 0.899. These results indicate that potentially spurious connections were 
unlikely to substantially bias the results reported in this article. Despite this substantial overlap, 
previous work in this dataset has found that thresholding significantly improves average fractional 
anisotropy associations with age relative to unthresholded data21. 

ii. Permuted composites. Results of the permutation tests are reported in Table S9 and Fig. 
S10. For edges, the associations between composite scores and processing speed and visuospatial 
ability were statistically significant relative to the permuted distribution (empirical p’s < 0.01). 
Associations between observed edge-based composites and memory were statistically significant 
relative to the permuted distribution at empirical p’s < 0.05. In contrast, all associations for node 
composite scores fell within the middle of the permuted distribution for associations with both 
processing speed and visuospatial ability (empirical p’s > 0.09).  
 
b. Intercorrelations between network-specific PC-weighted composite scores. We examined 
associations between composite indices of integrity within each NOI.  Specifically, we computed 
intercorrelations amongst the network-specific PC-weighted composite scores for both edges and 
nodes to assess whether the general dimensions of network-specific integrity reflected an even 
broader dimension of whole-brain integrity (Fig. 2D; Fig. S3). Within edge-based composites, the 
average intercorrelation was 0.549 (interquartile range = 0.396 to 0.751; Table S7), with the first 
PC accounting for 62.2% of the variation in edge-based composite score covariance. Within node-
based composites, the average intercorrelation was 0.827 (interquartile range = 0.749 to 0.892; 
Table S7), with the first PC accounting for 84.7% of variation in node-based composite score 
covariance. Edge-based composite scores and node-based composite scores were relatively 
uncorrelated within networks (see Table S8). Thus, after aggregating individual elements together 
according to NOIs, we observed strong correlations across the edge and node integrities of the 
different subnetworks. This is likely to be attributable both to the aggregation signal across 
elements within NOIs, that is itself correlated across NOIs, and to the overlap of elements within 
NOIs.  
 
c. Network-specific aging occurs along general dimensions of variation in edge and node 
integrity. Edges from several NOIs showed patterns consistent with the whole brain (Figs. S5 & 
S6). In the Central Executive, Cingulo-Opercular, Default Mode, Multiple Demand, PFIT, and 
Temporo-Amygdala-Orbitofrontal networks, edges with higher PC loadings tended to have 
stronger negative correlations with age (rs = -0.820 to -0.508). The Sensorimotor network was the 
only NOI to show a moderately strong positive association between PC loadings and age 
correlations (r = 0.382), suggesting that edges that are more central to the integrity of this network 
tend to be less susceptible to ageing-related degradation. 
 On average, within-NOI node results were similar to within-NOI edge results. Across 
several NOIs, there was a negative relationship observed between age correlations and PC loadings 
(rs = -0.903 to -0.313 in the Cingulo-Opercular, Default Mode, Hippocampal-Diencephalic, 
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Multiple Demand, PFIT, Salience, and Temporo-Amygdala-Orbitofrontal networks). It is 
important to note that in certain networks (e.g., the Central Executive network), all nodes had 
consistently strong PC loadings and age correlations (age rs < -0.165; PC loadings (λs > 0.70)), 
resulting in a weak association between the PC loadings and age correlations (r = -0.076).  
 
d. Associations between topological centrality, PC loadings, and age correlations in UKB. To 
quantify the weighted connectedness of each node in the whole-brain network, we calculated its 
topological strength (i.e., sum of adjacent edge weights), which we then averaged across 
participants. To quantify the weighted connectedness of each edge in the whole-brain network, we 
calculated the average topological strength (i.e., average sum of adjacent edge weights) of the two 
nodes connected by that edge, which we then averaged across participants. We found that the 
topological strengths of both edges and nodes were strongly correlated with loadings on their 
respective PCs (redges = 0.655; rnodes = 0.583; all p’s < 0.0005; see Fig. S7), suggesting that more 
topologically central elements within the connectome are more broadly representative of 
individual differences in the integrity of those elements. Importantly, this association is not due to 
a mathematical dependency between topological strength and principal component loadings, as 
topological strength is based on the absolute value of the edge weights whereas PC loadings are 
based on their covariation. The topological strength of an element was only modestly associated 
with its age correlation (redges = -0.202, p < 0.0005; rnodes = -0.211, p = 0.053; Fig. S8). Topological 
centrality is therefore insufficient to explain the observed associations between PC loadings and 
age correlations. In other words, connectome aging occurs along general dimensions of variation 
in edge and node integrity, but occurs only modestly, and proportionally, to the amount of 
topological connectedness of structural connectome elements. 
 
e. Results of regularized LASSO regression models. 

i. Prediction of age in the UKB hold-out sample. Figure S12 displays the raw and adjusted 
R2 values for each network for the LASSO regression prediction of age in the UK Biobank hold-
out sample. Across the whole brain and all networks, edges alone explained greater variance in 
age than nodes alone (R2 = 0.174 to 0.546 in edges; 0.073 to 0.358 in nodes). The model based on 
edges alone had good prediction accuracy in a holdout subsample (RMSE = 5.03 years). The model 
based on nodes alone showed slightly worse prediction accuracy than the model based on edges 
alone (RMSE = 5.97 years. Edges from the PFIT and Temporo-Amygdala-Orbitofrontal networks 
accounted for the greatest variation in age (R2 = 0.385, 95% CI = [0.354, 0.416]; R2 = 0.318, 95% 
CI = [0.288, 0.347], respectively). 

Adjusted estimates indicated that nodes explained substantially greater variance in age than 
edges (R2 = 0.0040 to 0.0188 for nodes; R2 = 0.0002 to 0.0062 for edges). Similar to the weighted-
composite analyses, edges from the whole brain, PFIT and Temporo-Amygdala-Orbitofrontal 
networks explained substantially less variance in age than all other networks (R2 = 0.0001 to 
0.0006, 95% CIs = [0.0001, 0.0007]). The same pattern of results was found for nodes (R2 = 0.0040 
to 0.0055, 95% CIs = [0.0032, 0.0063]), collectively suggesting that the age-relevant information 
contained in these networks is a product of their overall size, rather than reflecting a particular 
concentration of age-susceptible elements. Overall, when adjusted for the number of elements in 
the network, nodes provided more substantial prediction of age.  
 Removing potentially spurious edges with consistency-based thresholding prior to 
conducting the LASSO analyses slightly depreciated predictions relative to unthresholded data 
(mean ratio of unthresholded R2 to thresholded R2 across NOIs = 0.763). The Salience network 
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displayed a substantial difference in age prediction when using thresholded edges (mean ratio of 
unthresholded R2 to thresholded R2 = 0.314). To note, the correlation between mean edge weight 
and age within the Salience network remained positive, even after removing thresholded edges (r 
= 0.094, p < 0.0005), indicating that the reported positive age trends in the Salience network are 
not simply an artifact of potentially spurious connections. Looking across all edges, however, 
prediction with thresholded data was nearly identical to prediction with unthresholded data, 
suggesting the utility of LASSO in zero-weighting uninformative edges (whole-brain R2 = 0.540; 
ratio of unthresholded R2 to thresholded R2 in whole brain = 0.988). 

ii. Prediction of cognitive function in LBC1936. Figure S14 displays the raw and adjusted 
prediction results for processing speed and visuospatial ability. We confine our prediction to 
processing speed and visuospatial ability, as memory was not associated with connectome integrity 
above and beyond age-11 IQ (Table 2, main text). In contrast to the age-prediction results, nodes 
were substantially more predictive of both domains of cognitive function than were edges (whole-
brain nodes: rprocessing speed  = -0.198; 95% CI = [-0.288, -0.108]; rvisuospatial ability = -0.165; 95% CI = 
[-0.259, -0.071]; whole-brain edges: rprocessing speed  = 0.069; 95% CI = [-0.025, 0.163]; rvisuospatial 

ability = 0.052; 95% CI = [-0.046, 0.150]). For processing speed, node-based associations were of 
comparable magnitude across NOIs (rs = -0.256 to -0.154, except in the Salience network, where 
r = -0.027). For visuospatial ability, nodes demonstrated somewhat more varied associations, with 
the Central Executive, Default Mode, and PFIT networks all displaying rs stronger than -0.300. 
Such correlation magnitudes are comparable to the associations using the weighted composite 
scores (Fig. 4), demonstrating that prediction of cognitive function using grey-matter elements is 
retained in the context of a regularization approach that favors sparsity of the predictor set. Edge-
based connectome age, by contrast, displayed relatively weak associations with both processing 
speed and visuospatial ability across NOIs (rs = -0.099 – 0.094; -0.103 to 0.034, respectively). 
These associations were somewhat lower than the weighted composite scores, indicating that the 
statistical-learning algorithm did not retain the same predictive ability for cognitive function. 

Consistent with the composite analyses, node-based connectome age from the Central 
Executive network retained the strongest adjusted correlations with both processing speed and 
visuospatial ability of any network (radj for processing speed = -0.0271, 95% CI = [-0.0384,                           
-0.0159]); radj for visuospatial ability = -0.0416, 95% CI = [-0.0527, -0.0306]). Across both 
processing speed and visuospatial ability, the Multiple Demand, Sensorimotor, and Default Mode 
networks demonstrated the strongest adjusted associations after the Central Executive network (radj 
range = -0.0179 to -0.0160 for processing speed; radj range = -0.0238 to -0.0194 for visuospatial 
ability). 
 
f. Age and cognitive prediction using novel weighting schemes. 

i. Age prediction. The additive contribution of edges and nodes from across the whole brain 
explained the greatest variance in age (R2 = 0.584, 95% CI = [0.560, 0.607]). This pattern was 
consistent across almost all NOIs (R2 = 0.216 to 0.423), indicating the collective importance of all 
elements to brain aging (see Fig. S13). The novel node*edge and node*edge + node weighting 
schemes demonstrated approximately similar predictive power to the nodes + edges scheme across 
all NOIs and the whole brain (R2 = 0.191 to 0.548 for node*edge; R2 = 0.218 to 0.556 for 
node*edge + node), outperforming nodes alone in all NOIs, and displaying comparable 
associations to edges alone in all NOIs.   
 ii. Cognitive prediction. The magnitude of associations between weighting schemes and 
cognitive function varied by both network and cognitive domain (see Fig. S15). As with the age 
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prediction results, the three joint weighting schemes performed relatively consistently across both 
domains of cognitive function (rs = -0.162 to 0.116 for nodes + edges; rs = -0.239 to 0.081 for 
nodes*edges; rs = -0.155 to 0.114 for nodes*edges + nodes). Across all almost all networks, nodes 
alone outperformed all other weighting schemes (rs = -0.333 to -0.027). Thus, in the context of a 
LASSO approach that removes redundant predictors of the first-stage outcome (age), information 
relevant to cognitive function appears to be diluted by the inclusion of edges in addition to nodes. 
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3. Supplementary Figures 
 

 
 
Figure S1. Scatterplots of thresholded versus unthresholded edges. Whole-brain associations between 
unthresholded and thresholded versions of age correlations and PC loadings. Thresholding was determined by a 
consistency based-approach21. We report correlations both including and excluding thresholded edges (N = 2,499). 
Regression line represents a slope of 1 (i.e., X = Y). 
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Figure S2. Analytic pipeline for obtaining general dimensions of element integrity. a) Scatterplot between Node 1 volume and age in UKB. Red line segments 
represent each participant’s residual Node 1 (left Thalamus) integrity after removing age-related variance. This procedure was conducted for every element. Only 
50 of the total 8,185 UKB participants are displayed for the sake of visual presentation. b) Whole-brain covariance matrix for residualized node integrities. Matrices 
were subjected to an Eigen decomposition to obtain general dimensions of age-partialled edge and node covariation (i.e., PCs). This procedure was conducted for 
the 3,567 edges that varied (of 3,570 total) and 85 nodes across the whole brain, as well as within each network, using only the elements contained within each 
specific NOI. c) Extraction of each residualized node’s loading on the first whole-brain PC. We estimated loadings on the first PC derived from the edge and node 
covariance matrices. d) The UKB-derived PC loadings were then used to weight the raw edge and node integrities in LBC1936, such that each LBC1936 
participant’s element integrities were multiplied by their respective PC loading and then summed to create a single numerical index of connectome integrity. This 
procedure was conducted in the whole brain (i.e., using the whole-brain PC loadings) and within each network (i.e., using the network-specific PC loadings and 
summing only those elements contained within that network), separately for edges and nodes. The same analysis was conducted using the UKB-derived age 
correlations, instead of PC loadings, as weights. 
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Figure S3. Heatmaps of intercorrelations amongst PC-weighted composite scores. Heatmaps of the correlations 
between PC-weighted composite scores created in each of the nine prespecified brain networks and whole brain. 
Correlations were estimated in edges and nodes separately. The interquartile range for correlations is presented in 
Table S7. Average correlations between edge- and node-based composites in each network are presented in Table S8.  
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Figure S4. Scree plots for whole-brain edge and node Eigen decompositions. Scree plots reflecting the total 
variance explained by each principal component for edges and nodes separately. Principal components were estimated 
from covariance matrices of edges and nodes in UKB participants (N = 8,185). Loadings on the first principal 
component were used to investigate individual differences in global connectome integrity and were used to create 
weighted connectome integrity composite scores in LBC1936.  
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Figure S5. Scatterplots of edge-age correlations and PC loadings in NOIs. Correlations between edge-age 
correlations and loadings on the first principal component within each NOI. Dashed line represents r = 0. Solid line 
represents the regression line for age correlation on principal component loadings. Principal component loadings were 
standardized before analysis. 
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Figure S6. Scatterplots of node-age correlations and PC loadings in NOIs. Correlations between node-age 
correlations and loadings on the first principal component within each NOI. Dashed line represents r = 0. Solid line 
represents the regression line for age correlation on principal component loadings. Principal component loadings were 
standardized before analysis.  
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Figure S7. Scatterplots of whole-brain topological centrality and PC loadings. Scatterplots displaying the 
association between weighted topological centrality (i.e., each connectome element’s average strength) and 
representativeness of variation in connectome integrity (i.e., each element’s loading on the first principal component). 
Plots are broken down by element type (i.e., edges and nodes). Each point represents a unique element of the 
connectome (N=3,567 non-zero edges; 85 nodes). Points are categorized by the network the element belongs to. Line 
represents the regression line for average strength on principal component loadings.  
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Figure S8. Scatterplots of whole-brain topological centrality and age correlations. Scatterplots displaying the 
association between each connectome element’s correlation with age and each element’s weighted topological 
centrality (i.e., each connectome element’s average strength). Plots are broken down by element type (i.e., edges and 
nodes). Each point represents a unique element of the connectome (N=3,567 non-zero edges; 85 nodes). Points are 
categorized by the network the element belongs to. Line represents the regression line for each element’s age 
correlations on average strength.  
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Figure S9. Scatterplot of network membership by age correlation. Scatterplots reflecting the total number of NOIs 
that an element belongs to by each element’s correlation with age. Nodes belonged to between 1 and 5 networks with 
a median of 2 networks. Edges belonged to between 1 and 6 networks with a median of 1 network.   
 
*** p < 0.001 
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Figure S10. Empirical distributions of associations between permuted composite scores and cognitive function. 
Empirical distributions of associations between permuted weighted composite scores (k = 1,000) and domains of 
cognitive function. Permuted composite scores were created from both age correlations and PC loadings weights in 
both edges and nodes. Red data points represent observed associations between weighted composite scores and 
domains of cognitive function (see Fig. 4, Fig. S11, and Table S9 for reference).  
 
* empirical p < 0.05; ** empirical p < 0.01; *** empirical p < 0.001 
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Figure S11. Associations between age-weighted composite scores and cognitive function. Raw and adjusted 
associations between weighted linear composite scores reflecting age-susceptibility and cognitive function in 
LBC1936. Scores were created across the whole brain and all NOIs by summing the LBC1936 data weighted by each 
element’s age correlation discovered in UK Biobank. Plots are broken down by element type (i.e., edges or nodes) 
and reflect correlations between composite scores from each NOI and the cognitive domains of processing speed, 
visuospatial ability, and memory.  
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Figure S12. LASSO-prediction of age in UKB. LASSO-prediction of age in a UK Biobank hold-out sample from 
brain network-specific data trained in UK Biobank. Predictions are broken down by connectome elements (i.e., edges 
or nodes). Prediction of age is represented as both the raw and adjusted R2 value, with error bars representing 
bootstrapped 95% confidence intervals based on the 100 iterations of R2 calculation. A full description of these 
findings can be found in the Supplementary Results.  
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Figure S13. LASSO-prediction of age in UKB using novel weighting schemes. LASSO-prediction of age in each 
NOI broken down by weighting scheme (nodes alone, edges alone, nodes + edges, nodes*edges, nodes*edges + 
nodes). A full description of each weighting scheme can be found in the Supplementary Method.  
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Figure S14. LASSO-prediction of cognitive function in LBC1936. LASSO-prediction of cognitive function 
(processing speed and visuospatial ability) in LBC1936 from brain network-specific age data trained in UK Biobank. 
Predictions are broken down by connectome elements (i.e., edges or nodes). Prediction of cognitive function is 
represented as both the raw and adjusted correlation between LASSO-retained element-age coefficients from each 
NOI and latent factors of processing speed and visuospatial ability, with error bars representing 95% confidence 
intervals. A full description of these results can be found in the Supplementary Results.  
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Figure S15. LASSO-prediction of cognitive function in LBC1936 using novel weighting schemes. LASSO-
prediction of cognitive function in each network-of-interest broken down by weighting scheme (nodes alone, edges 
alone, nodes + edges, nodes*edges, nodes*edges + nodes). A full description of each weighting scheme can be found 
in the Supplementary Method. 
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4. Supplementary Tables 
 
Table S1. Assignments of each brain region to each of the nine NOIs. Brain regions were parceled per the Desikan-Killiany atlas10.  

Node 
Central 

Executive 
Cingulo-

Opercular 
Default 
Mode 

Hippocampal-
Diencephalic 

Multiple 
Demand PFIT Salience 

Sensori-
motor 

Temporo-
Amygdala-

Orbitofrontal 
No 

Network 
Left-thalamus 0 1 0 0 0 0 1 1 0 0 
Left-caudate 0 0 0 0 0 0 0 0 0 1 
Left-putamen 0 0 0 0 0 0 0 1 0 0 
Left-pallidum 0 0 0 0 0 0 0 0 0 1 
Brain stem 0 0 0 0 0 0 0 0 0 1 
Left-hippocampus 0 0 0 1 0 0 0 0 0 0 
Left-amygdala 0 0 0 0 0 0 1 0 1 0 
Left-accumbens area 0 0 0 0 0 0 0 0 0 1 
Left-ventral diencephalon 0 0 0 1 0 0 1 0 0 0 
Right-thalamus 0 1 0 0 0 0 1 1 0 0 
Right-caudate 0 0 0 0 0 0 0 0 0 1 
Right-putamen 0 0 0 0 0 0 0 1 0 0 
Right-pallidum 0 0 0 0 0 0 0 0 0 1 
Right-hippocampus 0 0 0 1 0 0 0 0 0 0 
Right-amygdala 0 0 0 0 0 0 1 0 1 0 
Right-accumbens area 0 0 0 0 0 0 0 0 0 1 
Right-ventral diencephalon 0 0 0 1 0 0 1 0 0 0 
Left-superior temporal sulcus 0 0 0 0 0 1 0 0 1 0 
Left-caudal anterior cingulate 0 1 0 0 1 1 1 0 1 0 
Left-caudal middle frontal 0 0 0 0 1 1 0 1 0 0 
Left-cuneus 0 0 0 0 0 0 0 0 0 1 
Left-entorhinal 0 0 0 1 0 0 0 0 1 0 
Left-fusiform 0 0 0 1 0 1 0 0 1 0 
Left-inferior parietal 1 0 1 0 0 1 0 0 0 0 
Left-inferior temporal 0 0 0 0 0 0 0 0 1 0 
Left-isthmus cingulate 0 0 1 1 0 0 0 0 1 0 
Left-lateral occipital 0 0 0 0 0 1 0 0 0 0 
Left-lateral orbitofrontal 0 0 0 0 0 0 0 0 1 0 
Left-lingual 0 0 0 0 0 0 0 0 0 1 
Left-medial orbitofrontal 0 0 1 0 0 0 0 0 1 0 
Left-middle temporal 0 0 0 0 0 1 0 0 1 0 
Left-parahippocampal 0 0 1 1 0 0 0 0 1 0 
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Node 
Central 

Executive 
Cingulo-

Opercular 
Default 
Mode 

Hippocampal-
Diencephalic 

Multiple 
Demand PFIT Salience 

Sensori-
motor 

Temporo-
Amygdala-

Orbitofrontal 
No 

Network 
Left-paracentral 0 0 0 0 1 0 0 1 0 0 
Left-pars opercularis 0 0 0 0 0 1 0 0 0 0 
Left-pars orbitalis 0 0 0 0 0 1 0 0 0 0 
Left-pars triangularis 0 0 0 0 0 1 0 0 0 0 
Left-pericalcarine 0 0 0 0 0 0 0 0 0 1 
Left-postcentral 0 0 0 0 0 0 0 1 0 0 
Left-posterior cingulate 0 0 0 0 0 0 0 0 1 0 
Left-precentral 0 0 0 0 0 0 0 1 0 0 
Left-precuneus 0 0 1 0 0 1 0 0 0 0 
Left-rostral anterior cingulate 0 0 1 0 0 1 0 0 1 0 
Left-rostral middle frontal 1 1 0 0 1 1 0 0 0 0 
Left-superior frontal 1 0 1 0 0 1 0 0 0 0 
Left-superior parietal 1 0 0 0 1 1 0 0 0 0 
Left-superior temporal 0 0 0 0 0 1 0 0 1 0 
Left-supramarginal 0 0 0 0 0 0 0 0 0 1 
Left-frontal pole 0 1 1 0 1 1 0 0 0 0 
Left-temporal pole 0 0 0 0 0 0 0 0 1 0 
Left-transverse temporal 0 0 0 0 0 1 0 0 1 0 
Left-insula 0 1 0 0 0 0 1 0 0 0 
Right-superior temporal sulcus 0 0 0 0 0 1 0 0 1 0 
Right-caudal anterior cingulate 0 1 0 0 1 1 1 0 1 0 
Right-caudal middle frontal 0 0 0 0 1 1 0 1 0 0 
Right-cuneus 0 0 0 0 0 0 0 0 0 1 
Right-entorhinal 0 0 0 1 0 0 0 0 1 0 
Right-fusiform 0 0 0 1 0 1 0 0 1 0 
Right-inferior parietal 1 0 1 0 0 1 0 0 0 0 
Right-inferior temporal 0 0 0 0 0 0 0 0 1 0 
Right-isthmus cingulate 0 0 1 1 0 0 0 0 1 0 
Right-lateral occipital 0 0 0 0 0 1 0 0 0 0 
Right-lateral orbitofrontal 0 0 0 0 0 0 0 0 1 0 
Right-lingual 0 0 0 0 0 0 0 0 0 1 
Right-medial orbitofrontal 0 0 1 0 0 0 0 0 1 0 
Right-middle temporal 0 0 0 0 0 1 0 0 1 0 
Right-parahippocampal 0 0 1 1 0 0 0 0 1 0 
Right-paracentral 0 0 0 0 1 0 0 1 0 0 
Right-pars opercularis 0 0 0 0 0 1 0 0 0 0 
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Node 
Central 

Executive 
Cingulo-

Opercular 
Default 
Mode 

Hippocampal-
Diencephalic 

Multiple 
Demand PFIT Salience 

Sensori-
motor 

Temporo-
Amygdala-

Orbitofrontal 
No 

Network 
Right-pars orbitalis 0 0 0 0 0 1 0 0 0 0 
Right-pars triangularis 0 0 0 0 0 1 0 0 0 0 
Right-pericalcarine 0 0 0 0 0 0 0 0 0 1 
Right-postcentral 0 0 0 0 0 0 0 1 0 0 
Right-posterior cingulate 0 0 0 0 0 0 0 0 1 0 
Right-precentral 0 0 0 0 0 0 0 1 0 0 
Right-precuneus 0 0 1 0 0 1 0 0 0 0 
Right-rostral anterior cingulate 0 0 1 0 0 1 0 0 1 0 
Right-rostral middle frontal 1 1 0 0 1 1 0 0 0 0 
Right-superior frontal 1 0 1 0 0 1 0 0 0 0 
Right-superior parietal 1 0 0 0 1 1 0 0 0 0 
Right-superior temporal 0 0 0 0 0 1 0 0 1 0 
Right-supramarginal 0 0 0 0 0 0 0 0 0 1 
Right-frontal pole 0 1 1 0 1 1 0 0 0 0 
Right-temporal pole 0 0 0 0 0 0 0 0 1 0 
Right-transverse temporal 0 0 0 0 0 1 0 0 1 0 
Right-insula 0 1 0 0 0 0 1 0 0 0 
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Table S2. Comparison of NOIs to Yeo et al.23 networks. 
 

Presently-examined NOI Yeo et al. (2011) 
Central Executive Frontoparietal (Orange)a + Default (Red)b 

Cingulo-Opercular Frontoparietal (Orange)a + Ventral Attention (Violet)c 

Default Mode Default (Red) 
Hippocampal-Diencephalic Default (Red)d 

Multiple Demand Frontoparietal (Orange)  

PFIT 
Default (Red) + Frontoparietal (Orange) + Dorsal Attention 

(Green) 
Salience Frontoparietal (Orange)e + Ventral Attention (Violet)c 

Sensorimotor Somatomotor (Blue) 
Temporo-Amygdala-Orbitofrontal Limbic (Cream)f 

 
Note. Colors in parentheses refer to schematic designation in Fig. 11 of Yeo et al. (2011). Only a cortical comparison 
is possible as no subcortical involvement was considered in Yeo et al. (2011). a = minus cingulate; b = minus superior 
temporal; c = insular aspect only; d = posterior aspects only; e = cingulate aspect only; f = plus cingulate and temporal.  
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Table S3. Unique elements within each NOI. 
 

Network Total Nodes Unique Nodes Total Edges Unique Edges 
Central Executive 8 0 28 0 
Cingulo-Opercular 10 0 45 16 
Default Mode 16 0 120 48 
Hippocampal-Diencephalic 12 2 66 37 
Multiple Demand 12 0 66 16 
PFIT 36 8 630 436 
Salience 10 0 45 24 
Sensorimotor 12 6 66 59 
Temporo-Amygdala-Orbitofrontal 32 8 496 352 

 
Note. Within each network, the total number of edges is equal to N*((N-1)/2), where N equals the number of nodes. 
This same mathematical principal does not apply to the estimation of unique elements within a network. Two nodes 
may be present across several networks, but may only be jointly present within a single subnetwork, thus returning a 
unique edge for that subnetwork, but not unique nodes. 24 out of 85 nodes (28.2%) are unique to specific networks. 
2210 edges are not a part of any network because they connect two nodes that are not jointly present within a single 
subnetwork. Of the edges that occur within networks, 988 out 1360 (72.6%) are unique. 
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Table S4. Model fit and descriptive statistics for cognitive tests in LBC1936. Descriptive statistics, intercorrelations, and factor parameters for the cognitive 
tasks in LBC1936.  
 

Cognitive Task Mean SD Range 
Factor 

Loading                                                       Intercorrelations       
Visuospatial Reasoning 

CFI = 0.913; TLI = 0.739; RMSEA = 0.180; SRMR = 0.049 
MR BD SSF SSB DSS SS CRT IT LM VPA DB 

Matrix Reasoning (MR) 13.4 4.9 3 - 25 0.663 1                     
Block Design (BD) 34.3 10.1 10 - 65 0.764 .541 1           
Spatial Span (Forward) (SSF) 7.6 1.6 3 - 12 0.462 .272 .308 1          
Spatial Span (Backward) (SSB) 7.1 1.6 1 - 11 0.543 .306 .398 .413 1         

Processing Speed 
CFI = 1.0; TLI = 0.999; RMSEA = 0.009; SRMR = 0.011   

Digit-Symbol Substitution (DSS) 56.6 11.6 26 - 94 0.821 .333 .438 .272 .271 1        

Symbol Search (SS) 25.8 6.0 4 - 43 0.748 .332 .467 .288 .325 .620 1       

Choice Reaction Time* (CRT) -64.4 8.5 
-108 - -

45.9 0.645 .184 .279 .276 .252 .528 .473 1      
Inspection Time (IT) 111.4 10.9 67 - 134 0.462 .218 .259 .218 .258 .366 .341 .335 1      

Memory        
CFI = 1.0; TLI = 1.0; RMSEA = 0.0; SRMR = 0.0   

Logical Memory (LM) 74.7 17.9 17 - 116 0.784 .340 .259 .160 .155 .339 .279 .223 .184 1    
Verbal Paired Associates (VPA) 27.5 9.5 0 - 40 0.684 .333 .284 .157 .161 .335 .259 .216 .231 .530 1   
Digits Backwards (DB) 7.91 2.3 2 - 14 0.414 .343 .311 .268 .286 .354 .316 .222 .175 .325 .282 1 

Note. Between 1 and 13 participants had missing data across all tests. CRT scores were multiplied by -100 such that higher scores are associated with faster 
performance. The model for Memory was fully saturated and thus returned perfect model fit. The Logical Memory and Verbal Paired Associates measures were 
created by summing the number of items that each participant recalled correctly across both the immediate- and delayed-recall versions of the task.  
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Table S5. Hartigans’ dip-test for bimodality.  
 

 
Note. P-values are in parentheses. Hartigans’ dip-test is a significance test that measures the deviation of a distribution 
from unimodality24. Significance threshold was Bonferroni corrected for 20 significance tests, rather than for the 
complete set of 40 significance tests that were conducted, given the substantial overlap between the age correlations 
and PC loadings. * denotes estimates that survived Bonferroni correction.  
 
  

 
Network 

Estimate 
Edges - Age 
Correlations 

Estimate 
Edges - PC 
Loadings 

Estimate 
Nodes - Age 
Correlations 

Estimate 
Nodes - PC 
Loadings 

Global 0.003 (0.998) 0.006 (0.528) 0.026 (0.969) 0.032 (0.793) 
Central Executive 0.001 (1.000) 0.055 (0.762) 0.029 (0.899) 0.176 (0.008) 
Cingulo-Opercular 0.000 (1.000) 0.057 (0.319) 0.017 (1.000) 0.173 (0.003) 
Default Mode 0.001 (1.000) 0.031 (0.616) 0.030 (0.886) 0.101 (0.160) 
Hippocampal-
Diencephalic 0.001 (1.000) 0.033 (0.906) 0.023 (0.992) 0.082 (0.713) 
Multiple Demand 0.001 (1.000) 0.048 (0.300) 0.016 (1.000) 0.133 (0.041) 
PFIT 0.002 (1.000) 0.028 (0.001)* 0.088 (<0.0005)* 0.068 (0.201) 
Salience 0.001 (1.000) 0.040 (0.883) 0.017 (1.000) 0.091 (0.685) 
Sensorimotor 0.001 (1.000) 0.029 (0.979) 0.028 (0.929) 0.079 (0.7682) 
Temporo-Amygdala-
Orbitofrontal 0.001 (1.000) 0.010 (0.994) 0.041 (0.385) 0.050 (0.815) 
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Table S6. Average age-element associations within NOIs. 
 

Network Average Age-Edge Correlation Average Age-Node Correlation 
Global -0.037 (0.086) -0.160 (0.086) 
Central Executive -0.163 (0.070) -0.211 (0.031) 
Cingulo-Opercular -0.055 (0.083) -0.137 (0.102) 
Default Mode -0.067 (0.094) -0.146 (0.076) 
Hippocampal-Diencephalic -0.018 (0.074) -0.155 (0.108) 
Multiple Demand -0.071 (0.074) -0.135 (0.062) 
PFIT -0.074 (0.093) -0.179 (0.062) 
Salience 0.060 (0.072) -0.163 (0.106) 
Sensorimotor -0.021 (0.069) -0.192 (0.060) 
Temporo-Amygdala-Orbitofrontal -0.013 (0.060) -0.144 (0.087) 

 
Note. Standard deviations are in parentheses.   
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Table S7. Interquartile range and Eigen decomposition for PC-weighted composite scores. Interquartile range 
and percentage of variation explained by first principal component for correlations between PC-weighted linear 
composites across the nine NOIs (see Fig. S3). Ranges include composites created for the whole brain networks.  
 

Element 0% 25% 50% 75% 100% 
% of variation explained 

by first PC 
PC-based composites 

Edges 0.042 0.396 0.567 0.751 0.956 62.2 
Nodes 0.659 0.749 0.830 0.892 0.985 84.7 
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Table S8. Correlations between edge- and node-based composite scores within NOIs. 
 

Network 
r 

PC-weighted Edges & Nodes 
Global .105 (.015) 
Central Executive .081 (.062) 
Cingulo-Opercular .138 (.001) 
Default Mode .016 (.712) 
Hippocampal-Diencephalic .048 (.276) 
Multiple Demand .081 (.062) 
PFIT .102 (.019) 
Salience .104 (.017) 
Sensorimotor .121 (.005) 
Temporo-Amygdala-Orbitofrontal .017 (.691) 

 
Note. P-values are in parentheses.  
 
 
  



Madole et al.  Supplement 

38 

Table S9. Interquartile range for associations between permuted composite scores and cognitive function. 
Lower and upper 2.5% boundaries of permuted distributions for associations between permuted composite scores and 
cognitive function (see Fig. S10). 95% IQR represents the difference between the upper and lower bounds of each 
distribution.  
 

Visuospatial Ability 
Element Lower 2.5% Upper 2.5% 95% IQR 

Age-based composites 
Edges -0.071 -0.023 0.048 
Nodes -0.392 -0.374 0.018 

PC-based composites 
Edges 0.037 0.058 0.021 
Nodes 0.381 0.388 0.007 

  
Processing Speed 

Element Lower 2.5% Upper 2.5% 95% IQR 
Age-based composites 

Edges -0.183 -0.131 0.052 
Nodes -0.248 -0.225 0.023 

PC-based composites 
Edges 0.150 0.173 0.023 
Nodes 0.232 0.242 0.010 

 
Memory 

Element Lower 2.5% Upper 2.5% 95% IQR 
Age-based composites 

Edges -0.066 -0.018 0.048 
Nodes -0.129 -0.110 0.019 

PC-based composites 
Edges 0.033 0.053 0.020 
Nodes 0.116 0.123 0.008 
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Table S10. UKB-derived age- and PC-weights for connectome elements. 
 
Note: Due to the size of this table, it is only accessible as an Excel file.  
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