Supplementary Information: Secondary structure determination of conserved SARS-CoV-2
RNA elements by NMR spectroscopy

5’-genomic end:

SCov2 AU GGuuUluaccufijcccaccliaaarAccpaccancfucGaucuc 50

SCoV Ay GGUUURUACCURcCcCAGGEAAfAAGCCpACCARCERUCGAUCUC 47
* % *[hkk kK k K(khkkkk *khkkhkkkk *k kk kkfrhkikkkhkkx * klk kk kK x

SCov2 UUGUAGAUCPGUUCUCUAAACGAACUUUAAAAULUGUGUGBGCUGUCACUC 100

SCov UUGUAGAUCUGUUCUCUAAACGAACUUUARAAULCUGUGUAGCUGUCGCUC 97
KAKA KA KAA AR A KA A AR A A A A AKX A[F A A A A A A A A Ak KA A *kx K, K K K **x k%%

SCoV2 GGCUGCAUGCUUAGUGCACUCACGCAGUAUAAUUAAUAACUAA--UUACU 148

sCoV GGCUGCAUGCEUAGUGCACCUACGCAGUAUAAACAAUAAUAAAUUUUACU 147
kAhkAkhkkkkhkhkkk k K*Akkkkkkk*k *kkkkkkkk kKK * Kk Kk kK * % * Kk Kk kK

SCoV2 GUCGUUGACABGABACGAGUAACUCGUCUBUCUUCUGCAGGCUGCUUACG 198

SCoV GUCGUUGACABGABACGAGUAACUCGUCCEUCUUCUGCAGACUGCUUACG 197
Kk ok kkxkk ok ok Kk Kk khkhkX XAk khkk Xk Kk kXA kkkkx &k ok Kk kx k% &

SCoV2 GUUUCGUCCGUGUUGCAGCCGAUCAUCAGCACAUCUAGGUUUCGUCCGGG 248

SCoV GUUUCGUCCGUGUUGCAGUCGAUCAUCAGCAUACCUAGGUUUCGUCCGGG 247
Kk kk kKRR Ak kKK ALk hk KA Ak k kKRR Kk k& ok ook ok k k& ok ok ok k ok k& &

SCoV2 UGUGACCGAAAGGUAAGAUGGAGAGCCUUGUEBCEBUGGUBUCAACGAGAAA 298

SCoV UGUGACCGAAAGGUAAGAUGGAGAGCCUUGUBICBUGGUBUCAACGAGAAA 297
R R R R O R I

SCoV2 ACACACGUCCAACUCAGUUUGCCUGUUBRCAGGUUGGEBGACGUGCUCGU 348

SCoV ACACACGUCCAACUCAGUUUGCCUGUGEUBICAGGUUINGAGACGUGCUAGU 347
Kk ok ok kxkkk ok kXX kkkhk kX kkkkkk Kk khkkxkk * *xkkkkpx *x*

SCoV2 [ACGUGGCUUUGGRGACUCCGUGGAGGAGGEBICEMUAUCAGAGGCACGUMAAC 398

SCoV GCGUGGCUUCGGEBGACUCUGUGGAAGAGGECBUAUCGGAGGCACGUAAC 397
Kk khkhkxkxkk Kkk Kkkkk KrxAkk Khkxkx Kk Khkkk kkkkxkkkkk| *kx%x

SCoV2 CUMIAAAGAUGGICACUUGUGGEBBIUAGUAG UBGAAAAAGGCGUMUG 448

SCoV CUGAAAAAUGGICACUUGUGGES@UAGUAG UBGAAAAAGGCGURN®UG 447
X kk KKKk kkKK[KA Kk kKKK kkxkkkKk ok kkkkkxkkkKkKk Kk

SCoV2 CCECABCUUGAACAGCCCUAUGUGIUCAUC 478

SCoV CCEBCABCUUGAACAGCCCUAUGUGUUCAUU 477
Kk kok Kok ok ok ok ok ok Kk kK ok kK Kk ok kR kK Kk

SL1 to SL8 (in this order) are boxed. The start codon of ORF1a is highlighted in bold.

N = compensatory mutation in helical region
m = structure-neutral mutation in single stranded region
I = structure altering mutation



Frameshifting region:

SCoV2 CCCHh CAGUC GAUGC CGUUUUUAAACGGGUUUGCGGU 13,479
SCoV CCCp CAGUC GAUGC CGUUUUUAAACGGGUUUGCGGU 13,409
kkk Pkk ok kkkkk Kk kkkkkk| Kk kkkkkkkkkkkkkkkkk[rkxk K

SCoV2 GUAAGUGCAGCCCGUCUUACACCGUGCGGCACAGGCACUAGUACUGAUGU 13,529
SCoV GUAAGUGCAGCCCGUCUUACACCGUGCGGCACAGGCACUAGUACUGAUGU 13,459

R I I S I I I I I I I I I I I b I I I I I I b I I b b b I b b b dh b b b ah S b db b 4

SCoV2 CGUIUACAGGGCUPUUG 13,546
SCoV CGU@UACAGGGCUPUUG 13,476
KAK KKK KK KKK K[k Kk Kk

The att HP and the PK (in this order) are boxed.

3-UTR:

SCoV2 ACUCAUGEIIGACCACACAAGGCAGAUGGGCUAURUAAACGUUUUCGCH 29,581
SCoV CUCAUGHEWGACCACACAAGGCAGAUGGGCUAUGUAAACGUUUUCGCH 29,438
*kkk Kk kK KA AN KAk A *A kAN h A ARk ANk A A kK Ak *Ah kA kA kAKX k K kk*%k
SCoVv2 BUUCCGUUUACGAUABAUAGUCUACUCUUGUGCAGAAUGAAUUCUCGUAA 29,631
SCov YUUCCGUUUACGAUACAUAGUCUACUCUUGUGCAGAAUGAAUUCUCGUAA 29,488
KAKXAKNKAkAKARKRAAKNKA KN A A KA A A KA AN A AN K AA| A AR A AR AR XK k|K kK
SCoV2 CUACAGAGCACAAGUAGRUGUAGUUARCUUUAAUCUCACAUAGCAAUCUU 29,681
SCov CUAAACAGCACAAGUAGGUUUAGUUAACUUUAAUCUCACAUAGCAAUCUU 29,538
kkhkk Kk Ak khkhkhkkhkkhkhkhkkhk Kk AhkAhhkhk|hAhkkhhkrhkkhkhAhkhkkhkrhkkhkhrrkkhkkrkkxx
SCoV2 UAAUCABUGUGUAACAUUAGGGAGGACUUGAAAGAGCCACCACAUUUUCA 29,731
SCoVv UAAUCAMUGUGUAACAUUAGGGAGGACUUGAAAGAGCCACCACAUUUUCA 29,588
Akhkhkhkkhk hAhkAkhAhkhkAhkkhkhAhkhkhkhAhkkhkhkrhkhkhAhkhkkhkhrhkhhhkhkhkhkhkkxkkk*|xk*xx*x
SCoV2 €CGAGGCCACGCGGAGUACGAUCGAGHGUACAGUGANSAAUGCUAGGGAG 29,781
SCoVv UCGAGGCCACGCGGAGUACGAUCGAGHGUACAGUGANIAAUGCUAGGGAG 29,638
AhkAk kA kA A hkkhkAhkkhkkhkrhkkhkhAhkhkhkhrhkhhkdx *(hxkhkhkhAhkhkhrk|] *xhkkkk krxkk kkx*xk*xx%x
SCoV2 AGCUGCCUAUAUGGAAGAGCCCUAAUGUGUAAAAUUAAUUUUAGUAGUGC 29,831
SCoV AGCUGCCUAUAUGGAAGAGCCCUAAUGUGUAAAAUUAAUUUUAGUAGUGC 29,688
KA AR A A AR A AR A A AR A A AR A AR A A AR A AR A A AR A A AR ARk A Ak Ak kKK
SCov2 UAUCCCCAUGUGAUUUUAAUAGCUUCUUAGGAGAAUGAC 29,870
SCoVv UAUCCCCAUGUGAUUUUAAUAGCUUCUUAGGAGAAUGAC 29,727

KKK KAKAKRKAA KA A KA A KA A A AR KA XA AR A AR A A XA A XAk, K

SL1, SL2 and s2m (in this order) are boxed.

Supplementary Figure 1: Sequence and structure conservation between SCoV2 and SCoV of the 5'-
genomic end, the frameshifting region and the 3’-UTR. Individual stem-loops investigated by NMR
are boxed. Mutations are color-coded, with compensatory mutations highlighted in cyan, mutations
in single stranded regions without effect on the predicted 2D structure highlighted in blue and
mutations predicted to alter base pairing patterns highlighted in red.
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Supplementary Figure 2: Raw data showing the reactivity profile of (A) the 5’-genomic end and
(B) the 3’-UTR. Shown are DMS treated (top) and untreated (bottom) samples.



Supplementary Figure 3: Representative native PAGE of NMR-samples after the final buffer
exchange step. RNA bands were visualized by UV-shadowing. The photographs show the entire gels.
The labeling scheme is given, where unl. abbreviates unlabeled. The most distinct bands represent
the monomeric form of the respective RNA constructs. Slower migrating bands indicate dimeric or
oligomeric RNAs, while faster migrating bands arise from degradation. 500 pmol RNA were loaded
onto the gel. For RNAs that showed degradation on the gel, sample preparation was repeated.
(A) 10% native PAA gel of shorter constructs. (B) 10% native PAA gel of longer constructs. The
constructs annotated with a red asterisk were not used in this study.



TBM

Supplementary Figure 4: Folding analysis of the att HP by native PAGE. Left panel: TB gel (no Mg”");
right panel: TBM gel (2 mM Mg”). RNA samples were prepared as follows: 1: 0 mM Mg**, 2: 2 mM

Mg”" after heating treatment, 3: 2 mM Mg”* before heating treatment. All treatments were carried
out with RNA in consortium buffer (25 mM Kpi, 50 mM KCl).
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Supplementary Figure 5: Structure prediction by RNAstructure v6.0.1 for the investigated stem-loop
constructs (https://rna.urmc.rochester.edu/RNAstructureWeb/) and by pKiss for the PK
(https://bibiserv.cebitec.uni-bielefeld.de/pkiss). Differences found in the experimental data (NMR
and DMS) are shown next to each construct. Differences in base pairing patterns are highlighted in
blue. Predicted base pairs that were found to be open are highlighted in orange. Genomic numbering
shifted for convenience by 13,000 from 5’ for the frameshifting region and 29,000 from 5’ for the 3’-
UTR. * The middle region of 5 SL8 could not be unambiguously assigned by NMR and was not
examined by DMS footprinting.



https://rna.urmc.rochester.edu/RNAstructureWeb/
https://bibiserv.cebitec.uni-bielefeld.de/pkiss
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Supplementary Figure 6: Assignment of the aromatic protons of 5_SL1 encompassing nucleotides 7
to 33. Observed atoms are annotated with bars next to the spectra. (A) Ir-'"H,"”N-HSQC spectrum for
the adenosine H2-N1/N3 correlations. (B) 'H,'H-TOCSY spectrum with annotated cytidine H6-H5
cross peaks. (C) 'H,"H-NOESY spectrum with intra-nucleobase cytidine amino proton correlations to
the corresponding H5 protons. (D) Cytidine amino group region of the *H,”>N-HSQC spectrum with
annotated amino group resonances. (E) Secondary structure of 5_SL1 as derived from NMR and DMS
with genomic numbering. 5’- and 3’-terminal base pairs (“additional closing base pairs”) introduced
to allow for transcription and for stabilization of stem elements are annotated with G; and C,;.
Nucleotides that constitute the DMS primer site are held in gray. DMS reactivity is represented by
circles from blue (low reactivity) to red (high reactivity) as shown in legend. The nucleobases of
guanosine and uridine nucleotides as well as the closing base pairs were not tested by DMS probing.
Base pairs confirmed by NMR are indicated by horizontal black lines between base pairing partners.
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Supplementary Figure 7: Assignment of the aromatic and amino protons of 5_SL2+3 encompassing
nucleotides 45 to 75. Observed atoms are annotated with vertical bars next to the spectra.
(A) Ir-'H,°N-HSQC spectrum for the adenosine H2-N1/N3 correlations. (B) ‘H,"H-NOESY spectrum
with annotated pyrimidine H6-H5 correlations. (C) *H,"””N-HSQC spectrum showing resonances of the
cytidine, adenosine and guanosine exocyclic amino groups. (D) DMS reactivity is represented by
circles from blue (low reactivity) to red (high reactivity) as shown in the legend. The additional
guanosine introduced to allow for transcription is annotated with G.;.The nucleobases of guanosines
and uridines as well as the closing base pairs were not tested by DMS probing. Base pairs confirmed
by NMR are indicated by horizontal black lines between base pairing partners.
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Supplementary Figure 8. Effects of magnesium and temperature on 5_SL2+3. (A) Overlay of 'H,"N-
TROSY spectra recorded in conditions as used for NMR-based determination of secondary structure
shown in Figure 2 and Supplementary Figure 7D (blue) or at RT and after addition of 3 mM MgCl,
(red). Relevant, affected imino group signals are denoted with their assignments. (B) Summary of
effects observed in the spectral comparison of panel A for the labelled residues. (C) Zoom-ins of
residues labelled in panel A showing overlays of spectra at 283 K during titration of MgCl, (upper
row) or comparing the two temperatures in the absence of MgCl, (lower row). The color code of
concentrations and temperatures is given.
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Supplementary Figure 9: Assignment of the aromatic and amino protons of 5_SL4 encompassing
nucleotides 86 to 125. Observed atoms are annotated with bars next to the spectra. (A) Ir-'H,"’N-
HSQC experiment correlating adenosine H2 protons to the adenosine N1 and N3 nitrogen atoms.
(B) *H,"H-TOCSY spectrum with annotated cytidine and uridine H6-H5 cross peaks. (C) Exemplary
sequential walk consisting of H1’-H6/H8 NOEs in the 'H,"H-NOESY spectrum for nucleotides G109 -
'H,"°N-HSQC spectrum with annotated amino group
resonances. (E) Experimentally observed secondary structure of 5 SL4 with genomic numbering.
Additional closing base pairs are annotated with G_;, C,;. DMS reactivity is represented by circles
from blue (low reactivity) to red (high reactivity) as shown in the legend. The nucleobases of
guanosines and uridines as well as the closing base pairs were not tested by DMS probing. Base pairs
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Supplementary Figure 10: Assignment of the aromatic and amino protons of 5 SL5stem
encompassing nucleotides 150 to 180 and 265 to 294. The construct is capped with a UUCG tetraloop
between nucleotides 294 and 150. Observed atoms are annotated with bars next to the spectra.
(A) Ir-"H,°N-HSQC spectrum for the adenosine H2-N1/N3 correlations. (B) *H,”>N-HSQC highlighting
the amino region with assignable resonances labelled. (C) Depiction of the NMR-experimentally
observed secondary structure of 5 SL5stem with genomic numbering. All identified base pairs
according to main text Figure 6 are shown with black bars. The additional tetraloop bases are
annotated in lower-case letters and additional closing base pairs at the termini are annotated with
G.,, G4, C,4, C,,. For direct comparison with the DMS reactivity, relevant cytidines and adenosines of
the 5_5SLstem natural part of the underlying sequence are color-coded as depicted. DMS reactivity is
represented by circles from blue (low reactivity) to red (high reactivity) as shown in the legend. The
nucleobases of guanosines and uridines as well as the closing base pairs were not tested by DMS
probing. Base pairs confirmed by NMR are indicated by horizontal black lines between base pairing
partners.
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Supplementary Figure 11. Effects of magnesium and temperature on 5_SL5stem. (A) Overlay of
'H,"°N-TROSY spectra recorded in conditions as used for NMR-based determination of secondary
structure shown in Figure 6 and 10 (blue) or at RT and after addition of 3 mM MgCl, (red). Relevant,
affected imino group signals are denoted with their assignments. (B) Summary of effects observed in
the spectral comparison of panel A for the labelled residues. (C) Zoom-ins of residues labelled in
panel A showing overlays of spectra during titration of MgCl, at 283 K (upper row) or comparing the
two temperatures in the absence of MgCl, (lower row). The color code of concentrations and
temperatures is given. (D) Full spectral overlays for the magnesium titration (left panel) and
temperature differences (right panel) as the basis for the zoom-ins in panel C using the same color
code.
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Supplementary Figure 12: Assignment of the aromatic and amino protons of 5_SL5a encompassing
nucleotides 188 to 218. Observed atoms are annotated with bars next to the spectra. (A) Ir-'H,’N-
HSQC experiment correlating purine-aromatic protons to nitrogen atoms for adenosine H2-N1/N3 or
guanosine H8-N7/N9. (B) 'H,'H-TOCSY spectrum with annotated cytidine and uridine H6-H5 cross
peaks. (C) Amino group region of the 'H,"”N-HSQC spectrum with annotated amino group resonances
for cytidine. (D) Combined NMR-DMS experimentally observed secondary structure of 5 _SL5a with
genomic numbering. Additional closing base pairs are annotated with G, C,;. DMS reactivity is
represented by circles from blue (low reactivity) to red (high reactivity) as shown in the legend. The
nucleobases of guanosines and uridines as well as the closing base pairs were not tested by DMS
probing. Base pairs confirmed by NMR are indicated by horizontal black lines between base pairing

partners.
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Supplementary Figure 13: Assignment of the aromatic and amino protons of 5 SL5b+c
encompassing nucleotides 227 to 263. Observed atoms are annotated with bars next to the spectra.
(A) Ir-'H,°N-HSQC experiment correlating adenosine H2 protons to the adenosine N1 and N3
nitrogen atoms. (B) 'H,"H NOESY showing the correlations between uridine H3 and adenosine H2.
(€) *H,"H NOESY showing further insight for the assignment of guanosine-H1 and uridine-H3 imino
protons to corresponding cytidine amino protons H41 or H42 or aromatic H2 protons of adenosine.
(D) Amino 'H,°N-HSQC spectrum showing the cytidine region. (E) Combined NMR-DMS
experimentally observed secondary structure of 5_SL5b+c with genomic numbering. The DMS
reactivity is represented by circles from blue (low reactivity) to red (high reactivity) as shown in the
legend. Guanosine and uridine residues as well as the closing base pairs are not tested by the DMS
method. NMR-spectroscopically confirmed base pairs are indicated by horizontal black lines between

base pairing partners.
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Supplementary Figure 14: Assignment strategy for 5 _SL5b+c (C) by comparison to single hairpins
5 SLSb and 5_SL5c (B). (A) Overlay of 'H,"H-NOESY spectra of 5_SL5b+c (blue contours), 5_SL5b
(green contours) and 5_SL5c (red contours). The assigned imino proton walks are depicted in the
same color code as the boxes in panel (C).
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Supplementary Figure 15: Assignment of the aromatic and amino protons of 5_SL6 encompassing
nucleotides 302 to 343. Observed atoms are annotated with bars next to the spectra. (A) Ir-'H,°N-
HSQC spectrum correlating adenosine H2 protons to the adenosine N1 and N3 nitrogen atoms.
(B) *H,"H-NOESY spectrum with annotated cytidine H6-H5 cross peaks. (C) Cytidine amino group
region of the 'H,”>N-HSQC spectrum with annotated amino group resonances. (D) Experimentally
observed secondary structure of 5_SL6 with genomic numbering. Additional closing base pairs are
annotated with G.,, G4, C,1, C,,. Nucleotides that constitute the DMS primer site are held in gray.
DMS reactivity is represented by circles from blue (low reactivity) to red (high reactivity) as shown in
the legend. The nucleobases of guanosines and uridines as well as the closing base pairs were not
tested by DMS probing. Base pairs confirmed by NMR are indicated by horizontal black lines between

base pairing partners.
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Supplementary Figure 16: Assignment of the aromatic protons of 5 _SL7 encompassing nucleotides
349 to 394. Observed atoms are annotated with bars next to the spectra. (A) Ir-"H,">N-HSQC
spectrum for the adenosine H2-N1/N3 correlations. (B) Experimentally observed secondary structure
of 5 SL7 with genomic numbering. Experimentally observed secondary structure of 5 SL7 with
genomic numbering. Additional closing base pairs are annotated with G, G.;, C,4, C,,. DMS reactivity
is represented by circles from blue (low reactivity) to red (high reactivity) as shown in the legend. The
nucleobases of guanosines and uridines as well as the closing base pairs were not tested by DMS
probing. Base pairs confirmed by NMR are indicated by horizontal black lines between base pairing

partners.
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Supplementary Figure 17: Assignment of the aromatic and amino protons of 5_SL8 encompassing
nucleotides 413 to 471. Observed atoms are annotated with bars next to the spectra. (A) Ir-'H,>N-
HSQC spectrum correlating adenosine H2 hydrogen atoms to the adenosine N1 and N3 nitrogen
atoms. (B) Possible secondary structure of 5_SL8 with genomic numbering, which are in agreement
with experimental data. Additional closing base pairs are annotated with G_,, G4, C,4, C,,. Nucleotides
that constitute the DMS primer site are held in gray. DMS reactivity is represented by circles from
blue (low reactivity) to red (high reactivity) as shown in the legend. The nucleobases of guanosines
and uridines as well as the closing base pairs were not tested by DMS probing. Base pairs confirmed
by NMR are indicated by horizontal black lines between base pairing partners. (C) Cytidine amino
group region of the 'H,°N-HSQC spectrum with annotated amino group resonances.
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Supplementary Figure 18: Assignment of the aromatic and amino protons of the attenuator hairpin
encompassing nucleotides 13432 to 13455. Annotations done with genomic numbering shifted for
convenience by 13,000 from 5 (13,432-13,455). (A)'H,"™-HSQC spectrum for cytidine amino
correlations of H41 and H42 protons to N4 nitrogen. (B) "H,"H-NOESY spectrum showing correlations
of imino protons with adenosine H2 and cytidine H41/42 resonances. (C) Ir-"H,"””N-HSQC spectrum
showing adenosine H2-N1/N3 correlations. (D) Experimentally observed secondary structure of the
attenuator hairpin with the assumed equilibrium of two conformations (see also Figure 13).
Additional base pairs are annotated with G.,, G.;. NMR spectroscopically-confirmed base pairs are
indicated by horizontal black lines between base pairing partners. Asterisks indicate secondary shifts
due to conformational exchange.
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Supplementary Figure 19: Experimentally observed secondary structure of 3_SL1 with genomic
numbering shifted for convenience by 29,000 from 5’ (29548-29613). Additional closing base pairs
introduced to allow for transcription and for stabilization of stem elements are annotated with G,
G, G4, C,4, C,,, C,3. DMS reactivity is represented by circles from blue (low reactivity) to red (high
reactivity) as shown in the legend. The nucleobases of guanosines and uridines as well as the closing
base pairs were not tested by DMS probing. Base pairs confirmed by NMR are indicated by horizontal
black lines between base pairing partners.
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Supplementary Figure 20: Experimentally observed secondary structure of 3_SL2 with genomic
numbering shifted for convenience by 29,000 from 5’ (29,630-29,656). Additional closing base pairs
are annotated with G,,, G, C,;, C,,. Observed atoms are annotated with bars next to the spectra.
(A) *H,'H-TOCSY spectrum correlating pyrimidine H5 and H6 protons. (B) *H,'H-NOESY spectrum with
an annotated exemplary H1’-H6/H8 walk. (C) Cytidine amino group region of the 'H,”’N-HSQC
spectrum with annotated amino group resonances. (D) DMS reactivity is represented by circles from
blue (low reactivity) to red (high reactivity) as shown in the legend. The nucleobases of guanosines
and uridines as well as the closing base pairs were not tested by DMS probing. Base pairs confirmed
by NMR are indicated by horizontal black lines between base pairing partners.
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Supplementary Figure 21: Experimentally observed secondary structure of 3_SL3base with genomic
numbering shifted for convenience by 29,000 from 5’ (29,620-29,671 A29,840-29,870). Additional
closing base pairs are annotated with G.;. Nucleotides that belong to the cuucgg mutation are
written in lowercase. Nucleotides that constitute the DMS primer site are held in gray. DMS reactivity
is represented by circles from blue (low reactivity) to red (high reactivity) as shown in the legend. The
nucleobases of guanosines and uridines as well as the closing base pairs were not tested by DMS
probing. Base pairs confirmed by NMR are indicated by horizontal black lines between base pairing
partners.
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Supplementary Figure 22: Imino proton overlays of the 'H,">N-HSQCs showing 3_SL3base at O (blue)
and 3 mM Mg” (green). Spectra were recorded on a 200 pM RNA sample at 283 K. No additional
resonances in the non-canonical regions of the spectrum are observed at 3 mM Mg**, which would
have been indicative of the G-U base pair suggested by several secondary structure prediction
programs (mfold, RNAfold, RNAstructure) (1-3).
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Supplementary Figure 23: Assignment of the aromatic and amino protons of 3_s2m encompassing
nucleotides 29,728 to 29,767. Annotations done with genomic numbering shifted for convenience by
29,000 from 5’ (29,728-29,767). Observed atoms are annotated with bars next to the spectra. (A) Ir-
'H,"®N-HSQC spectrum for the adenosine H2-N1/N3 correlations. (B) "H,"H-NOESY spectrum with
annotated cross peaks of adenosine H2 and their pairing uridine H3. (C) Experimentally observed
secondary structure of 3_s2m with genomic numbering. Additional closing base pairs are annotated
with G_,, G4, C,3, C,,. DMS reactivity is represented by circles from blue (low reactivity) to red (high
reactivity) as shown in the legend. The nucleobases of guanosines and uridines as well as the closing
base pairs were not tested by DMS probing. Base pairs confirmed by NMR are indicated by horizontal
black lines between base pairing partners. (D) *H,”>N-HSQC spectrum for the cytidine H41/H42-N4
correlations. (E) *H,">N-CPMG-NOESY for the cytidine correlations for H6-N4.
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Supplementary Figure 24: 'H,"°N-TROSY spectra for imino-proton correlation of the (A) 5’-geRNA
encompassing nucleotides 1 to 472 and (B) 3’-UTR encompassing the 337 terminal nucleotides

upstream of the polyA-tail (nts 29,534 — 29,870).



Supplementary Table 1: Overview of the Reverse Transcription and PCR primers used for DMS
footprinting (DMS-MaPseq).

Primer #nt genomic genomic end Sequence 5’ to 3’
start
3F1 20 29,548 29,567 CACAAGGCAGATGGGCTATA
3F2 24 29,605 29,627 ACTCTTGTGCAGAATGAATTCTC
3R1 22 29,800 29,779 CTCTTCCATATAGGCAGCTCTC
3R2 28 29,870 29,843 GTCATTCTCCTAAGAAGCTATTAAAATC
5F1 22 7 28 GGTTTATACCTTCCCAGGTAAC
5F2 23 219 241 GATCATCAGCACATCTAGGTTTC
5R1 22 273 252 CTCTCCATCTTACCTTTCGGTC
5R2 24 446 423 AAACGGGTTTTTCAACTTCTACTA




Supplementary Table 2: Overview of RNA sequences.

construct

#nt

genomic
start

genomic
end

Sequence 5’ to 3’

5’-geRNA

472

472

AUUAAAGGUUUAUACCUUCCCAGGUAACAAACCA
ACCAACUUUCGAUCUCUUGUAGAUCUGUUCUCU
AAACGAACUUUAAAAUCUGUGUGGCUGUCACUC
GGCUGCAUGCUUAGUGCACUCACGCAGUAUAAU
UAAUAACUAAUUACUGUCGUUGACAGGACACGA
GUAACUCGUCUAUCUUCUGCAGGCUGCUUACGG
UUUCGUCCGUGUUGCAGCCGAUCAUCAGCACAU
CUAGGUUUCGUCCGGGUGUGACCGAAAGGUAAG
AUGGAGAGCCUUGUCCCUGGUUUCAACGAGAAA
ACACACGUCCAACUCAGUUUGCCUGUUUUACAG
GUUCGCGACGUGCUCGUACGUGGCUUUGGAGAC
UCCGUGGAGGAGGUCUUAUCAGAGGCACGUCAA
CAUCUUAAAGAUGGCACUUGUGGCUUAGUAGAA
GUUGAAAAAGGCGUUUUGCCUCAACUUGAACAG
CCCUAUGUG

5 SL1

29

33

GGGUUUAUACCUUCCCAGGUAACAAACCC

5 _SL1-4

119

125

GGUUUAUACCUUCCCAGGUAACAAACCAACCAAC
UUUCGAUCUCUUGUAGAUCUGUUCUCUAAACGA
ACUUUAAAAUCUGUGUGGCUGUCACUCGGCUGC
AUGCUUAGUGCACUCACGC

5_SL2+3

32

45

75

GGAUCUCUUGUAGAUCUGUU CUCUAAACGAAC

5 SL4

44

86

125

GGGUGUGGCUGUCACUCGGCUGCAUGCUUAGUG
CACUCACGCCC

5_SLSstem

69

265-294 A 150-180

GGGAUGGAGAGCCUUGUCCCUGGUUUCAACGAU
UCGUCGUUGACAGGACACGAGUAACUCGUCUAU
CCC

5_SL5a

33

188

218

GGGCUGCUUACGGUUUCGUCCGUGUUGCAGCCC

5 SL5b+c

37

227

263

GCACAUCUAGGUUUCGUCCGGGUGUGACCGAAA
GGUA

5_SLSb

25

227

251

CACAUCUAGGUUUCGUCCGGGUGUGG

5_SL5c

12

252

263

GACCGAAAGGUA

5_SL6

46

302

343

GGCACGUCCAACUCAGUUUGCCUGUUUUACAGG
UUCGCGACGUGCC

5 _SL7

50

349

394

GGACGUGGCUUUGGAGACUCCGUGGAGGAGGUC
UUAUCAGAGGCACGUCC

5 _SL8

63

413

471

GGACUUGUGGCUUAGUAGAAGUUGAAAAAGGCG
UUUUGCCUCAACUUGAACAGCCCUAUGUCC

5_SL8loop

31

430

456

GGAGUUGAAAAAGGCGUUUUGCCUCAACUCC

attenuator hairpin
(att HP)

26

13,432

13,455

GGCAUGCUUCAGUCAGCUGAUGCACA

Pseudoknot (PK)

69

13,475

13,542

GGCGGUGUAAGUGCAGCCCGUCUUACACCGUGC
GGCACAGGCACUAGUACUGAUGUCGUAUACAGG
GCU

3’-UTR

337

29,534

29,870

ACUCAUGCAGACCACACAAGGCAGAUGGGCUAUA
UAAACGUUUUCGCUUUUCCGUUUACGAUAUAUA
GUCUACUCUUGUGCAGAAUGAAUUCUCGUAACU
ACAUAGCACAAGUAGAUGUAGUUAACUUUAAUC
UCACAUAGCAAUCUUUAAUCAGUGUGUAACAUU




AGGGAGGACUUGAAAGAGCCACCACAUUUUCACC
GAGGCCACGCGGAGUACGAUCGAGUGUACAGUG
AACAAUGCUAGGGAGAGCUGCCUAUAUGGAAGA
GCCCUAAUGUGUAAAAUUAAUUUUAGUAGUGCU
AUCCCCAUGUGAUUUUAAUAGCUUCUUAGGAGA
AUGAC

GGGUUAGGGAGGACUUGAAAGAGCCACCACAUU
UUCACCGAGGCCACGCGGAGUACGAUCGAGUGU

3_HVR 1151 29,698 29,806 ACAGUGAACAAUGCUAGGGAGAGCUGCCUAUAU
G GAAGAGCCCUAACCC
GGUUCACCGAGGCCACGCGGAGUACGAUCGAGU

3_s2m 45 29,728 29,768 GUACAGUGAACC
GGGCACAAGGCAGAUGGGCUAUAUAAACGUUUU

3_SL1 72 29,548 29,614 CGCUUUUCCGUUUACGAUAUAUAGUCUACUCUU
GUGCCC

3_SL2 31 29,630 29,656 GGAACUACAUAGCACAAGUAGAUGUAGUUCC

29,620-29,671 GGAAUUCUCGUAACUACAUAGCACAAGUAGAUG
3_SL3base 90 | A UAGUUAACUUUAAUCUCACACUUCGGUGUGAUU

29,840-29,870

UUAAUAGCUUCUUAGGAGAAUGAC
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