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ABSTRACT
In health research, statistical methods are frequently used to address a wide variety of 

research questions. For almost every analytical challenge, different methods are available. 

But how do we choose between different methods and how do we judge whether the chosen 

method is appropriate for our specific study? Like in any science, in statistics experiments 

can be run to find out which methods should be used under which circumstances based on 

empirical findings. The main objective of this paper is to demonstrate that simulation studies, 

i.e. experiments investigating synthetic data with known properties, are an invaluable tool for 

addressing these questions. We aim to provide a first introduction to simulation studies for 

data analysts or, more generally, for researchers involved at different levels in the analyses 

of health data, who (i) may rely on simulation studies published in statistical literature to 

choose their statistical methods and who, thus, need to understand the criteria of assessing 

the validity and relevance of simulation results and their interpretation; and/or (ii) need to 

understand the basic principles of designing statistical simulations in order to efficiently 

collaborate with a more experienced colleague or to start learning to conduct own 

simulations. We illustrate the implementation of a simulation study and the interpretation of 

its results through a simple example inspired by recent literature, which is completely 

reproducible using the R-script available from the supplement.

ARTICLE SUMMARY: STRENGTHS AND LIMITATIONS OF THIS STUDY
- This paper provides a first introduction to simulation studies, i.e. experiments investigating 

synthetic data with known properties, which are an invaluable tool facilitating the choice of 

appropriate statistical designs and analysis methods. 

- It does not provide details about complex issues related to simulation studies and is 

therefore less relevant for data analysts with experience in this field than for those with 

limited background. 

- In the context of the corona crisis the public becomes more interested in data, its analysis, 

interpretation and consequences in terms of risk assessment, patient handling and 

prevention strategies: a simpler paper would be needed for such a group of readers. 
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1 INTRODUCTION

In health research, statistical methods are frequently used to address a wide variety of 
research questions. For almost every analytical challenge, different methods are available. 
But how do we choose between different methods and how do we judge whether the chosen 
method is appropriate for our specific study? Most statistical methods are developed under 
specific assumptions, but these assumptions are often difficult to check in applications. 
Moreover, performance of methods may still be reasonable when some assumptions are 
violated, such as the linearity of effects in regression models in the presence of mild non-
linear effects. In real-life studies of human health, some of these formal underlying 
assumptions may be questionable or definitely violated. For example, frequent problems, 
such as unusual distributions, missing data, measurement errors, unmeasured confounders, 
or lack of accurate information on event times, may affect the accuracy or even the validity of 
the proposed analyses. What conditions (e.g., what sample size) are needed for a specific 
method to behave well? Which method is most appropriate in a particular setting? 

The main objective of this paper is to demonstrate that simulation studies, i.e. evaluation of 
synthetic data with known properties, are an invaluable tool for addressing these questions. 
We aim to provide a first introduction to simulation studies for data analysts or, more 
generally, for researchers involved at different levels in the analyses of health data, who (i) 
may rely on simulation studies published in statistical literature to choose their statistical 
methods and who, thus, need to understand the criteria of assessing the validity and 
relevance of simulation results and their interpretation; and/or (ii) need to understand the 
basic principles of designing statistical simulations in order to efficiently collaborate with a 
more experienced colleague or to start learning to conduct own simulations. Statisticians 
interested in more details about statistical simulations are referred to the more technical 
overviews available in the literature.[1-3]

Statistical methodology has seen substantial development in recent times but many of these 
developments are largely ignored in the practice of health data analyses. To help bridge the 
gap between methodological innovation and applications, the STRengthening Analytical 
Thinking for Observational Studies (STRATOS) initiative was launched in 2013.[4] It aims to 
provide statistical guidance for key topics in the design and analysis of observational studies. 
In practice, analyses are sometimes conducted by researchers with limited statistical 
background. Consequently, STRATOS plans to develop guidance for researchers with 
different levels of statistical knowledge including researchers without strong statistical 
backgrounds (see Table 1 in [4]). For the analysis of observational studies, typically several 
approaches are possible, and the properties of each approach should be assessed in 
comparison with alternative methods. Simulation studies are key instruments for such 
assessments. Ideally, all data analysts should be familiar with them.

This paper is structured as follows. We first discuss the role of statistical simulation studies in 
section 2. Section 3 outlines four relatively simple examples of statistical methods and then 
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explains how the performance of these methods could be evaluated using simulation 
studies. Section 4 sketches out the basic principles of designing and conducting simulations. 
Finally, section 5 briefly illustrates the implementation of a simulation study and the 
interpretation of its results through a simple example inspired by recent literature.

2 THE ROLE OF SIMULATION STUDIES

Comparing methods based on theory

During the first half of the 20th century, mathematical theory was the cornerstone of 
evaluating traditional statistical methods addressing well defined problems. However, to 
investigate questions in modern medicine, more complex statistical modelling or the use of 
machine learning techniques are often required. Only in rare cases of low complexity and 
often of limited practical relevance, mathematics tells us that - given the data satisfy certain 
properties - the considered method behaves in a particular way. For example, theory tells us 
that the two-sample t-test has better power to detect a true difference between mean values 
in two independent groups than the Mann-Whitney test - if the variable of interest is normally 
distributed within each of the two groups. Most theoretical results of this type are valid only 
under specific assumptions about the available data. While it may be acceptable to assume 
normally distributed data in the case of the simple example mentioned above, for more 
complex problems the required assumptions can be unrealistic; see sections 3.2, 3.3 and 3.4 
for examples beyond this simple case. Moreover, the process of verifying assumptions is 
often already challenging in practice; see for example [5] for an extensive simulation study 
on the choice between t-test and Mann-Whitney-test including considerations on normality 
checks.

Comparing methods using empirical data

Another approach for evaluating statistical methods consists of applying them to 
representative datasets from the considered field and assessing their performance; or, more 
generally, of observing their behaviour when using them in these datasets. Some important 
characteristics of statistical methods can indeed be derived from real datasets. For example, 
are results stable if we modify the dataset slightly? For many approaches, however, the most 
important evaluation criteria cannot be assessed for real data, simply because for real data 
we do not know the true values of the underlying parameters we aim to draw inferences 
about. For example, if one method estimates a difference of 1 between two groups, and 
another estimates a difference of 2, we can see that they give us different results (assuming 
that the confidence intervals are narrow), but we do not know whether 1 or 2 is closer to the 
correct answer. 
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Why simulation studies?

A simulation study is useful if theoretical arguments are insufficient to determine whether the 
method of interest is valid in a specific real-life application or whether violations of the 
assumptions underlying the available theory (such as large sample size, normal distribution 
of residuals, proportional hazards, etc.) affect the validity of the results. In methodological 
research, simulations play a role similar to experiments in basic science.[6] The idea of a 
simulation study is to investigate the behaviour of methods when applied to synthetic 
datasets with known characteristics. Because the ‘correct’ or ‘true’ answer is known by the 
researchers, who had full control of how the data were simulated, simulations permit 
assessing whether the methods recover this known truth. For example, we may generate 
data with and without a treatment effect and then assess how often a test correctly or 
incorrectly rejects the null hypothesis of no treatment effect. Alternatively, we may generate 
data in which the treatment effect has a certain value and then study how accurately a 
regression model can estimate this known effect. Notice that such assessment is not 
possible using real data when the true response or the true effect is not known.

Suppose a scientist is planning a cohort study of the effect of an exposure on time to a 
clinical event (e.g. death) and wants to know what sample size is necessary to achieve a 
certain power with a given test, or a certain precision with a given estimation method.  A 
question that might be explored using a simulation study could be the following: What is the 
power of the logrank-test (an asymptotic test requiring large sample sizes to ensure validity), 
in the case of small samples? Here, a simple simulation study, designed to be consistent 
with the specific settings of the proposed study (sample size, prevalence of the exposure of 
interest, incidence of events, etc.), could provide the necessary answers. 

Simulation studies are also helpful to provide objective reproducible answers to more 
general methodological questions on the behaviour of statistical methods (i.e., not 
necessarily motivated through a specific application). Examples of this type of question, 
which have been investigated by recent simulation studies, include: What is the effect of 
measurement errors on the estimated exposure-outcome relations in epidemiological 
studies?[7] Does it make sense to check for subgroup-specific treatment effects even if the 
test for an overall effect is non-significant?[8]

In addition to the evaluation of individual methods, simulations can also be used to 
determine which one of several candidate methods will perform best for the application at 
hand. In the case of simulations reported in statistical literature, candidate methods may 
include existing methods, and may (but do not have to) include new methods proposed by 
the researchers performing the simulation study. In the latter case, their focus is often on 
showing in which settings the new method performs better than its existing ‘competitors’.[9, 
10]

No matter the context of the simulation study, the objective is to find out if/when methods 
perform well or break. Regarding the “when” question, simulations provide an ideal setting 

Page 5 of 23

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

for a systematic assessment of how variations in the values of relevant parameters, and/or 
assumptions regarding data structure (e.g. independence of observations, lack of 
measurement errors) affect the performance of the methods of interest. The definition of the 
term “good performance” depends on the context. For example, if we compute a 95%-
confidence interval, we usually want it to yield 95% coverage (i.e., we want 95% of the 
confidence intervals constructed in this way, using varying datasets, to cover the true value). 
If we apply a statistical test, we want this test to reject the null hypothesis with high 
probability if it is false, but to retain it with high probability if it is true. In comparison studies, 
two or more methods may be compared in this respect. In the case of a simulation 
performed for sample size calculation, we want to determine the smallest sample size with 
which a study has a given power to detect clinically important effects.

In practice, nobody can predict with certainty whether a method will yield accurate results for 
a specific dataset, or which of a set of considered methods will perform best on that dataset. 
Simulations can provide systematic evidence regarding how methods perform on average for 
datasets with similar characteristics to the dataset under investigation. In an ideal world, 
relevant results from simulation studies would be available from previous research to help 
make rational decisions about which method to use. Data analysts would then use simulation 
results to verify whether the method they choose is adequate, or to pick the most suitable 
from a range of different methods. Such “previous research” is typically done by statistical 
researchers working on methods as the focus of research (as opposed to researchers 
applying methods in health research projects). For a data analyst with little experience and 
background in statistical methodological research, it is important to be able to interpret the 
results of such simulation studies. If previous evidence is lacking, or if previous studies do 
not seem to apply to the specific data setting under consideration, data analysts should 
conduct a targeted simulation study tailored to their specific dataset.

3 EXAMPLES OF STATISTICAL METHODS

In this section we present four examples of analyses which help us explain the basic 
principles of simulation studies. Key criteria for evaluating the performance of methods 
related to these examples are summarised in Table 1, at the end of the section.

3.1 Statistical hypothesis testing and confidence intervals

In most health research projects we perform statistical tests and/or derive confidence 
intervals. However, their behaviour is often not well-characterised in real world situations. 
For example, for time-to-event data with censored observations, how do the logrank-test and 
confidence intervals for the hazard ratio behave in small sample settings? Which technique 
should be preferred to compute confidence intervals for proportions in a given setting (e.g., 
very small proportions)?[11] 

Page 6 of 23

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

● What is a good test/confidence interval?

A good test is one that yields the correct answer with high probability, i.e. one that rejects the 
null hypothesis with high probability if it is not true, and retains it with high probability if it is 
true. Classical tests are defined in such a way that, in theory, the probability that the null 
hypothesis is rejected despite being true (called type 1 error) does not exceed a level α 
chosen by the user (in medicine, often α=0.05) - provided the assumptions are fulfilled. 
However, it is possible that the actual type 1 error may be larger than α, in which case the 
results of the test should be interpreted with caution. When evaluating a test, it is thus 
important to verify that the type 1 error does not exceed the nominal significance level α that 
was chosen by the researcher. Provided the type 1 error is as it should be (equal to or 
smaller than α), the most important quantity characterising a statistical test is its power, 
defined as the probability of correctly rejecting the null hypothesis. 

Apart from hypothesis testing, results of statistical analysis are oftentimes presented as an 
estimate with a corresponding confidence interval. A good method for deriving, say, 95% 
confidence intervals is a method that yields confidence intervals covering the true value with 
probability 95%.

● Can real data be used for the evaluation?

The main performance criteria cannot simply be assessed based on real data, because the 
truth (which hypotheses are true or false, or the true value of the parameter to estimate) is 
generally unknown in practice - we can see that a test has rejected the null hypothesis, but 
do not know if this was correct or not. If the truth were known, there would be no need to 
perform the test or compute a confidence interval. Baseline characteristics in correctly 
randomised trials are a notable exception. Given the randomisation procedure, they are 
expected to be equally distributed in the two groups by definition.

3.2 Model selection for regression models: explaining the effects of independent 
variables on a dependent variable

The second example is regression modelling of a dependent variable of interest (typically, a 
clinical outcome) using several independent variables (often, prognostic, or risk factors). In 
general, such modelling is performed either to explain the dependent variable by determining 
the effects of the independent variables (as considered in this section), or to build a model, 
which will be used later on new patients for prediction purposes (as considered in the next 
section); see [12] for a discussion of these two related but distinct purposes. In health 
research, the dependent variable is often of one of the three following types: continuous 
(e.g., amount of cholesterol reduction), categorical (e.g., response to therapy) or survival 
time (e.g., disease free survival in months). Even though for all three cases standard 
regression modelling is reasonably well-understood, the behaviour of regression techniques 
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(including model selection) still raises questions in particular cases; see for example a recent 
simulation study on the use of resampling techniques for model selection purposes.[13]

● What is a good regression approach?

In principle, a regression technique (including model selection aspects) is expected to (i) 
correctly distinguish the variables that have an effect on the dependent variable from those 
that have no effect, and (ii) correctly fit the regression coefficients of the variables, i.e. fit 
them to provide estimated values close to the true ones (unbiased and low variance). 
Regarding (i), it is good to have high sensitivity (i.e., selecting all variables with effects) as 
well as high specificity (i.e., not selecting variables without an effect). Depending on the 
specific aim analysts may also aim to eliminate variables with very small effects.

● Can real data be used for the evaluation?

In practice, the exact set of variables that have an effect on the dependent variable and the 
values of these effects are unknown, although previous knowledge from the literature may 
provide valuable guidance in some cases. Thus, in most cases, real data are of limited use 
for the evaluation of model selection approaches for regression models.

3.3 Model selection for regression models: predicting the values of an outcome using 
the values of independent variables

The third example is related to the second example, but takes a different perspective. While 
regression models are often used to “explain” the dependent variable (e.g., a disease 
outcome or survival time), in order to understand how different risk factors affect the 
dependent variable, they can also be used as “prediction models” to predict the outcome of 
interest (also called “dependent variable”) for new patients, based on these patients’ values 
of the predictor variables (also called “covariates” or “independent variables”). Classical 
linear regression models can be used for this purpose as well as various more complex 
alternative procedures, especially algorithms developed in the machine learning community, 
such as support vector machines or random forests (see [14] for a gentle introduction). In 
this field, simulations can be useful to assess the prediction accuracy of the considered 
prediction methods in different settings. For example, different penalised regression methods 
may be compared in simulations with respect to their prediction performance when a small 
number of clinical covariates are combined with a large number of candidate molecular 
covariates.[15]

● What is a good prediction model?

A good prediction model is a model that yields accurate predictions in the future patients it 
will be applied to. For continuous and for categorical dependent variables, often predicted 
and true values are directly compared, and the differences are summarised across patients. 
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For survival times, suitable adjusted scores, like the Brier score, may be used to take into 
account censoring.[16]

● Can real data be used for the evaluation?

The prediction error can be estimated based on the available dataset using a large (possibly 
external) validation dataset if available, or so-called resampling techniques such as cross-
validation.[17] Note that this estimation may be unreliable depending on the context (for 
example, the smaller the sample size, the more unstable the cross-validation estimates).[18] 
What these evaluations tell us about the methods' accuracy is relevant to the considered 
specific real data example(s) but may not be relevant to other settings.

3.4 Clustering

The last example considered in this paper is clustering, also called cluster analysis. The 
objective of clustering is to identify clusters, i.e., “groups” of patients that behave similarly. 
For example, clustering methods may be used with the goal of identifying clinically 
meaningful subgroups of patients, using magnetic resonance imaging data and clinical data, 
among others.[19] Clusters should be constructed in such a way that the values of patients 
within a cluster are more similar (according to the chosen similarity criterion) than values of 
patients from different clusters. Many different clustering algorithms have been proposed at 
the interface between computer science and statistics, for example k-means clustering or 
hierarchical clustering. Simulation studies may be used to assess the ability of methods to 
recover a true underlying structure.[19, 20]

● What is a good clustering method?

A good clustering procedure is a procedure that correctly recovers a true cluster structure 
present in the data.

● Can real data be used for the evaluation?

In practice, the true cluster structure is often unknown. And even if there is a known cluster 
structure, further sensible cluster structures might exist. The abilities of clustering methods to 
group similar observations together may be assessed by using data that consists of known 
subgroups and measuring the degree of overlap between the clustering structure defined by 
the known subgroups and the clustering structure proposed by the clustering algorithm; 
however, there might not be only one sensible cluster structure; in fact, the observations may 
cluster together more strongly according to other factors than the subgroup membership, 
e.g., gene expressions are associated with various phenotypes. Real data may be used to 
assess aspects such as stability or computational efficiency, but they are of limited use for 
the evaluation of a clustering method according to the criterion “agreement with the true 
cluster structure”. 
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 Example evaluation criterion aim

A – testing and confidence 
intervals

type 1 error

type 2 error

coverage

low

low

close to nominal value

B – explaining mean coefficient values

precision of coefficient 
estimation

coverage

sensitivity of variable 
selection

specificity of variable 
selection

close to true ones (low bias)

high (low variance)

close to nominal value

high

high

C – predicting prediction error on 
independent data

accuracy measures

low

high

D – clustering agreement with true cluster 
structure

high

A-B-C-D stability

computational cost

model convergence

interpretability

high

low

achieved

high

Table 1. Overview of the main criteria for evaluating statistical methods in the four 
considered examples.

4 BASIC PRINCIPLES OF SIMULATION STUDIES

4.1 Key features of a simulation study

In this section we give a brief overview of the key features of a simulation study. A more 
detailed introduction to the concepts of data generating mechanisms and simulation 
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scenarios is given in section 4.2, for interested readers. One may also refer to a recent in-
depth article on simulation studies addressing an audience of statisticians.[3]

The first key feature of a simulation study is its overall objective. Is the simulation study 
tailored to a specific dataset relevant for a particular application or does it address a 
methodological question of general interest for future applications? Regardless of the overall 
objective, researchers performing a simulation study should make decisions considering the 
following key issues.

Choice of methods to be evaluated/compared: Which method(s)/variant(s) is (are) 
evaluated? This point is analogous to the definition of the treatments with all necessary 
details (dose, etc.) to be compared in a clinical trial. Further discussion about the analogy 
between clinical trials and comparisons of statistical methods can be found elsewhere.[9]

Specific aims: What do we want to learn about the method(s) from the simulation study? For 
example, one may want to assess whether a model selection method selects the right 
covariates (main aim), and whether it estimates their effects accurately (secondary aim). 
This point is analogous to the definition of primary and secondary outcomes in clinical trials, 
e.g., disease-free survival or side effects.

Data generating mechanism (including choice of relevant parameters):  How do we generate 
the simulated datasets? From which distribution? Which parameters may affect the results 
and what values should be considered? Each combination of the relevant assumptions and 
parameter values defines one simulation scenario (for which several datasets will usually be 
(randomly) generated, as outlined in the next section). There are many ways to generate 
datasets: using real datasets as a basis or by sampling from (possibly multivariate) pre-
specified distributions, e.g., the normal distribution. The definition of the scenarios is 
analogous to the definition of experimental conditions for a lab experiment, and should be 
guided by considerations about clinical plausibility and/or relevance.[10] While simulation 
designs can be made arbitrarily complex, the focus is often on relatively simple properties of 
the data distributions, such as skewness or outliers. The performance of many widely used 
basic statistical building blocks, such as the least squares optimisation principle for 
estimating model parameters, can be severely affected by the type of distribution under 
consideration. As a result, in order to comprehensively gauge performance, simulation 
studies should also include the rather innocent looking problems of real data, such as some 
outlier observations. More insights are given in section 4.2.

Performance measure(s): Which criteria are used to assess the performance of the 
considered data analysis methods? In the example of model selection mentioned above, one 
may address the main aim by considering the sensitivity of the method for selecting the “true 
effects” as well as the frequency of “false positives” (i.e. selection of variables that have no 
true associations with the outcome). The secondary aim may be addressed by computing 
the mean squared deviation or the mean absolute deviation of the coefficient estimates from 
the true values. This point is analogous to the precise definition of primary and secondary 
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outcomes in a clinical trial: e.g., which instruments are used for the assessment of side 
effects of the therapy, or how do we exactly estimate disease-free survival and compare it 
across the trial arms?

Number of repetitions: For each considered scenario, how many datasets are randomly 
drawn? It is necessary to generate several (ideally, “many”) datasets in order to average out 
random fluctuations and ensure sufficiently precise simulation results. The more datasets are 
generated, the more precise the performance evaluation will be - as can be quantified 
through, for example, the width of the confidence intervals for the selected “performance 
criteria”. The number of repetitions is analogous to the sample size in a clinical trial. In 
contrast to increasing the sample size in clinical trials, however, it is often easy to extend the 
number of repetitions in simulation studies. The number of repetitions is chosen as a 
compromise between precision of the results and computational time.

4.2 Sampling variability and data generating processes

This section gives further insights into the data generating process for readers interested in 
gaining a deeper understanding of the fundamentals of simulation studies, beyond the key 
points outlined above. To this end we first explain briefly how simulations provide a 
framework for assessing and accounting for the impact of random sampling error on the 
results of empirical studies. Suppose a clinical researcher is interested in the mean 
difference between the blood pressure of males and females in the population aged 20 to 60. 
The true mean difference could only be calculated if we had data on the whole populations of 
males and females aged 20 to 60. Of course, in practice, we only have a sample available 
with a specific (often moderate) size and can only estimate the mean difference using this 
sample. Different samples will yield different estimates of the same mean difference in the 
population. Collecting a data sample can be seen as drawing observations from a population 
of interest that has particular characteristics. In statistical terms, these observations can be 
seen as random observations generated from the true distribution of the variable(s) of 
interest in the relevant population. In real-life studies, this distribution and its true parameters 
(e.g., population means) are unknown and we can only estimate them using available 
sample data. 

The principle of simulations is to mimic the process of taking random samples from a large 
population, by repeatedly generating synthetic data (“virtual observations”) from a virtual 
population, under pre-specified assumptions that can be varied across the considered 
simulation scenarios. Each synthetic sample is generated from a particular known 
distribution, with “true” values of all relevant parameters fixed by the researchers. Each 
simulated sample is then analysed using the method(s) of interest, and its (their) 
performance is evaluated using pre-specified criteria (see Table 1 for examples). To give 
one simple example, we may simulate systolic blood pressure (SBP) values for a sample of 
N=100 “synthetic subjects” by generating 100 independent numbers from a normal 
distribution with, say, mean 120 and standard deviation 15. Doing so, we know that the true 
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population mean is 120 mm Hg and that the simulated blood pressure follows the normal 
distribution. The way in which virtual observations are generated in the context of a 
simulation (in our example, “100 independent numbers from a normal distribution with mean 
120 and standard deviation 15”) is termed the data generating mechanism. There is a large 
number of user-friendly statistical packages that can be used to accomplish this task.

Just as random sample-to-sample variability affects real data samples drawn from a 
population of interest, it also affects the results obtained using simulated data. If we generate 
two synthetic datasets using the same data generating mechanism and the same 
parameters, we will get somewhat different results (with the differences decreasing, on 
average, with increasing size of the generated datasets). It is therefore almost always 
important to repeat the same data generation and analysis process using many simulated 
datasets, as outlined in the paragraph “Number of repetitions” of section 4.1 above. The 
variability of the results obtained across the different datasets simulated from the same 
distribution has to be carefully assessed by, for example, calculating the standard deviation 
of the individual estimates. On the other hand, calculating the mean value of the individual 
estimates provides a more robust estimate of the unknown population-level parameter than a 
value from a single simulated sample, as averaging over several repetitions reduces the 
impact of random sampling error. 

When performing a simulation, one has to choose one or several data generating 
mechanisms that reflect, as closely as possible, the distribution and relevant characteristics 
of the real data of interest, no matter whether the focus is on a specific application or on a 
‘generic’ methodological question such as evaluation or comparison of specific analytical 
methods. The difficulty is that, in reality, the true data generating process is unknown as 
mentioned above in the example of blood pressure. The only possibility is to consider 
several data generating mechanisms – called simulation scenarios – that, together, will cover 
the range of situations congruent with the expected structure of real data of interest. For 
example, we may be interested in the behaviour of a test, that assumes a normal 
distribution, in situations where this assumption is not fulfilled. If the variable of interest is 
expected, based on earlier studies and/or substantive knowledge, to be (approximately) 
uniformly distributed (meaning that the observations are evenly distributed over a certain 
interval), priority will be given to corresponding scenarios. However, it may be useful to also 
consider a few alternative scenarios with other distributions, e.g., a positively skewed 
distribution with most values concentrating below the mean and relatively fewer high 
values.  

In general, if the focus of the simulation study is on a specific application, the primary goal is 
essentially to simulate datasets that are as similar as possible to the relevant real dataset. 
This may necessitate making some plausible assumptions and involve some uncertainty if 
the data have not yet been collected – as is the case when simulations are performed with 
the aim of calculating the adequate sample size or assessing the expected power and/or 
precision of future analyses. In contrast, if the focus of the simulation is on the general 
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behaviour of a particular method (or comparison of alternative methods) for a class of 
applications, the primary goal when choosing scenarios is often to cover a wide spectrum of 
potentially plausible situations, in which the method(s) of interest are likely to be employed. 
Some scenarios may be unrealistic but are nevertheless helpful in understanding how the 
method works or when it breaks down (and how it can be improved to cope better with the 
problematic situations), and thus yield valuable information. The choice of simulation 
scenarios is thus intrinsically related to the goal of the simulation, but should also account for 
substantive knowledge in the field of potential real-life applications.

4.3 Advantages and drawbacks of simulation studies

To simulate the synthetic datasets, we define the underlying “truth” regarding the research 
question being explored. For example, in example A in section 3 (testing) we know whether 
the null hypothesis is true or not. In example B (explaining) we know which variables have 
independent effects on the dependent variable. In example C (predicting) we know the true 
values of the dependent variable. In example D (clustering) we know the true cluster 
structure. To sum up, in all these examples, we know what an accurate method of data 
analysis is supposed to find. Thus, we can determine how well the method(s) being 
evaluated perform(s) by comparing their results against this known “truth”. This feature is the 
major advantage of simulations over empirical comparisons of the same methods based on 
one or few real-life datasets as, in the latter case, the true answers often remain unknown.

Another advantage of simulations is that they allow investigation of a large number of 
different scenarios, and in particular also scenarios that are not directly observed in real 
datasets. This means that the analysis can be extended to new or rare scenarios, or 
scenarios reflecting ethically unacceptable or practically unrealistic settings (e.g., 
randomisation or very large sample sizes). A related advantage of simulations is that, by 
varying the assumptions and the values of relevant parameters used to generate data for 
different scenarios, one can systematically assess how the performance of different methods 
depends on these assumptions and parameters. Furthermore, one can also perform, for 
each considered scenario, as many repetitions as needed to average out random 
fluctuations. This is in contrast to real data experiments where the quantity of data is often 
severely limited, which affects the precision of the results.

These advantages, however, come at a cost. Firstly, simulation scenarios are often 
simplified, i.e. do not reflect the true complexity of the data encountered in real-life data 
analyses. The lack of complexity of simulated data may lead to a distorted picture of the 
methods’ performances. For example, an approach that can model data in a very flexible 
manner might be more severely affected by outliers. Yet, simulation designs so far rarely 
incorporate outliers or skewed distributions. Real-world performance of an approach that has 
been selected based on simulation study results might be surprisingly bad. Secondly, large 
simulation studies can be computationally very expensive, taking days or weeks and even 
requiring the use of parallel computing, if a large number of scenarios and/or large numbers 

Page 14 of 23

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

of repetitions are considered and especially if the analysis also involves large datasets 
and/or complex statistical methods.

Finally, it is important to note that simulations are not immune to the typical flaws of 
numerical studies leading to biased results. The effect of single influential points, which are 
difficult to detect in simulation studies with hundreds or thousands of simulated samples, can 
be critical. They may be relevant in some of the simulation repetitions, in which they cause 
unreliable results. If undetected, they can bias the results. Most importantly, selective 
reporting may be an issue. If a very large number of scenarios is analysed, but only those 
scenarios that favour one particular method are presented in the paper, the reported results 
will give a distorted picture of reality. Obviously, this is a serious problem of bad reporting 
and bad research, which can be easily avoided by being honest.

5 AN EXAMPLE OF A STATISTICAL SIMULATION

For illustration, in this section we consider a simple simulation study that investigates the 
impact of measurement error in linear regression analysis, inspired by a previous study.[7] 
Our study is completely reproducible using the R code provided in the supplement, which 
uses freely available data. In epidemiological studies of the relation between an exposure 
and an outcome, this relation is often estimated using regression analysis. As an example, 
we consider a study of the association between glycated haemoglobin levels (HbA1c) and 
systolic blood pressure assessed using linear regression. Data from 5092 subjects in the 
2015–2016 National Health and Nutrition Examination Survey (NHANES)[21] is used to 
obtain an estimate of the effect of HbA1C on systolic blood pressure, while adjusting for age, 
gender, and body mass index (BMI). Details on the data are described on the NHANES 
website: [https://wwwn.cdc.gov/nchs/nhanes/]. After adjustment for age and gender, it was 
estimated that HbA1c increases systolic blood pressure by 1.13 mmHg (95%CI 0.73 – 1.52) 
per unit increase in HbA1c. Additional adjustment for BMI resulted in a considerable change 
in the effect estimate: HbA1c was estimated to increase blood pressure by 0.75 mmHg 
(95%CI 0.35 – 1.16) per unit increase in HbA1c.

The confounding variable BMI as well as the exposure variable HbA1c may be subject to 
measurement error. For example, BMI may be self-reported (instead of a standardised 
measurement using scales) or technical problems in the lab may have affected the HbA1c 
measurement. Therefore, researchers may want to know the possible impact of 
measurement error of the exposure and/or confounding variable(s) in terms of bias.[22] We 
are interested both in the direction and magnitude of this bias.

One way to investigate the possible impact of measurement error is through a small 
simulation study.[7] For the purpose of this example, the original recordings in the NHANES 
data were assumed to be measured without error. Then, in addition, new artificial variables 
were created that represented HbA1c and BMI, but for the situation in which these are 

Page 15 of 23

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://wwwn.cdc.gov/nchs/nhanes/


For peer review only

measured with error. To create these variables, measurement error was artificially added to 
the exposure variable (HbA1c) and/or the confounding variable (BMI). These errors were 
drawn from a normal distribution with mean zero, and were independent of all variables 
considered. This type of measurement error is often referred to as classical measurement 
error.[23] The variance of the normal distribution was varied in different scenarios, in order to 
reflect varying amounts of measurement error. Scenarios ranged from no measurement error 
on either HbA1c or BMI (reference scenario) to 50% of the variance in HbA1c and/or BMI 
attributable to measurement error. To minimise the impact of simulation error, each scenario 
was repeated 1,000 times and results were averaged per scenario over these 1,000 
repetitions.

Figure 1 shows the impact of measurement error on HbA1c and/or BMI. The relation 
between HbA1c and systolic blood pressure was attenuated when measurement error was 
added to HbA1c, but not when measurement error was added to BMI. However, the 
association became stronger as measurement error was added solely to the confounding 
variable BMI. The reason for this effect is that, with increasing levels of measurement error 
on BMI, adjustment for the confounding due to BMI becomes less efficient and the effect 
estimate gets closer to the unadjusted estimate (1.13mmHg). Due to measurement error, a 
type of residual confounding is introduced. In the case of measurement error on HbA1c as 
well as BMI, both phenomena play a role and may cancel each other out. In this study, 
measurement error on HbA1c seemed more influential than measurement error on BMI.

This example illustrates how a simple simulation study could provide insight into an 
important potential source of bias, namely measurement error. Here, we only considered 
classical measurement error, but simulations could easily be extended to incorporate more 
complex forms of measurement error. For example, the errors may not be drawn from a 
normal distribution with mean zero or may not be independent of all other variables 
considered. Instead, the mean of the distribution of errors may depend on the value of 
another variable in the model, e.g., error on BMI may depend on gender. Furthermore, non-
normal distributions may be considered, or scenarios in which the variance of the errors 
depends on the true value of the measurement (heteroskedastic errors), among other 
possible extensions. 

Finally, we note that researchers conducting small-scale simulation studies like the one 
presented here should reflect on the plausibility of the scenarios considered. For example, 
knowing whether it is realistic to assume that 50% of the total variance of HbA1c and BMI is 
due to measurement error (top right scenario in Figure 1) requires subject-matter knowledge. 
 

6 CONCLUDING REMARKS

Just as randomised clinical trials form part of the evidence base for the choice of therapy in 
medical practice, simulation studies form part of the evidence base for statistical practice. 
Large-scale simulation studies allow assessment of the properties of complex estimation and 
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inferential methods, and comparison of complex model building strategies under a variety of 
alternative assumptions and sample sizes.[4] They provide valuable support for decision-
making regarding the choice of statistical methods to be used in a given real-life application 
and they are the cornerstone of the work on guidance for the design and analysis of the 
STRATOS initiative. They complement - rather than replace - the judgement of a trained 
expert (a data analyst in the case of statistical methods, and a physician in the case of 
therapies). Increasing computational power nowadays makes it possible to examine many 
possible simulation scenarios with different combinations of distributional parameters and 
assumptions. This partly addresses the main limitation of simulations, namely that they can 
never fully reflect the complexity of real data.

Let us again consider our analogy between simulation studies and clinical studies. The 
design and implementation of clinical studies should be left to teams of trained clinical 
researchers, but it is crucial for practitioners who want to practice evidence-based medicine 
to be able to read and understand the results of these clinical studies. Similarly, the design, 
implementation and reporting of complex simulations is still a subject of debate [3] and 
should be left to methodological experts, but it is important for data analysts to be able to 
read and understand simulation studies in the literature (or perhaps to implement simple 
ones themselves). Armed with these competence and analytical skills, they will be better 
able to identify appropriate data analysis methods for their data and research questions.
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FIGURE CAPTIONS

Figure 1. Estimates of the association between HbA1c levels and systolic blood 
pressure after adjustment for confounding by BMI under various simulation scenarios 
characterised by different levels of measurement error. Numbers represent effect 
estimates averaged over 1,000 simulation runs. Confidence intervals are omitted for clarity. 
See text for details.
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# ====================================================================
# R CODE
# small scale simulation study to investigate impact of measurement error
# measurement error on (continuous) exposure and/or (continuous) confounding variable
# ====================================================================
# ====================================================================
# libraries:
library(Hmisc)
library(mice)
library(tidyverse)
#setwd("")
# ====================================================================
# set working directory:
# setwd("")

# ====================================================================
# The data can be dowloaded in xpt form from https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?Begi-
nYear=2015
# read data:
d1 <- sasxport.get("DEMO_I.xpt")
d2 <- sasxport.get("BPX_I.xpt")
d3 <- sasxport.get("BMX_I.xpt")
d4 <- sasxport.get("GHB_I.xpt")
d5 <- sasxport.get("TCHOL_I.xpt")

d1.t <- subset(d1,select=c("seqn","riagendr","ridageyr"))
d2.t <- subset(d2,select=c("seqn","bpxsy1"))
d3.t <- subset(d3,select=c("seqn","bmxbmi"))
d4.t <- subset(d4,select=c("seqn","lbxgh"))
d5.t <- subset(d5,select=c("seqn","lbdtcsi"))

d <- merge(d1.t,d2.t)
d <- merge(d,d3.t)
d <- merge(d,d4.t)
d <- merge(d,d5.t)

# ====================================================================
# rename variables:
# RIAGENDR - Gender
# RIDAGEYR - Age in years at screening
# BPXSY1 - Systolic: Blood pres (1st rdg) mm Hg
# BMXBMI - Body Mass Index (kg/m**2)
# LBDTCSI - Total Cholesterol (mmol/L)
# LBXGH - Glycohemoglobin (%)

d$age <- d$ridageyr
d$sex <- d$riagendr
d$bp <- d$bpxsy1
d$bmi <- d$bmxbmi
d$HbA1C <- d$lbxgh
d$chol <- d$lbdtcsi
d$age[d$age<18] <- NA

# ====================================================================
# select complete cases:
dc <- cc(subset(d,select=c("age","sex","bmi","HbA1C","bp")))

# analysis:
summary(lm(bp ~ HbA1C + age + as.factor(sex), data=dc))
confint(lm(bp ~ HbA1C + age + as.factor(sex), data=dc))

summary(lm(bp ~ HbA1C + bmi + age + as.factor(sex), data=dc))
confint(lm(bp ~ HbA1C + bmi + age + as.factor(sex), data=dc))
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# ====================================================================
# simulation of measurement error:
ref <- lm(bp ~ HbA1C + bmi + age + as.factor(sex), data=dc)$coef[2]
n.sim <- 1e3
perc.me.exp <- seq(0,.5,.1)
perc.me.conf<- seq(0,.5,.1)
scenarios <- expand.grid(perc.me.exp,perc.me.conf)
var.exp <- var(dc$HbA1C)
var.conf <- var(dc$bmi)
n <- dim(dc)[1]
beta.hat <- matrix(ncol=dim(scenarios)[1], nrow=n.sim)

for (k in 1:n.sim){
  print(k)
  set.seed(k)

for (i in 1:dim(scenarios)[1]){
var.me.exp <- var.exp*scenarios[i,1]/(1-scenarios[i,1])
var.me.conf <- var.conf*scenarios[i,2]/(1-scenarios[i,2])
dc$HbA1C.me <- dc$HbA1C + rnorm(dim(dc)[1], 0, sqrt(var.me.exp) )
dc$bmi.me <- dc$bmi + rnorm(dim(dc)[1], 0, sqrt(var.me.conf) )
beta.hat[k,i] <- lm(bp ~ HbA1C.me + age + bmi.me + as.factor(sex), data=dc)$coef[2]

}}

# ====================================================================
# create figure:
tot.mat <- cbind(100*scenarios,apply(beta.hat,2,mean))
colnames(tot.mat) <- c("me.exp","me.conf","estimate")

FIGURE <- ggplot(tot.mat, aes(me.exp, me.conf)) +
    geom_tile(color="white",aes(fill = estimate)) +
    geom_text(aes(label = round(estimate, 2))) +

scale_fill_gradient2(low="#D55E00",mid="white",high = "#56B4E9", midpoint=ref) +
                labs(x=paste("% of total variance of HbA1c due to measurement error"),

y=paste("% of total variance of BMI due to measurement error")) +
                coord_equal()+
                scale_y_continuous(breaks=unique(tot.mat[,1]))+
                scale_x_continuous(breaks=unique(tot.mat[,1]))+
                theme(panel.background = element_rect(fill='white', colour='grey'),
                      plot.title=element_text(hjust=0),
                      axis.ticks=element_blank(),
                      axis.title=element_text(size=12),
                      axis.text=element_text(size=10),
                      legend.title=element_text(size=12),
                      legend.text=element_text(size=10))
FIGURE
# savePlot("Figure_STRATOS.tif", type="tif")
# ====================================================================
# END OF R CODE
# ====================================================================
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ABSTRACT
In health research, statistical methods are frequently used to address a wide variety of 

research questions. For almost every analytical challenge, different methods are available. 

But how do we choose between different methods and how do we judge whether the chosen 

method is appropriate for our specific study? Like in any science, in statistics, experiments 

can be run to find out which methods should be used under which circumstances. The main 

objective of this paper is to demonstrate that simulation studies, i.e., experiments 

investigating synthetic data with known properties, are an invaluable tool for addressing 

these questions. We aim to provide a first introduction to simulation studies for data analysts 

or, more generally, for researchers involved at different levels in the analyses of health data, 

who (i) may rely on simulation studies published in statistical literature to choose their 

statistical methods and who, thus, need to understand the criteria of assessing the validity 

and relevance of simulation results and their interpretation; and/or (ii) need to understand the 

basic principles of designing statistical simulations in order to efficiently collaborate with 

more experienced colleagues or start learning to conduct their own simulations. We illustrate 

the implementation of a simulation study and the interpretation of its results through a simple 

example inspired by recent literature, which is completely reproducible using the R-script 

available from the supplement.
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1 INTRODUCTION

In health research, statistical methods are frequently used to address a wide variety of 
research questions. For almost every analytical challenge, different methods are available. 
But how do we choose between different methods and how do we judge whether the chosen 
method is appropriate for our specific study? Most statistical methods are developed under 
specific assumptions, but these assumptions are often difficult to check in applied settings. 
Moreover, performance of methods may still be reasonable when some assumptions are 
violated, such as the linearity of relationships in regression models in the presence of mild 
non-linear relationships. In real-life studies of human health, some of these formal underlying 
assumptions may be questionable or definitely violated. For example, frequent problems, 
such as unusual distributions, missing data, measurement errors, unmeasured confounders, 
or lack of accurate information on event times, may affect the accuracy or even the validity of 
the proposed analyses. What conditions (e.g., what sample size) are needed for a specific 
method to behave well? Which method is most appropriate in a particular setting? 

The main objective of this paper is to demonstrate that simulation studies, i.e., evaluation of 
synthetic data with known properties, are an invaluable tool for addressing these questions. 
We aim to provide a first introduction to simulation studies for data analysts or, more 
generally, for researchers involved at different levels in the analyses of health data, for 
example, data from observational studies or from clinical trials, who (i) may rely on 
simulation studies published in statistical literature to choose their statistical methods and 
who, thus, need to understand the criteria of assessing the validity and relevance of 
simulation results and their interpretation; and/or (ii) need to understand the basic principles 
of designing statistical simulations in order to efficiently collaborate with a more experienced 
colleague or to start learning to conduct their own simulations. Our paper is intended for an 
audience that is otherwise not targeted by previous literature on simulation studies and uses 
a novel approach to introduce the basic principles of simulation studies to clinical 
researchers and end users of statistical methods. Statisticians interested in more details 
about statistical simulations are referred to the more technical overviews available in the 
literature.[1-3] 

More generally, our introduction to simulation studies aims to draw the attention of readers of 
medical papers, including practitioners, to the importance of the choice of appropriate, 
validated statistical methods. The use of inappropriate statistical methods contributes to the 
replication crisis that has drawn increasing attention in recent years; see for example the 
Lancet series “Increasing value, reducing waste”.[4] Simulation studies have a role to play in 
this global process as they are a means of identifying the appropriate methodology for a 
particular study in a specific context, thus improving research quality. In this context, 
understanding the principles of simulation studies allows clinical researchers to better use 
published simulation results. Note that simulation studies themselves also have to be 
relevant and replicable.
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Statistical methodology has seen substantial development in recent times but many of these 
developments are largely ignored in the practice of health data analyses. To help bridge the 
gap between methodological innovation and applications to medical data, the 
STRengthening Analytical Thinking for Observational Studies (STRATOS) initiative was 
launched in 2013.[5] It aims to provide statistical guidance for key topics in the design and 
analysis of observational studies. In practice, analyses are sometimes conducted by 
researchers with limited statistical background. Consequently, STRATOS plans to develop 
guidance for researchers with different levels of statistical knowledge including researchers 
without strong statistical backgrounds (see Table 1 in [5]). For the analysis of observational 
studies, typically several approaches are possible, and the properties of each approach 
should be assessed in comparison with alternative methods. Simulation studies are key 
instruments for such assessments. Ideally, all data analysts should be familiar with them.

This paper is structured as follows. We first discuss the role of statistical simulation studies in 
section 2. Section 3 outlines four relatively simple examples of statistical methods and then 
explains how the performance of these methods could be evaluated using simulation 
studies. Section 4 sketches out the basic principles of designing and conducting simulations. 
Finally, section 5 briefly illustrates the implementation of a simulation study and the 
interpretation of its results through a simple example inspired by recent literature.

2 THE ROLE OF SIMULATION STUDIES

Comparing methods based on theory

During the first half of the 20th century, mathematical theory was the cornerstone of 
evaluating traditional statistical methods addressing well defined problems. However, to 
investigate questions in modern medicine, more complex statistical modelling or the use of 
machine learning techniques are often required. Only in rare cases of low complexity and 
often of limited practical relevance, mathematics tells us that - given the data satisfy certain 
properties - the considered method behaves in a particular way. For example, theory tells us 
that the two-sample t-test has better power to detect a true difference between mean values 
in two independent groups than the Mann-Whitney test - if the variable of interest is normally 
distributed within each of the two groups. Most theoretical results of this type are valid only 
under specific assumptions about the available data. While it may be acceptable to assume 
normally distributed data in the case of the simple example mentioned above, for more 
complex problems the required assumptions can be unrealistic; see sections 3.2, 3.3 and 3.4 
for examples beyond this simple case. Moreover, the process of verifying assumptions is 
often already challenging in practice; see for example [6] for an extensive simulation study of 
the choice between t-test and Mann-Whitney test including considerations on normality 
checks.

Page 5 of 25

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

Comparing methods using empirical data

Another approach for evaluating statistical methods consists of applying them to 
representative datasets from the considered field and assessing their performance; or, more 
generally, of observing their behaviour when using them in these datasets. Some important 
characteristics of statistical methods can indeed be derived from real datasets. For example, 
are results stable if we modify the dataset slightly? For many approaches, however, the most 
important evaluation criteria cannot be assessed for real data, simply because for real data 
we do not know the true values of the underlying parameters we aim to draw inferences 
about. For example, if one method estimates a difference of 1 between two groups, and 
another estimates a difference of 2, we can see that they give us different results (assuming 
that the confidence intervals are narrow), but we do not know whether 1 or 2 is closer to the 
correct answer. 

Why simulation studies?

A simulation study is useful if theoretical arguments are insufficient to determine whether the 
method of interest is valid in a specific real-life application or whether violations of the 
assumptions underlying the available theory (such as normal distribution of residuals, 
proportional hazards, etc.) affect the validity of the results. In methodological research, 
simulations play a role similar to experiments in basic science.[7] The idea of a simulation 
study is to investigate the behaviour of methods when applied to synthetic datasets with 
known characteristics. Because the ‘correct’ or ‘true’ answer is known by the researchers, 
who had full control of how the data were simulated, simulations permit assessment of 
whether the methods recover this known truth. For example, we may generate data with and 
without a treatment effect and then assess how often a test correctly or incorrectly rejects the 
null hypothesis of no treatment effect. Alternatively, we may generate data in which the 
treatment effect has a certain value and then study how accurately a regression model can 
estimate this known effect. Notice that such assessment is not possible using real data when 
the true response or the true effect is not known.

Suppose a scientist is planning a cohort study of the effect of an exposure on time to a 
clinical event (e.g., death) and wants to know what sample size is necessary to achieve a 
certain power with a given test, or a certain precision with a given estimation method.  A 
question that might be explored using a simulation study could be the following: What is the 
power of the logrank-test (an asymptotic test requiring large sample sizes to ensure validity), 
in the case of small samples? Here, a simple simulation study, designed to be consistent 
with the specific settings of the proposed study (sample size, prevalence of the exposure of 
interest, incidence of events, etc.), could provide the necessary answers. 

Simulation studies are also helpful to provide objective reproducible answers to more 
general methodological questions on the behaviour of statistical methods (i.e., not 
necessarily motivated through a specific application). Examples of this type of question, 
which have been investigated by recent simulation studies, include: What is the effect of 
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measurement errors on the estimated exposure-outcome relations in epidemiological 
studies?[8] Does it make sense to check for subgroup-specific treatment effects even if the 
test for an overall effect is non-significant?[9]

In addition to the evaluation of individual methods, simulations can also be used to 
determine which one of several candidate methods will perform best for the application at 
hand. In the case of simulations reported in statistical literature, candidate methods may 
include existing methods, and may (but do not have to) include new methods proposed by 
the researchers performing the simulation study. In the latter case, their focus is often on 
showing in which settings the new method performs better than its existing ‘competitors’.[10, 
11]

No matter the context of the simulation study, the objective is to find out if/when methods 
perform well and when they fail. Regarding the “when” question, simulations provide an ideal 
setting for a systematic assessment of how variations in the values of relevant parameters, 
and/or assumptions regarding data structure (e.g., independence of observations, lack of 
measurement errors) affect the performance of the methods of interest. The definition of the 
term “good performance” depends on the context. For example, if we compute a 95% 
confidence interval, we usually want it to yield 95% coverage (i.e., we want 95% of the 
confidence intervals constructed in this way, using varying datasets, to cover the true value). 
If we apply a statistical test, we want this test to reject the null hypothesis with high 
probability if it is false, but to retain it with high probability if it is true. In comparison studies, 
two or more methods may be compared in this respect. In the case of a simulation 
performed for sample size calculation, we want to determine the smallest sample size with 
which a study has a given power to detect clinically important effects.

In practice, nobody can predict with certainty whether a method will yield accurate results for 
a specific dataset, or which of a set of considered methods will perform best on that dataset. 
Simulations can provide systematic evidence regarding how methods perform on average for 
datasets with similar characteristics to the dataset under investigation. In an ideal world, 
relevant results from simulation studies would be available from previous research to help 
make rational decisions about which method to use. Data analysts would then use simulation 
results to verify whether the method they choose is adequate, or to pick the most suitable 
from a range of different methods. Such “previous research” is typically done by statistical 
researchers working on methods as the focus of research (as opposed to researchers 
applying methods in health research projects). For a data analyst with little experience and 
background in statistical methodological research, it is important to be able to interpret the 
results of such simulation studies. If previous evidence is lacking, or if previous studies do 
not seem to apply to the specific data setting under consideration, data analysts should 
conduct a targeted simulation study tailored to their specific dataset.

3 EXAMPLES OF STATISTICAL METHODS
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In this section we present four examples of analyses which help us to explain the basic 
principles of simulation studies. Key criteria for evaluating the performance of methods 
related to these examples are summarised in Table 1, at the end of the section.

3.1 Statistical hypothesis testing and confidence intervals

In most health research projects we perform statistical tests and/or derive confidence 
intervals. However, their behaviour is often not well-characterised in real world situations. 
For example, for time-to-event data with censored observations, how do the logrank-test and 
confidence intervals for the hazard ratio behave in relatively small samples? Which 
technique should be preferred to compute confidence intervals for proportions in a given 
setting (e.g., very small proportions)?[12] 

● What is a good test/confidence interval?

A good test is one that yields the correct answer with high probability, i.e., one that rejects 
the null hypothesis with high probability if it is not true, and retains it with high probability if it 
is true. Classical tests are defined in such a way that, in theory, the probability that the null 
hypothesis is rejected despite being true (called type 1 error) does not exceed a level α 
chosen by the user (in medicine, often α=0.05) - provided the assumptions are fulfilled. 
However, it is possible that the actual type 1 error may be larger than α, in which case the 
results of the test should be interpreted with caution. When evaluating a test, it is thus 
important to verify that the type 1 error does not exceed the nominal significance level α that 
was chosen by the researcher. Provided the type 1 error is as it should be (equal to or 
smaller than α), the most important quantity characterising a statistical test is its power, 
defined as the probability of correctly rejecting the null hypothesis. 

Apart from hypothesis testing, results of statistical analysis are often presented as an 
estimate with a corresponding confidence interval. A good method for deriving, say, 95% 
confidence intervals is a method that yields confidence intervals covering the true value with 
probability 95%.

● Can real data be used for the evaluation?

The main performance criteria cannot simply be assessed based on real data, because the 
truth (which hypotheses are true or false, or the true value of the parameter being estimated) 
is generally unknown in practice - we can see that a test has rejected the null hypothesis, but 
do not know if this was correct or not. If the truth were known, there would be no need to 
perform the test or compute a confidence interval. Baseline characteristics in correctly 
randomised trials are a notable exception. Given the randomisation procedure, they are 
expected to be equally distributed in the two groups by definition.

3.2 Model selection for regression models: explaining the effects of covariates on an 
outcome variable
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The second example is regression modelling of an outcome variable of interest, sometimes 
called “dependent” variable, using several covariates, sometimes denoted as predictor 
variables or independent variables (often, prognostic or risk factors). In general, such 
modelling is performed either to explain the outcome variable by determining the effects of 
the covariates (as considered in this section), or to build a model, which will be used later on 
new patients for prediction purposes (as considered in the next section); see [13] for a 
discussion of these two related but distinct purposes. In health research, the outcome 
variable is often of one of the three following types: continuous (e.g., amount of cholesterol 
reduction), categorical (e.g., response to therapy) or survival time (e.g., disease free survival 
in months). Even though for all three cases standard regression modelling is reasonably 
well-understood, the behaviour of regression techniques (including model selection) still 
raises questions in particular cases; see for example a recent simulation study on the use of 
resampling techniques for model selection purposes.[14]

● What is a good regression approach?

In principle, a regression technique (including model selection aspects) is expected to (i) 
correctly distinguish the variables that are related to the outcome variable from those that are 
not, and (ii) correctly fit the regression coefficients of the variables, i.e., fit them to provide 
estimated values close to the true ones (unbiased and low variance). Regarding (i), it is good 
to have high sensitivity (i.e., selecting most/all variables with effects, this is analogous to 
detecting most/all diseased patients in a diagnostic study) as well as high specificity (i.e., not 
selecting variables without an effect, analogous to correctly identifying participants without 
disease). Depending on the specific goal, analysts may also aim to eliminate variables with 
very small effects.

● Can real data be used for the evaluation?

In practice, the exact set of variables that have an effect on the outcome variable and the 
values of these effects are unknown, although previous knowledge from the literature may 
provide valuable guidance in some cases. Thus, in most cases, real data are of limited use 
for the evaluation of model selection approaches for regression models.

3.3 Model selection for regression models: predicting the values of an outcome using 
the values of covariates

The third example is related to the second example, but takes a different perspective. While 
regression models are often used to “explain” the outcome variable (e.g., a disease outcome 
or survival time), in order to understand how different risk factors affect the outcome variable, 
they can also be used as “prediction models” to predict the outcome of interest for new 
patients, based on these patients’ values of the covariates. Classical linear regression 
models can be used for this purpose as well as various more complex alternative 
procedures, especially algorithms developed in the machine learning community, such as 
support vector machines or random forests (see [15] for a gentle introduction). In this field, 
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simulations can be useful to assess the prediction accuracy of the considered prediction 
methods in different settings. For example, different penalised regression methods may be 
compared in simulations with respect to their prediction performance when a small number 
of clinical covariates are combined with a large number of candidate molecular 
covariates.[16]

● What is a good prediction model?

A good prediction model is a model that yields accurate predictions in the future patients it 
will be applied to. For continuous and for categorical outcome variables, often predicted and 
true values are directly compared, and the differences are summarised across patients. For 
survival times, suitable adjusted scores, like the Brier score, may be used to take into 
account censoring.[17]

● Can real data be used for the evaluation?

The prediction error can be estimated based on the available dataset using a large (possibly 
external) validation dataset if available, or so-called resampling techniques such as cross-
validation.[18] Note that this estimation may be unreliable depending on the context (for 
example, the smaller the sample size, the more unstable the cross-validation estimates).[19] 
What these evaluations tell us about the methods' accuracy is relevant to the considered 
specific real data example(s) but may not be relevant to other settings.

3.4 Clustering

The last example considered in this paper is clustering, also called cluster analysis. The 
objective of clustering is to identify clusters, i.e., “groups” of patients that behave similarly. 
For example, clustering methods may be used with the goal of identifying clinically 
meaningful subgroups of patients, using magnetic resonance imaging data and clinical data, 
among others.[20] Clusters should be constructed in such a way that the values of patients 
within a cluster are more similar (according to the chosen similarity criterion) than values of 
patients from different clusters. Many different clustering algorithms have been proposed at 
the interface between computer science and statistics, for example k-means clustering or 
hierarchical clustering. Simulation studies may be used to assess the ability of methods to 
recover a true underlying structure.[20, 21]

● What is a good clustering method?

A good clustering procedure is a procedure that correctly recovers a true cluster structure 
present in the data but does not falsely identify clusters that are not in fact present.

● Can real data be used for the evaluation?

In practice, the true cluster structure is often unknown. And even if there is a known cluster 
structure, further sensible cluster structures might exist. The abilities of clustering methods to 

Page 10 of 25

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

group similar observations together may be assessed by using data that consists of known 
subgroups and measuring the degree of overlap between the clustering structure defined by 
the known subgroups and the clustering structure proposed by the clustering algorithm. 
However, there might not be only one sensible cluster structure; in fact, the observations 
may cluster together more strongly according to factors other than the subgroup 
membership, e.g., gene expressions are associated with various phenotypes. Real data may 
be used to assess aspects such as stability (i.e., robustness against small changes in the 
data) or computational efficiency, but they are of limited use for the evaluation of a clustering 
method according to the criterion “agreement with the true cluster structure”. 

 Example Evaluation criterion Target value

A – testing and confidence 
intervals

type 1 error

type 2 error

coverage of (1–α) 
confidence intervals

close to and not greater 
than nominal value α

low

close to and not lower than 
nominal value 1–α

B – explaining mean coefficient values

precision of coefficient 
estimation

coverage of confidence 
interval

sensitivity of variable 
selection

specificity of variable 
selection

close to true values (low 
bias)

high (low variance)

close to and not lower than 
nominal value 1–α

high

high

C – predicting prediction error on 
independent data

accuracy measures

low

high

D – clustering agreement with true cluster 
structure

high

All settings stability high

Page 11 of 25

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

computational cost

success of the computation 
(e.g., “convergence”)

low

yes

Table 1. Overview of the main criteria for evaluating statistical methods in the four 
considered examples. The last column indicates which values the considered evaluation 
criterion takes if the investigated method is good.

4 BASIC PRINCIPLES OF SIMULATION STUDIES

4.1 Key features of a simulation study

In this section we give a brief overview of the key features of a simulation study, which are 
also displayed in Table 2 together with the example from section 5. A more detailed 
introduction to the concepts of data generating mechanisms and simulation scenarios is 
given in section 4.2, for interested readers. One may also refer to a recent in-depth article on 
simulation studies addressing an audience of statisticians.[3]

The first key feature of a simulation study is its overall objective. Is the simulation study 
tailored to a specific dataset relevant to a particular application or does it address a 
methodological question of general interest for future applications? Regardless of the overall 
objective, researchers performing a simulation study should make decisions considering the 
following key issues.

Aims: 

What do we want to learn about the method(s) from the simulation study? For example, one 
may want to assess whether a model selection method selects the right covariates (main 
aim), and whether it estimates their effects accurately (secondary aim). This point is 
analogous to the definition of primary and secondary outcomes in clinical trials, e.g., 
disease-free survival or side effects.

Data generating mechanism (including choice of relevant parameters):  

How do we generate the simulated datasets? From which distribution? Which parameters 
may affect the results and what values should be considered? Each combination of the 
relevant assumptions and parameter values defines one simulation scenario (for which 
several datasets will usually be (randomly) generated, as outlined in the next section). There 
are many ways to generate datasets: by using real datasets as a starting point (see section 5 
for an example) or by sampling from (possibly multivariate) pre-specified distributions, e.g., 
the normal distribution. The definition of the scenarios is analogous to the definition of 
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experimental conditions for a lab experiment, and should be guided by considerations about 
clinical plausibility and/or relevance.[11] While simulation designs can be made complex, the 
focus is often on relatively simple properties of the data distributions, such as skewness or 
outliers. The performance of many widely used basic statistical building blocks, such as the 
least squares optimisation principle for estimating model parameters, can be severely 
affected by the type of distribution under consideration. As a result, in order to 
comprehensively gauge performance, simulation studies should also include the rather 
innocent looking problems of real data, such as some outlier observations. More insights are 
given in section 4.2.

Method(s) of analysis to be evaluated/compared: 

Which method(s)/variant(s) is (are) evaluated? This point is analogous to the definition of the 
treatments with all necessary details (dose, etc.) to be compared in a clinical trial. Further 
discussion about the analogy between clinical trials and comparisons of statistical methods 
can be found elsewhere.[10]

Performance measure(s): 

Which criteria are used to assess the performance of the considered data analysis methods? 
In the example of model selection mentioned above, one may address the main aim by 
considering the sensitivity of the method for selecting the “true effects” as well as the 
frequency of “false positives” (i.e., selection of variables that have no true associations with 
the outcome). The secondary aim may be addressed by computing the mean squared 
deviation or the mean absolute deviation of the coefficient estimates from the true values. 
This point is analogous to the precise definition of primary and secondary outcomes in a 
clinical trial: e.g., which instruments are used for the assessment of side effects of the 
therapy, or how do we exactly estimate disease-free survival and compare it across the trial 
arms?

Number of repetitions: 

For each considered scenario, how many datasets are randomly drawn? It is necessary to 
generate several (ideally, “many”) datasets in order to average out random fluctuations and 
ensure sufficiently precise simulation results. The more datasets are generated, the more 
precise the performance evaluation will be - as can be quantified through, for example, the 
width of the confidence intervals for the selected “performance criteria”. The number of 
repetitions is analogous to the sample size in a clinical trial. In contrast to increasing the 
sample size in clinical trials, however, it is often easy to extend the number of repetitions in 
simulation studies. The number of repetitions is chosen as a compromise between precision 
of the results and computational time.
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Key features of 
simulation studies

NHANES example

Aims To quantify the impact of measurement error

Data-generating 
mechanism

Take real data, add normally-distributed random error to the 
exposure of interest (HbA1c) and/or the confounder (BMI)

Method of analysis Multivariable linear regression, first on data with no 
measurement error, then on data with measurement error 
added

Performance measure Bias in regression coefficient for exposure of interest (HbA1c)

Number of repetitions 1,000

Table 2. Overview of the key features of a simulation study (1st column) with the NHANES 
example described in section 5 (2nd column). This table is inspired from the “ADEMP” system 
(Aims, Data-generating mechanisms, Estimands, Methods, and Performance measures) 
introduced previously in statistical literature.[3]

4.2 Sampling variability and data generating processes

This section gives further insights into the data generating process for readers interested in 
gaining a deeper understanding of the fundamentals of simulation studies, beyond the key 
points outlined above. To this end we first explain briefly how simulations provide a 
framework for assessing and accounting for the impact of random sampling error on the 
results of empirical studies. 

Preliminary: Sampling variability in real data:

Suppose a clinical researcher is interested in the mean difference between the blood 
pressure of males and females in the population aged 20 to 60. The true mean difference 
could only be calculated if we had data on the whole populations of males and females aged 
20 to 60. Of course, in practice, we only have a sample available with a specific (often 
moderate) size and can only estimate the mean difference using this sample. Different 
samples will yield different estimates of the same mean difference in the population. 
Collecting a data sample can be seen as drawing observations from a population of interest 
that has particular characteristics. In statistical terms, these observations can be seen as 
random observations generated from the true distribution of the variable(s) of interest in the 
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relevant population. In real-life studies, this distribution and the true values of its parameters 
(e.g., population means) are unknown and we can only estimate them using available 
sample data. 

Simulating data:

The principle of simulations is to mimic the process of taking repeated (random) samples 
from a large population, by repeatedly generating synthetic data (“virtual observations”) from 
a virtual population, under pre-specified assumptions that can be varied across the 
considered simulation scenarios. Each synthetic sample is generated from a particular 
known distribution, with “true” values of all relevant parameters fixed by the researchers. 
Each simulated sample is then analysed using the method(s) of interest, and its (their) 
performance is evaluated using pre-specified criteria (see Table 1 for examples). To give 
one simple example, we may simulate systolic blood pressure (SBP) values for a sample of 
n=100 “synthetic subjects” by generating 100 independent numbers from a normal 
distribution with, say, mean 120 and standard deviation 15. Doing so, we know that the true 
population mean is 120 mm Hg and that the simulated blood pressure follows the normal 
distribution. The way in which virtual observations are generated in the context of a 
simulation (in our example, “100 independent numbers from a normal distribution with mean 
120 and standard deviation 15”) is termed the data generating mechanism. There is a large 
number of user-friendly statistical packages that can be used to accomplish this task.

Sampling variability in simulations:

Just as random sample-to-sample variability affects real data samples drawn from a 
population of interest, it also affects the results obtained using simulated data. If we generate 
two synthetic datasets using the same data generating mechanism and the same 
parameters, we will get somewhat different results (with the differences decreasing, on 
average, with increasing size of the generated datasets). It is therefore almost always 
important to repeat the same data generation and analysis process using many simulated 
datasets, as outlined in the paragraph “Number of repetitions” of section 4.1 above. The 
variability of the results obtained across the different datasets simulated from the same 
distribution has to be carefully assessed by, for example, calculating the standard deviation 
of the individual estimates. Calculating the mean value of the individual estimates provides a 
more robust estimate of the unknown population-level parameter than a value from a single 
simulated sample, as averaging over several repetitions reduces the impact of random 
sampling error. 

Choice of data generating mechanisms:

When performing a simulation, one has to choose one or several data generating 
mechanisms that reflect, as closely as possible, the distribution and relevant characteristics 
of the real data of interest, no matter whether the focus is on a specific application or on a 
‘generic’ methodological question such as evaluation or comparison of specific analytical 
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methods. The difficulty is that, in reality, the true data generating process is unknown as 
mentioned above in the example of blood pressure. The only possibility is to consider 
several data generating mechanisms – called simulation scenarios – that, together, will cover 
the range of situations congruent with the expected structure of real data of interest. 
Scenarios may differ, among other ways, in the sample size, the true distributions of the 
considered variables (normal, uniform, exponential, etc.), the values of parameters such as 
means or variances, the correlation structure of the variables or the presence of outliers. For 
example, we may be interested in the behaviour of a test that assumes a normal distribution 
in situations where this assumption is not fulfilled. If the variable of interest is expected, 
based on earlier studies and/or substantive knowledge, to be (approximately) uniformly 
distributed (meaning that the observations are evenly distributed over a certain interval), 
priority will be given to corresponding scenarios. However, it may be useful to also consider 
a few alternative scenarios with other distributions, e.g., a positively skewed distribution with 
most values concentrating below the mean and relatively few high values.  

In general, if the focus of the simulation study is on a specific application, the primary goal is 
essentially to simulate datasets that are as similar as possible to the relevant real dataset. 
This may necessitate making some plausible assumptions and involve some uncertainty if 
the data have not yet been collected – as is the case when simulations are performed with 
the aim of calculating the adequate sample size or assessing the expected power and/or 
precision of future analyses. In contrast, if the focus of the simulation is on the general 
behaviour of a particular method (or comparison of alternative methods) for a class of 
applications, the primary goal when choosing scenarios is often to cover a wide spectrum of 
potentially plausible situations in which the method(s) of interest are likely to be employed. 
Some scenarios may be unrealistic but are nevertheless helpful in understanding how the 
method works or when it breaks down (and how it can be improved to cope better with the 
problematic situations), and thus yield valuable information. The choice of simulation 
scenarios is thus intrinsically related to the goal of the simulation, but should also account for 
substantive knowledge in the field of potential real-life applications.

4.3 Advantages and drawbacks of simulation studies

To simulate the synthetic datasets, we define the underlying “truth” regarding the research 
question being explored. For example, in example A in section 3 (testing) we know whether 
the null hypothesis is true or not. In example B (explaining) we know which variables have 
independent effects on the outcome variable. In example C (predicting) we know the true 
values of the outcome variable. In example D (clustering) we know the true cluster structure. 
To sum up, in all these examples, we know what an accurate method of data analysis is 
supposed to find. Thus, we can determine how well the method(s) being evaluated 
perform(s) by comparing their results against this known “truth”. This feature is the major 
advantage of simulations over empirical comparisons of the same methods based on one or 
few real-life datasets as, in the latter case, the true answers often remain unknown.
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Another advantage of simulations is that they allow investigation of a large number of 
different scenarios, and in particular also scenarios that are not directly observed in real 
datasets. This means that the analysis can be extended to new or rare scenarios, or 
scenarios reflecting practically unrealistic settings (e.g., randomised trial data or very large 
sample sizes). A related advantage of simulations is that, by varying the assumptions and 
the values of relevant parameters used to generate data for different scenarios, one can 
systematically assess how the performance of different methods depends on these 
assumptions and parameters. Furthermore, one can also perform, for each considered 
scenario, as many repetitions as needed to average out random fluctuations. This is in 
contrast to real data experiments where the quantity of data is often severely limited, which 
affects the precision of the results.

These advantages, however, come at a cost. Firstly, simulation scenarios are often 
simplified, i.e., do not reflect the true complexity of the data encountered in real-life data 
analyses. The lack of complexity of simulated data may lead to a distorted picture of the 
methods’ performance. For example, an approach that can model data in a very flexible 
manner might be more severely affected by outliers. Yet, simulation designs so far rarely 
incorporate outliers or skewed distributions. Real-world performance of an approach that has 
been selected based on simulation study results might be surprisingly bad. Secondly, large 
simulation studies can be computationally very expensive, taking days or weeks and even 
requiring the use of parallel computing, if a large number of scenarios and/or large numbers 
of repetitions are considered and especially if the analysis also involves large datasets 
and/or complex statistical methods.

Finally, it is important to note that simulations are not immune to the typical flaws of 
numerical studies leading to biased results. For example, the effect of single influential 
points, which are difficult to detect in simulation studies with hundreds or thousands 
of simulated samples, can be critical. They may be relevant in some of the simulation 
repetitions, in which they cause unreliable results. If undetected, they can bias the results. 
Most importantly, selective reporting may be an issue. If a very large number of scenarios is 
analysed, but only those scenarios that favour one particular method are presented in the 
paper, the reported results will give a distorted picture of reality. Obviously, this is a serious 
problem of bad reporting and bad research, which can be easily avoided by being 
transparent.

5 AN EXAMPLE OF A STATISTICAL SIMULATION

For illustration, in this section we consider a simple simulation study that investigates the 
impact of measurement error in linear regression analysis, inspired by a previous study.[8] 
See the overview of its key features in the right column of Table 2. Our study is completely 
reproducible using the R code provided in supplementary file 1, which uses freely available 
data. In epidemiological studies of the relation between an exposure and an outcome, this 
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relation is often estimated using regression analysis. As an example, we consider a study of 
the association between glycated haemoglobin levels (HbA1c) and systolic blood pressure 
assessed using linear regression. Data from 5092 subjects in the 2015–2016 National Health 
and Nutrition Examination Survey (NHANES)[22] is used to obtain an estimate of the effect 
of HbA1C on systolic blood pressure, while adjusting for age, gender, and body mass index 
(BMI). Details on the data are described on the NHANES website: 
[https://wwwn.cdc.gov/nchs/nhanes/]. After adjustment for age and gender, it was estimated 
that HbA1c increases systolic blood pressure by 1.13 mmHg (95%CI 0.73 – 1.52) per unit 
increase in HbA1c. Additional adjustment for BMI resulted in a considerable change in the 
effect estimate: HbA1c was estimated to increase blood pressure by 0.75 mmHg (95%CI 
0.35 – 1.16) per unit increase in HbA1c.

The confounding variable BMI as well as the exposure variable HbA1c may be subject to 
measurement error. For example, BMI may be self-reported (instead of a standardised 
measurement using scales) or technical problems in the lab may have affected the HbA1c 
measurement. Therefore, researchers may want to know the possible impact of 
measurement error of the exposure and/or confounding variable(s) in terms of bias.[23] We 
are interested both in the direction and magnitude of this bias.

One way to investigate the possible impact of measurement error is through a small 
simulation study[8], whose steps are schematically represented in Figure 1. For the purpose 
of this example, the original recordings in the NHANES data were assumed to be measured 
without error (step 1 in Figure 1). Then, in addition, new artificial variables were created that 
represented HbA1c and BMI, but for the situation in which these are measured with error. To 
create these variables, measurement error was artificially added to the exposure variable 
(HbA1c) and/or the confounding variable (BMI) (step 2 in Figure 1). These errors were drawn 
from a normal distribution with mean zero, and were independent of all variables considered. 
This type of measurement error is often referred to as classical measurement error.[24] The 
variance of the normal distribution, defining the amount of measurement error added, was 
altered for different scenarios. Scenarios ranged from no measurement error on either 
HbA1c or BMI (reference scenario) to 50% of the variance in HbA1c and/or BMI attributable 
to measurement error. To minimise the impact of simulation error, each scenario was 
repeated 1,000 times and results were averaged per scenario over these 1,000 repetitions.

Figure 2 shows the impact of measurement error on HbA1c and/or BMI on the estimate of 
the regression coefficient of HbA1c (steps 3 and 4 in Figure 1). The relation between HbA1c 
and systolic blood pressure was attenuated when measurement error was added to HbA1c, 
but not when measurement error was added to BMI. The association became stronger as 
measurement error was added solely to the confounding variable BMI. The reason for this 
effect is that, with increasing levels of measurement error on BMI, adjustment for the 
confounding due to BMI becomes less efficient and the effect estimate gets closer to the 
unadjusted estimate (1.13mmHg). Due to measurement error, a type of residual confounding 
is introduced. In the case of measurement error on HbA1c as well as BMI, both phenomena 

Page 18 of 25

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://wwwn.cdc.gov/nchs/nhanes/


For peer review only

play a role and may cancel each other out. In this study, measurement error on HbA1c 
seemed more influential than measurement error on BMI.

This example illustrates how a simple simulation study could provide insight into an 
important potential source of bias, namely measurement error. Here, we only considered 
classical measurement error, but simulations could easily be extended to incorporate more 
complex forms of measurement error. For example, the errors may not be drawn from a 
normal distribution with mean zero or may not be independent of all other variables 
considered. Instead, the mean of the distribution of errors may depend on the value of 
another variable in the model, e.g., error on BMI may depend on gender. Furthermore, non-
normal distributions may be considered, or scenarios in which the variance of the errors 
depends on the true value of the measurement (heteroskedastic errors), among other 
possible extensions. 

Finally, we note that researchers conducting small-scale simulation studies like the one 
presented here should reflect on the plausibility of the scenarios considered. For example, 
knowing whether it is realistic to assume that 50% of the total variance of HbA1c and BMI is 
due to measurement error (top right scenario in Figure 2) requires subject-matter 
knowledge.  

6 CONCLUDING REMARKS

Just as randomised clinical trials form part of the evidence base for the choice of therapy in 
medical practice, simulation studies form part of the evidence base for statistical practice. 
Large-scale simulation studies allow assessment of the properties of complex estimation and 
inferential methods, and comparison of complex model building strategies under a variety of 
alternative assumptions and sample sizes.[5] They provide valuable support for decision-
making regarding the choice of statistical methods to be used in a given real-life application 
and they are the cornerstone of the work on guidance for the design and analysis of the 
STRATOS initiative. They complement – rather than replace – the judgement of a trained 
expert (a data analyst in the choice of statistical methods, analogous to a physician in the 
choice of therapies). Increased computational power nowadays makes it possible to examine 
many possible simulation scenarios with different combinations of distributional parameters 
and assumptions. This partly addresses the main limitation of simulations, namely that they 
can never fully reflect the complexity of real data.

Let us again consider our analogy between simulation studies and clinical studies. The 
design and implementation of clinical studies should be left to teams of trained clinical 
researchers, but it is crucial for practitioners who want to practise evidence-based medicine 
to be able to read and understand the results of these clinical studies. Similarly, the design, 
implementation and reporting of complex simulations is still a subject of debate [3] and 
should be left to methodological statistical experts, but it is important for data analysts to be 
able to read and understand simulation studies in the literature (or perhaps to implement 
simple ones themselves). Armed with these skills, they will be better able to identify 
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appropriate data analysis methods for their data and research questions, which will 
ultimately contribute to improved replicability of research results.
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FIGURE CAPTIONS

Figure 1. Schematic illustration of the key steps of the simulation study described in 
section 5. 

Figure 2. Estimates of the association between HbA1c levels and systolic blood 
pressure after adjustment for confounding by BMI under various simulation scenarios 
characterised by different levels of measurement error. Numbers represent effect 
estimates averaged over 1,000 simulation repetitions. Red shading represents low 
(averaged) estimates, blue shading represents high (averaged) estimates.  Confidence 
intervals are omitted for clarity. See text for details.
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Schematic illustration of the key steps of the simulation study described in section 5. 
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Estimates of the association between HbA1c levels and systolic blood pressure after adjustment for 
confounding by BMI under various simulation scenarios characterised by different levels of measurement 

error. Numbers represent effect estimates averaged over 1,000 simulation repetitions. Red shading 
represents low (averaged) estimates, blue shading represents high (averaged) estimates.  Confidence 

intervals are omitted for clarity. See text for details. 
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# ====================================================================
# R CODE
# small scale simulation study to investigate impact of measurement error
# measurement error on (continuous) exposure and/or (continuous) confounding variable
# ====================================================================
# ====================================================================
# libraries:
library(Hmisc)
library(mice)
library(tidyverse)
#setwd("")
# ====================================================================
# set working directory:
# setwd("")

# ====================================================================
# The data can be dowloaded in xpt form from https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?Begi-
nYear=2015
# read data:
d1 <- sasxport.get("DEMO_I.xpt")
d2 <- sasxport.get("BPX_I.xpt")
d3 <- sasxport.get("BMX_I.xpt")
d4 <- sasxport.get("GHB_I.xpt")
d5 <- sasxport.get("TCHOL_I.xpt")

d1.t <- subset(d1,select=c("seqn","riagendr","ridageyr"))
d2.t <- subset(d2,select=c("seqn","bpxsy1"))
d3.t <- subset(d3,select=c("seqn","bmxbmi"))
d4.t <- subset(d4,select=c("seqn","lbxgh"))
d5.t <- subset(d5,select=c("seqn","lbdtcsi"))

d <- merge(d1.t,d2.t)
d <- merge(d,d3.t)
d <- merge(d,d4.t)
d <- merge(d,d5.t)

# ====================================================================
# rename variables:
# RIAGENDR - Gender
# RIDAGEYR - Age in years at screening
# BPXSY1 - Systolic: Blood pres (1st rdg) mm Hg
# BMXBMI - Body Mass Index (kg/m**2)
# LBDTCSI - Total Cholesterol (mmol/L)
# LBXGH - Glycohemoglobin (%)

d$age <- d$ridageyr
d$sex <- d$riagendr
d$bp <- d$bpxsy1
d$bmi <- d$bmxbmi
d$HbA1C <- d$lbxgh
d$chol <- d$lbdtcsi
d$age[d$age<18] <- NA

# ====================================================================
# select complete cases:
dc <- cc(subset(d,select=c("age","sex","bmi","HbA1C","bp")))

# analysis:
summary(lm(bp ~ HbA1C + age + as.factor(sex), data=dc))
confint(lm(bp ~ HbA1C + age + as.factor(sex), data=dc))

summary(lm(bp ~ HbA1C + bmi + age + as.factor(sex), data=dc))
confint(lm(bp ~ HbA1C + bmi + age + as.factor(sex), data=dc))
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# ====================================================================
# simulation of measurement error:
ref <- lm(bp ~ HbA1C + bmi + age + as.factor(sex), data=dc)$coef[2]
n.sim <- 1e3
perc.me.exp <- seq(0,.5,.1)
perc.me.conf<- seq(0,.5,.1)
scenarios <- expand.grid(perc.me.exp,perc.me.conf)
var.exp <- var(dc$HbA1C)
var.conf <- var(dc$bmi)
n <- dim(dc)[1]
beta.hat <- matrix(ncol=dim(scenarios)[1], nrow=n.sim)

for (k in 1:n.sim){
  print(k)
  set.seed(k)

for (i in 1:dim(scenarios)[1]){
var.me.exp <- var.exp*scenarios[i,1]/(1-scenarios[i,1])
var.me.conf <- var.conf*scenarios[i,2]/(1-scenarios[i,2])
dc$HbA1C.me <- dc$HbA1C + rnorm(dim(dc)[1], 0, sqrt(var.me.exp) )
dc$bmi.me <- dc$bmi + rnorm(dim(dc)[1], 0, sqrt(var.me.conf) )
beta.hat[k,i] <- lm(bp ~ HbA1C.me + age + bmi.me + as.factor(sex), data=dc)$coef[2]

}}

# ====================================================================
# create figure:
tot.mat <- cbind(100*scenarios,apply(beta.hat,2,mean))
colnames(tot.mat) <- c("me.exp","me.conf","estimate")

FIGURE <- ggplot(tot.mat, aes(me.exp, me.conf)) +
    geom_tile(color="white",aes(fill = estimate)) +
    geom_text(aes(label = round(estimate, 2))) +

scale_fill_gradient2(low="#D55E00",mid="white",high = "#56B4E9", midpoint=ref) +
                labs(x=paste("% of total variance of HbA1c due to measurement error"),

y=paste("% of total variance of BMI due to measurement error")) +
                coord_equal()+
                scale_y_continuous(breaks=unique(tot.mat[,1]))+
                scale_x_continuous(breaks=unique(tot.mat[,1]))+
                theme(panel.background = element_rect(fill='white', colour='grey'),
                      plot.title=element_text(hjust=0),
                      axis.ticks=element_blank(),
                      axis.title=element_text(size=12),
                      axis.text=element_text(size=10),
                      legend.title=element_text(size=12),
                      legend.text=element_text(size=10))
FIGURE
# savePlot("Figure_STRATOS.tif", type="tif")
# ====================================================================
# END OF R CODE
# ====================================================================
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