Supplementary Information:

Selective Elimination of Osteosarcoma Cell Lines with Short Telomeres

by Ataxia Telangiectasia and Rad3-Related Inhibitors

Tomas Goncalves^{1,2}, Georgia Zoumpoulidou³, Carlos Alvarez-Mendoza³, Caterina Mancusi³, Laura C. Collopy², Sandra J. Strauss^{4,5}, Sibylle Mittnacht^{3*} and Kazunori Tomita^{1,2*}

- 1. Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, UK
- 2. Chromosome Maintenance Group, UCL Cancer Institute, University College London, UK
- 3. Cancer Cell Signalling, UCL Cancer Institute, University College London, UK
- 4. Department of Oncology, UCL Cancer Institute, University College London, UK
- 5. London Sarcoma Service, University College London Hospitals Foundation Trust, UK
- * co-corresponding authors
- Table S-1 Origin and Characteristics of the Osteosarcoma Cell Lines
- Table S-2 Telomere length measurement from TRF in Figure 1c

Table S-3 – IC50 drug response in osteosarcoma cell lines

- Table S-4 Oligonucleotides used for this study
- Figure S-1 Characterisation of Telomere Status in Osteosarcoma Cell Lines
- Figure S-2 APB Assay
- Figure S-3 ATRi concentration- survival curves in osteosarcoma lines
- Figure S-4 Relationship between sensitivity to methotrexate and telomere length
- Figure S-5 Comparison of ATRi sensitivities between ALT-negative and -positive lines

Figure S-6 – Selective death of osteosarcoma with short telomeres exposed to ATR inhibitor BAY-1895344

Cell Line	Media	Age (Years) ^a	Sex ^a	Reference ^b	
HOS-MNNG ^c	RPMI	13	Female	ATCC-CRL-1547	
OHSN	RPMI	14	Male	Fodstad et al. 1986 ¹	
SJSA-1	RPMI	19	Male	ATCC-CRL-2098	
HAL	RPMI	16	Male	ExPASy (CVCL_D788)	
143b ^c	DMEM	13	Female	ATCC-CRL-8303	
HOS	EMEM	13	Female	ATCC-CRL-1543	
MG-63	EMEM	14	Male	ATCC-CRL-1427	
MHM	RPMI	41	Female	Kjønniksen et al. 1994 ²	
HuO-3N1	RPMI	15	Female	ExPASy (CVCL_1297)	
G292	McCoy's	9	Female	ATCC-CRL-1423	
HuO-9	RPMI	13	Female	ExPASy (CVCL_1298)	
CAL72	DMEM	10	Male	ExPASy (CVCL_1113)	
U2OS	McCoy's	15	Female	ATCC-HTB-96	
KPD	RPMI	7	Female	Bruland et al. 1988 ³	
NY	RPMI	15	Male	ExPASy (CVCL_1613)	
SAOS-2	DMEM	11	Female	ATCC-HTB-85	
LM7 ^d	DMEM	11	Female	Jia et al. 1999 ⁴	

Table S-1 – Origin and Characteristics of the Osteosarcoma Cell Lines

^a Age and sex of the patient from whom the tumour originates

^b Identifiers given for cell lines available at the ATCC or ExPASy ^c metastatic derivatives of HOS; ^d metastatic derivative of SAOS-2

Cell Line	Telomere	Mean	Median	Variance	Semi-interquartile
	status	Length (kb)	Length (kb)	(kb²)	range (kb)
HEK293T	Control	6.64	5.74	16.72	3.64
HOS-MNNG	ST	5.21	2.98	20.44	1.86
OHSN	ST	5.02	3.22	19.12	2.02
SJSA	ST	4.83	3.21	17.93	2.12
HAL	ST	4.71	2.70	22.74	1.90
143b	ST	4.42	2.96	16.21	2.02
HOS	ST	4.70	3.58	16.73	2.36
MG-63	LT	6.78	5.77	12.29	4.46
MHM	LT	6.73	6.37	12.94	4.18
HuO-3N1	LT	6.06	6.67	20.63	1.76
G292	ALT	21.54	10.69	524.47	6.36
HuO-9	ALT	17.27	9.67	348.21	5.72
CAL72	ALT	20.24	10.24	477.35	6.22
U2OS	ALT	25.21	13.72	577.77	7.34
KPD	ALT	18.95	9.95	392.04	5.94
NY	ALT	19.19	9.89	390.53	5.84
SAOS-2	ALT	13.81	7.61	251.98	4.62
LM7	ALT	15.56	8.20	293.43	4.90

Table S-2 – Telomere length measurement from TRF in Figure 1c

ST – ALT-negative, short telomere

LT – ALT-negative, long telomere

ALT – ALT-positive

Cell Line	Telomere	AZD-6738	VE-822	BEY-1895344	Methotrexate
	status	μΜ	μM	μΜ	μΜ
HOS-MNNG	ST	0.29±0.02	0.12	0.017±0.001	0.04
OHSN	ST	0.66±0.18	0.25±0.06	0.013±0.001	0.20
SJSA	ST	22.68±3.49	1.98±0.18	0.537±0.128	0.30
HAL	ST	2.26±0.42	0.69±0.01	0.081±0.003	0.07
143b	ST	0.69±0.14	0.09	0.018	0.02
HOS	ST	0.83±0.48	0.29±0.06	0.014±0.005	0.32
MG-63	LT	3.97±0.19	1.30	0.061	197.8
MHM	LT	2.20±0.45	0.36±0.05	0.044±0.002	67.87
HuO-3N1	LT	9.56±3.98	3.06±1.85	0.233±0.154	71.85
G292	ALT	3.16±2.66	1.30±1.12	0.152±0.070	69.11
HuO-9	ALT	1.08±0.57	0.75	0.024	0.06
CAL72	ALT	0.80±0.03	0.13	0.015±0.002	44.30
U2OS	ALT	4.91±2.16	1.44±0.18	0.066±0.016	0.03
KPD	ALT	2.01±1.70	0.18	0.678	57.84
NY	ALT	2.54±1.34	1.68	0.059	0.09
SAOS-2	ALT	5.17±1.29	1.58	0.206	0.01
LM7	ALT	9.92±0.71	1.80±0.49	0.574±0.365	0.60

Table S-3 – IC50 drug response in osteosarcoma cell lines

Table S-4 – Oligonucleotides used for this study

Oligo name	Sequence
hTeloG	ACACTAAGGTTTGGGTTTGGGTTTGGGTTAGTGT
hTeloC	TGTTAGGTATCCCTATCCCTATCCCTATCCCTAACA
AlbuminF	CGGCGGCGGGCGCGGGGCTGGGCGGAAATGCTGCACAGAATCCTTG
AlbuminR	GCCCGGCCCGCCGCCCGTCCCGCCGGAAAAGCATGGTCGCCTGTT
GlobinF	CGGCGGCGGGCGGCGGGCTGGGCGGCTTCATCCACGTTCACCTTG
GlobinR	GCCCGGCCCGCCGCCGTCCCGCCGGAGGAGAAGTCTGCCGTT
CC-TeloF	GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT
CC-TeloR	TCCCGACTATCCCTATCCCTATCCCTATCCCTA
hTERT F1579	GCTGACGTGGAAGATGAGCGTGC
hTERT R1616	TCCTCACGCAGACGGTGCTCTG
hTERC F27	GGTGGTGGCCATTTTTGTC
hTERC R163	GTAGAATGAACGGTGGAAG
7SK F7	GAGGGCGATCTGGCTGCGACAT
7SK R112	ACATGGAGCGGTGAGGAGGAA
GAPDH F6	GAAGGTGAAGGTCGGAGT
GAPDH R231	GAAGATGGTGATGGGATTTC

a) *Dot Blot from C-Circle Assay.* C-circle amplification products were detected by dot blot using a telomeric TTAGGG probe. The pCR4 plasmid containing telomeric repeats was used as a positive control. Phi indicates Phi-29 polymerase.

b) Box plot of median telomere lengths from TRF analysis in Figure 1c as calculated by *Telometric software*. Graph shows the median and interquartile range of the telomere fragments.

c) Comparison of T/S ratios obtained using albumin or beta-globin as the single copy gene (SCG). T/S ratio is expressed relative to the T/S ratio determined for HEK293T cell

line as expressed as the fold enrichment. Data represent the mean of three independent experiments, each MM-qPCR run in triplicate. Error bars show standard deviation.

d) Uniformity of Ct (cycle threshold) values obtained with *albumin* locus, compared to the *beta-globin* locus. Standard deviation, standard error of the mean and coefficient of variation for the *albumin* and *beta-globin* loci were 0.234 v 0.568, 0.055 v 0.134 and 0.99% v 2.43%, respectively).

e) Correlation graph between TRF-based and MM-qPCR-based telomere length measurements. T/S ratio was determined using *albumin* gene as a SCG, and are expressed relative to that in HEK293T cell line. Liner regression is indicated as grey dashed Line. TMM status of the samples and reference HEK293T are colour coded as indicated.

f) MM-qPCR derived telomere repeats variation in OS cell lines grouped according to TMM status. The grey dashed line indicates the T/S ratio of HEK293T. Mann-Whitney U Test indicates p=0.0238 and p=0.0121 comparing ALT -ST vs ALT-LT and ALT+ vs ALT-LT, respectively.

Figure S-2 – APB Assay

Representative immunofluorescence images showing the presence/absence of ALT associated PML bodies (APBs) in the osteosarcoma cell lines with long telomeres. SJSA-1 is shown as a negative control. A 50- μ m scale bar is shown.

Figure S-4 – Relationship between sensitivity to methotrexate and telomere length Graph shows AUC values deduced for dose response curves to methotrexate. Lines are grouped according to telomere length cell lines. Samples were assessed in triplicate and values averaged. Bars depict median and 95% CI. Mann-Whitney U Test specified p=0.1802, indicating no significant difference between groups.

Figure S-5 – Comparison of ATRi sensitivities between ALT negatives and positives Graph shows sensitivity of osteosarcoma lines to ATRi (a) AZD-6738, (b) VE-822 and (c) BAY-1895344, grouped by ALT status. Data represent AUC deduced from concentration response survival curves. Values summarise outcome from two repeats for each cell line. Bars indicate median AUC and 95% confidence interval for each group. Mann-Whitney U test specified (a) p=0.3008 (ns), (b) p=0.3180 (ns), (c) p=0.0197 (*).

Figure S-6 – Selective death of osteosarcoma with short telomeres exposed to ATR inhibitor BAY-1895344

Short telomere cell lines, OHSN, HOS-MNNG and HAL, and long telomere cell lines, MG-63 and MHM, were treated with VE-822 at the concentration of 0 μ M, 0.3 μ M, 1 μ M and 3 μ M and were monitored by *IncuCyte live cell analysis*.

a) Representative images of OHSN and MG-63 with DMSO only and with 1 μ M BAY-1895344 at the indicated time are shown. Sample analysis was in the absence of SYTOXTM green death dye and fluorescence imaging. A 15- μ m scale bar is shown.

b-f) Representative graphs showing net death over-time for b) OHSN, c) HOS-MNNG, d) HAL, e) MG-63 and f) MHM. Graphs represent one of n=2 independent datasets.

Supplementary References:

1. Fodstad, O., Brogger, A., Bruland, O., Solheim, O. P., Nesland, J. M., and Pihl, A. (1986) Characteristics of a cell line established from a patient with multiple osteosarcoma, appearing 13 years after treatment for bilateral retinoblastoma, *International journal of cancer. Journal international du cancer 38*, 33-40. DOI: 10.1002/ijc.2910380107.

2. Kjonniksen, I., Winderen, M., Bruland, O., and Fodstad, O. (1994) Validity and usefulness of human tumor models established by intratibial cell inoculation in nude rats, *Cancer research 54*, 1715-1719.

3. Bruland, O. S., Fodstad, O., Stenwig, A. E., and Pihl, A. (1988) Expression and characteristics of a novel human osteosarcoma-associated cell surface antigen, *Cancer research 48*, 5302-5309.

4. Jia, S. F., Worth, L. L., and Kleinerman, E. S. (1999) A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategies, *Clin Exp Metastasis 17*, 501-506.