
Supplementary Materials

The GTEx Consortium

July 2020

Contents

1 Biospecimen Collection and Processing 5
1.1 Donor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Biospecimen collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Molecular analyte extraction and QC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Whole Genome Sequencing 7
2.1 Whole genome sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 WGS data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Variant calling and quality control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 WGS sample-level quality control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Long copy number variation analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Sample set of the WGS analysis freeze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.4 WGS variant quality control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.5 Genotype principal component analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.6 Variant identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Read-aware phasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 RNA Expression 12
3.1 RNA library preparation and sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 RNA-seq alignment and quality control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Analysis freeze of tissues and samples for eQTL analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Quantification of gene expression and splicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 Gene annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.2 Gene expression quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.3 Splicing quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Latent factor analysis of expression and splicing variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.1 PEER analysis of gene expression variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.2 PEER analysis of splicing variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 QTL mapping 15
4.1 Covariates for QTL analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 cis-eQTL mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 cis-sQTL mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 cis-QTL discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Independent cis-QTL mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 trans-eQTL mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.7 trans-sQTL mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 cis-eQTL replication 21

6 Allele-specific expression 23

1



2

7 QTL effect sizes 24
7.1 cis and trans-eQTL effect size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 cis-sQTL effect size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 ASE validation of interaction eQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 Sex-biased cis-eQTL mapping 27

9 Population-biased cis-eQTL mapping 28

10 Genomic annotation data 30

11 Fine mapping of cis-eQTLs 30
11.1 Fine mapping methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11.2 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11.3 Fine-mapped cis-eQTL for CBX8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

12 Functional mechanisms 33
12.1 Enrichment in genomic annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.2 cis-eQTL-sQTL overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.3 TAD enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
12.4 cis-QTL contribution to trans-QTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

12.4.1 cis-QTL enrichment among trans-QTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
12.4.2 trans-QTL mediation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
12.4.3 Colocalization of cis- and trans-QTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

13 Complex trait associations 36
13.1 GWAS summary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
13.2 Summarizing across phenotypes and tissues (“correlated t-test”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
13.3 Enrichment of complex trait associated variants among e/sVariants . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

13.3.1 Overrepresentation of eVariants/sVariants among GWAS catalog variants . . . . . . . . . . . . . . . . . . . . 38
13.3.2 QTLEnrich: overrepresentation of complex trait associations among cis-QTLs . . . . . . . . . . . . . . . . . 40
13.3.3 Stratified LDSC regression-based enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
13.3.4 Summary statistics of enrichment analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

13.4 Calculating the joint contribution of e/sVariants to phenotype heritability . . . . . . . . . . . . . . . . . . . . . . . . . 42
13.5 Causal gene prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

13.5.1 cis-QTL-GWAS colocalization: ENLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
13.5.2 Trait association with predicted expression and splicing in cis: PrediXcan . . . . . . . . . . . . . . . . . . . . 45
13.5.3 trans-associations of the cis-eQTL for GATA3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

13.6 Concordance of downstream phenotype effects of multiple variants affecting the same gene . . . . . . . . . . . . . . 49
13.6.1 Concordance of downstream effects on phenotype between independent cis-eQTLs . . . . . . . . . . . . . . 49
13.6.2 Concordance of downstream effects of independent eQTLs and sQTLs in cis . . . . . . . . . . . . . . . . . . 49
13.6.3 Concordance of GWAS effects of rare variants and cis-eQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . 50

13.7 Downstream phenotypic effect of regulatory pleiotropy and tissue sharing . . . . . . . . . . . . . . . . . . . . . . . . 51
13.7.1 Quantifying regulatory pleiotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
13.7.2 Regulatory pleiotropy and GWAS associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
13.7.3 Regulatory pleiotropy and trait pleiotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

14 Tissue sharing 54
14.1 Estimating cross tissue activity of QTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
14.2 Comparison of tissue clustering across data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
14.3 Allelic expression across tissues and tissue clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.4 Correlation of cis-eQTL effect size and cis-eGene expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.5 Cross-tissue cis-eQTL effect size and cis-eGene expression for GWAS genes . . . . . . . . . . . . . . . . . . . . . 60

14.5.1 GWAS locus, tissue and gene selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
14.5.2 Normalization across tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
14.5.3 Patterns of GWAS genes across tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

14.6 Modeling determinants of QTL Tissue Specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



3

15 Cell type composition 64
15.1 Estimation of cell type enrichment with xCell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
15.2 Interaction QTL mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
15.3 Colocalization of neutrophil ieQTLs and GWAS traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

16 Supplementary Table legends 70

17 Author Contributions 72

List of Figures

S1 Donor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
S2 Summary of the tissues and samples of the QTL analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
S3 Genotype principal components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
S4 PEER factors for eQTL mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
S5 PEER factors for sQTL mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
S6 Effect of additional population structure corrections on cis-eGene discovery . . . . . . . . . . . . . . . . . . . . . . . 16
S7 Statistics of cis-eQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
S8 Nominal p-value thresholds for cis-QTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
S9 Properties of genes that do not have cis-eQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
S10 Allelic heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
S11 Trans-sQTL example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
S12 Replication in TwinsUK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
S13 Replication in eQTLGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
S14 Effect size distribution of eQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
S15 Correlation of allelic expression and cis-QTL effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
S16 Illustration of interaction cis-eQTL validation with ASE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
S17 Sex-biased eQTLs (sb-eQTLs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
S18 Population-biased cis-eQTLs (pb-eQTLs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
S19 Fine-mapping credible sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
S20 Fine-mapping consensus set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
S21 Fine-mapping and functional analysis of CBX8 cis-eQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
S22 Overlap and functional enrichment of cis-eQTLs and cis-sQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
S23 cis-eQTL enrichment in topologically associated domains (TADs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
S24 cis-QTL mediation of trans-QTL signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
S25 Genome-wide colocalizations of cis-eQTLs mediating trans-eQTLs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
S26 Enrichment of GWAS catalog variants among e/sVariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
S27 Enrichment of GWAS associations across tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
S28 Independent GWAS contribution of cis-eQTLs and sQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
S29 ENLOC on different populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
S30 GWAS colocalization with cis-eQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
S31 GWAS colocalization with cis-sQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
S32 Expression associations by S-MultiXcan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
S33 Splicing associations by S-MultiXcan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
S34 Associations at the GATA3 locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
S35 Concordant colocalization of cis-eQTLs and cis-sQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
S36 GWAS colocalization of a cis-eQTL and cis-sQTL for IFITM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
S37 Concordance of trait associations for rare coding variant and cis-eQTLs . . . . . . . . . . . . . . . . . . . . . . . . . 51
S38 Regulatory pleiotropy of cis-eVariants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
S39 Thresholds in tissue sharing analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
S40 Tissue sharing of cis- and trans-eQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
S41 Pairwise tissue sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
S42 Tissue-specificity of allelic expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
S43 Correlation between cis-eQTL effect size and cis-eGene expression. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
S44 Tissue statistics for effect size and expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
S45 Tissue enrichment of effect size and expression for GWAS genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



4

S46 Predicting cis-eQTL and cis-sQTL activity in another tissue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
S47 Neutrophil enrichment across GTEx tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
S48 Pairwise tissue sharing of cell type composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
S49 Replication of neutrophil ieQTLs in purified blood cell types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
S50 Correlation of blood cell types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
S51 Functional enrichment of ieQTLs and isQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
S52 SPAG7 ieQTL GWAS colocalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

List of Tables

S1 Genetic variant QC filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
S2 Summary of cis-QTLs per tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
S3 Pairing of GTEx, ENCODE and Epigenomics Roadmap tissues and cell lines . . . . . . . . . . . . . . . . . . . . . . 30
S4 GWAS datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
S5 GWAS catalog variant overlap with e/sVariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
S6 GWAS catalog enrichment among e/sVariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
S7 Enrichment of GWAS signal among cis-e/sVariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
S8 Summary of prediction models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
S9 aFC and expression rank statistics of GWAS genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
S10 Population-biased eQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
S11 GWAS Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
S12 Pairing of GWAS traits and putatively relevant tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
S13 Trans-eQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
S14 Trans-sQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
S15 Trans-eQTL GWAS colocalization analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
S16 Colocalization of cis- and trans-eQTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



5

1 Biospecimen Collection and Processing

1.1 Donor characteristics

All human donors were deceased, with informed consent obtained via next-of-kin consent for the collection and banking of de-
identified tissue samples for scientific research [7].

Both sexes were enrolled as GTEx donors, but males represent approximately two thirds of the final cohort (fig. S1). All eligible
donor age groups (20-70 years) are represented, but most enrolled donors were older individuals. While most of the donors are
white, the V8 release includes 103 black or African American individuals. Further statistics of donor subgroups can be found in
the GTEx Portal; in this study only the race and sex subgroupings were analyzed. Diverse causes of death are represented,
with common causes of mortality in the general population being typically common also among GTEx donors. The GTEx eligibility
requirements are described in [7], and excluded individuals with metastatic cancer and individuals who had received chemotherapy
for cancer within the prior two years. From each donor, a median of 19 tissues had RNA-seq data available after quality control.
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Fig. S1. Donor characteristics. (A) Selection of GTEx v8 samples used in this work. Details of the data generation and quality control steps for
whole genome and RNA sequencing are described in Sections 2 and 3, respectively. 49 of the 54 tissues had ≥70 samples and were used for
QTL mapping. (B) Ancestry of the 838 analyzed donors from self-reported race and ethnicity, split by sex. (C) Age distribution, split by sex and
shown as stacked histograms. (D) Number of tissues per donor.
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1.2 Biospecimen collection

The biospecimen collection is described in detail in [9], and a complete description of the donor enrollment and consent process, as
well as biospecimen procurement methods, sample fixation, and histopathological review procedures are described in [7]. In brief,
whole blood and skin samples were collected from each donor and shipped overnight to the GTEx Laboratory Data Analysis and
Coordination Center (LDACC) at the Broad Institute. These samples were used for DNA genotyping (primarily from whole blood),
RNA expression analysis, and culturing and transformation of fibroblast and lymphoblastoid cell lines, respectively. In addition to
these samples, two adjacent aliquots were prepared from all other sampled tissues and preserved in PAXgene tissue kits, with
ischemic time varying across the different tissue sites (fig. S2). One of each paired samples was embedded in paraffin (PFPE) for
histopathological review and the second was shipped to the LDACC for processing and molecular analysis. Brains were collected
from approximately one-third of the donors, and were shipped on ice to the brain bank at the University of Miami, where eleven
brain sub-regions were sampled and flash-frozen. These samples were then shipped to the LDACC for processing and analysis.

A robust quality management program was established and implemented for data management, Standard Operating Procedure
(SOP) development, and auditing of collections. Document control software was used to ensure all biospecimen collection sites
used current versions of SOPs, and training was conducted prior to implementation of all new procedures. Supporting quality
documents were developed to provide consistency and clarity to the program, and many of those documents, such as the SOPs
used and workflows for the project, are available to the public (http://biospecimens.cancer.gov/resources/sops/default.
asp).

1.3 Molecular analyte extraction and QC

Detailed protocols for the extraction of DNA and RNA from blood, cell pellets, and PAXgene-fixed and frozen tissues were described
in [9]. The same protocols were used for all GTEx samples to avoid introduction of batch effects among samples, which were
processed continually throughout the project. To control for variable RNA quality [9], RNA sequencing was only performed for
samples with a RIN score of 5.5 or higher and with at least 500 ng of total RNA.

The 49 tissues with ≥70 genotyped samples that were included in the QTL and other downstream analyses vary in their
sample size (n=73 to 706), ischemic time, and RNA quality (RIN). Additionally, the donor age range varies by tissue; notably the
brain samples were collected primarily from older individuals (fig. S2).

http://biospecimens.cancer.gov/resources/sops/default.asp
http://biospecimens.cancer.gov/resources/sops/default.asp
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Fig. S2. Summary of the tissues and samples of the QTL analysis. Frontal Cortex and Cerebellar Hemisphere were sampled in duplicate:
each was sampled on site during initial tissue collection (BRNCHA and BRNCTXA), and again after the brain was received by the brain bank
(BRNCHB and BRNCTXB). Two cell lines were generated: an EBV-transformed lymphoblastoid cell line from blood (LCL) and cultured primary
fibroblasts from fresh skin (FIBRBLS). RIN (RNA integrity number), ischemic time, and donor age distributions for each tissue are shown as
density plots, with the median indicated in black; donor sex distributions are shown as stacked bar plots.

2 Whole Genome Sequencing

2.1 Whole genome sequencing

Whole genome sequencing (WGS) was performed for 899 samples from 869 unique GTEx donors, to a median depth of 32×.
Sequencing methods and protocols were improved and updated several times over the course of the GTEx project, and hence
samples were occasionally resequenced using newer protocols to enable comparisons with previously sequenced samples, re-
sulting in sample duplicates. Samples and general protocols are as follows: Libraries of whole genome DNA from 79 GTEx
donors were sequenced on an Illumina HiSeq 2000 at the Broad institute, using a PCR-based protocol, as 101-bp paired-end
reads for 67 samples and 151-bp paired-end reads for 12 samples. Libraries of whole genome DNA from 820 samples from 801
donors (including 11 that were also sequenced on HiSeq 2000) were sequenced on an Illumina HiSeq X at the Broad Institute
as 151-bp paired-end reads. 571 of the samples were sequenced using a PCR-based protocol, and the remaining 249 using a
PCR-free protocol (17 samples were sequenced using both protocols, and two samples were sequenced in duplicate using the
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PCR-free protocol). Library construction was performed as described in [60], with minor modifications including replacing the
Illumina paired-end adapters with palindromic forked adapters with unique 8-base index sequences embedded within the adapter.
Sequencing was performed following the manufacturer’s protocol. All sample information tracking was performed by automated
LIMS messaging.

Of the 899 samples, 30 were lower-quality replicates, and samples from 31 donors were excluded from further analyses for
the following reasons: large chromosomal abnormalities were observed for 22, including two with chr21 trisomy confirmed to have
Down’s syndrome, one with a chr17p mosaic trisomy [61], four Klinefelter individuals (three confirmed by histological examination
of testis tissue and one identified based only on gene expression where no testis tissue was available), one XXX female, and
14 had large (>1Mb) duplication and/or deletion events; three donors had documented sepsis; one had cerebral palsy; one sex-
mismatch who was genetically XY based on exome and Xist expression analysis but underwent sex reassignment surgery to a
female shortly after birth; one was related to another donor; and samples from 3 donors were aligned with a different pipeline at the
time variant calling was performed and therefore excluded from further analyses. The final analysis freeze set contained variant
calls from 838 donors. DNA for WGS was derived primarily from whole blood (779/838 samples). However, for some donors, a
blood sample was not collected, or the DNA extracted from the whole blood was of poor quality, in which case a tissue sample was
used as a DNA source (thyroid tissue was used for 14 donors and lung for 11, with the remainder scattered across tissue types).

The quality control steps that led to the identification of flagged samples and donors, as well as the variant calling and quality
control pipeline, are described in the sections below.

2.2 WGS data processing

Output from Illumina software was processed with a pipeline based on Picard (http://broadinstitute.github.io/picard/)
and reads were aligned with BWA-MEM (http://bio-bwa.sourceforge.net), using base quality score recalibration and lo-
cal realignment at known insertions and deletions (indels), to yield BAM files aligned to the human reference genome build
GRCh38 (including all ALT, HLA, and decoy sequences). Reference files used to generate the variant call set, including the
human reference genome, the whole genome calling interval list, known indels used for local realignment, and known vari-
ants for Variant Quality Score Recalibration (VQSR) are available at https://console.cloud.google.com/storage/browser/
genomics-public-data/resources/broad/hg38/v0/.

2.3 Variant calling and quality control

Variants (SNPs and indels) were jointly called across an initial, pre-quality control set of 927 GTEx WGS samples combined with
6 non-GTEx WGS samples for quality control purposes, using GATK HaplotypeCaller v3.5. Only autosomes and chromosome X
were used in variant calling. The non-GTEx samples were subsequently removed from the VCF, as well as 61 GTEx samples that
failed sample QC (based on BAM- and VCF-derived QC metrics), yielding a total of 866 donors with WGS variant calls. Multi-allelic
sites were split into biallelic sites using Hail v0.1 (http://hail.is). Compound HET calls (calls with two different ALT alleles,
e.g., ALT1/ALT2) were encoded as 0/1, with ’1’ referring to the ALT allele of the split biallelic site. All VCFs and tables described in
the sections below are available as a part of the dbGaP release.

2.3.1 WGS sample-level quality control

BAM- and VCF-based statistics were computed to detect technical outliers among the WGS BAMs: (i) BAM-level summary
statistics and outlier cutoffs included mean sequence coverage (<25×), percent of chimeric reads (>0.05), and median and
standard deviation of insert size, computed with Picard, and contamination rate (>0.05) estimated with VerifyBamID (https:
//genome.sph.umich.edu/wiki/VerifyBamID). Samples were also tested for RNA contamination by assessing levels of split
reads aligning to exon-exon junctions in the transcriptome using HISAT [62], and for bacterial contamination based on the frac-
tion (>0.05) of read pairs with short insert sizes (<30bp); (ii) VCF-based sample-level QC metrics used for outlier detection and
computed with GATK included: call rate, number of SNPs, number of deletions, number of insertions, insertion to deletion ratio,
transition to transversion ratio, heterozygous to homozygous ratio. All samples had a call rate above 99%. Samples that were 4
median absolute deviations above or below the median of any of the above QC metrics were manually inspected. Extreme outliers
with 4 median absolute deviations from the median for several QC metrics were excluded from further analyses. Samples were
evaluated within ancestry, sequencing technology, and PCR+/- sample subsets.

Principal component analysis (PCA) was performed pre-QC using Hail v0.1 (0.1_ff26e57, https://hail.is) and a pruned
set of SNPs (r2 <0.01) to determine the samples’ genetic ancestry. This was needed for both proper outlier evaluation of the
VCF-based QC metrics within each subset of samples, and to check the self-reported ancestry. The ancestry of donors was
inferred using the first 3 genotype PCs and K-nearest neighbors (k = 3), using the QC’d ancestry of WGS donors from release v7
as the training set. The inferred ancestry was checked against self-reported ones. In three samples, the self-reported and inferred

http://broadinstitute.github.io/picard/
http://bio-bwa.sourceforge.net
https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0/
https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0/
http://hail.is
https://genome.sph.umich.edu/wiki/VerifyBamID
https://genome.sph.umich.edu/wiki/VerifyBamID
https://hail.is
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ancestry were remarkably different, with samples positioning in the middle of a different cluster, and for these three samples the
subjects attributes file was updated to the inferred ancestry.

Genetic relatedness was evaluated by computing identity by descent (IBD) in Hail, and one sample among a pair of individuals
with IBD of ∼0.25 (corresponding to first degree cousins) was excluded from downstream analyses.

2.3.2 Long copy number variation analyses

To identify samples with large chromosomal abnormalities (both to detect samples with quality issues and biological outliers for
exclusion from the analysis freeze), we ran the Genome STRiP [63] module that detects Long Copy Number Variation (>1Mb)
on the 899 WGS BAMs that passed sample QC. 37 samples were found to have at least one duplication or deletion of >1Mb
(list provided to dbGaP). Of these samples, 14 were flagged for including potentially pathogenic large CNVs based on literature
support (reasons listed in GTEx_Analysis_2017-06-05_v8_WholeGenomeSeq_flagged_donors.xlsx in the WGS VCF archive
on dbGaP), as well as full chromosomal duplications, which included two individuals with Down Syndrome and an individual with
chr17 trisomy. An additional 3 WGS samples were flagged for large CNVs detected by Genome STRiP in release V7. We also
used the GENOME STRiP ChrX and ChrY dosage estimates to check for sex discrepancies. In addition to the detection of the 3
Klinefelter individuals and the XXX female, we detected one XY self-identified female who underwent sex reassignment surgery to
a female shortly after birth.

2.3.3 Sample set of the WGS analysis freeze

In addition to the 22 biological outliers detected with Genome STRiP, 4 samples with outlier clinical phenotypes (sepsis or cerebral
palsy), an additional Klinefelter individual detected only by RNA-seq sex check, and 1 sample from a pair of related donors (first
degree cousins, IBD of ∼0.25) were excluded from downstream analyses, yielding a total of 838 donors for the WGS analysis
freeze in the GTEx V8. A summary of all excluded samples is available on dbGaP. Outlier samples were removed from the VCF
using SelectVariants from GATK v3.7-0-gcfedb67.

2.3.4 WGS variant quality control

To increase the quality of genotype calls in the VCF with 838 analysis freeze samples, genotype quality scores (GQ) and geno-
type posteriors (PP) were recomputed with genotype likelihoods and allele frequencies and counts from 1000 Genomes Project
Phase 3 (lifted over from GRCh37 to GRCh38) as a reference panel (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/supporting/GRCh38_positions/), using the CalculateGenotypePosteriors module in GATK v3.5. Multi-allelic sites
were split into biallelic sites using Hail. Compound HET calls (e.g., ALT1/ALT2) were set to missing. To obtain high confidence
variant calls for downstream analyses, extensive variant QC was applied to all variant sites (see Table S1). A variant site was
removed based on any the following criteria: (i) failed VQSR at a sensitivity level below 99.8% for SNPs or 99.95% for InDels;
(ii) lay in a Low Complexity Region (LCR); (iii) had a low Inbreeding Coefficient (<-0.3); (iv) became monomorphic after assigning
the following genotype calls to missing: compound HET sites (ALT1/ALT2) after splitting multi-allelic sites to bi-allelic sites, low
genotype quality (GQ<20), calls with allelic imbalance (AB>0.8 or AB<0.2), or heterozygous calls in chrX nonPAR regions in
male samples; (v) had a missingness rate >= 15%; (vi) failed Hardy-Weinberg Equilibrium testing (P<10-8) in European or African
American subsets for autosomes or in European females for the X chromosome; (vii) showed significant association (P<10-8)
with the sequencing technology, library construction batch, or PCR+ versus PCR- library preparation; or (viii) showed significant
non-random missingness of reference alleles with MAF>1% on the autosomes. All variant QC metrics were computed at the site
level except for GQ and AB, and compound HET filters that were at the genotype call level. The number of variants removed
sequentially at each QC step is summarized in Table S1. All QC-failed variants were removed from the VCF using Hail, yielding a
post-sample and variant QC’d WGS VCF for release v8. All computed QC metric statistics were added back to the post-sample,
pre-variant QC’d VCF with 838 individuals, to enable custom QC for other projects. In this VCF, the 0/1 encoding of compound
HET calls in split biallelic sites was kept, so that multi-allelic sites can be reconstructed from all their biallelic sites. Variant QC was
performed using GATK v3.5, Hail v0.1 (0.1_ff26e57), and PLINK 1.9 (https://www.cog-genomics.org/plink2). All sample-
and variant-level QC steps were performed using a custom pipeline developed in R, Python, and Hail v0.1.

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/
https://www.cog-genomics.org/plink2
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Filtering criterion Total sites Bi-allelic sites
split from
InDels

Multi-allelic
sites

MAF ≥ 1%

Initial variant calls 66,463,168 54,152,863 11,279,240 17,900,327
VQSR not PASS* 58,492,632 46,391,982 9,637,709 16,340,678
In LCRs 49,108,668 44,438,858 2,279,757 11,692,570
InbreedingCoeff < -0.3 48,821,365 44,176,119 2,229,674 11,436,058
Monomorphic after assigning compound HET
sites (ALT1/ALT2) to missing after splitting multi-
allelic sites to bi-allelic sites

48,772,911 44,149,214 2,181,220 11,457,236

Monomorphic after assigning genotype calls with
AB > 0.8 or AB < 0.2 to missing

48,138,994 43,792,153 2,067,813 11,290,157

Monomorphic after assigning genotype calls with
GQ < 20 (GQ calculated from PPs) to missing**

47,911,767 43,609,447 2,043,813 11,382,683

Monomorphic after assigning heterozygous
genotype calls on chrX nonPAR males to missing

47,887,958 43,597,559 2,039,377 11,379,387

Missingness ≥ 15% 46,629,217 43,114,532 1,225,732 10,784,573
HWE test (P < 10−8) 46,610,074 43,098,576 1,223,708 10,765,916
PCR+/- batch association (P < 10−8) 46,609,670 43,098,368 1,223,564 10,765,524
HiSeq batch association (P < 10−8) 46,608,349 43,097,627 1,223,180 10,764,630
LCSET batch association (P < 10−8) 46,607,502 43,096,968 1,223,039 10,763,912
Non-random missingness for autosomal sites
with haplotype MAF > 1% (P < 10−8)***

46,569,704 43,066,451 1,223,039 10,726,114

Table S1. Genetic variant QC filtering. Summary of sites removed after each variant QC step.
*VQSR cutoffs were set to 99.8% for SNPs and 99.95% for InDels.
**Genotype quality scores (GQ) were recomputed from genotype posterior probabilities (PPs) estimated with GATK’s CalculateGenotypePoste-
riors, using 1000 Genomes Project Phase 3 as the reference panel.
*** This QC step was performed using PLINK 1.9. All other steps were implemented in Hail v0.1 (0.1_ff26e57).
All variant QC steps were performed sequentially, in the order listed, and variants that failed any criterion were not tested in subsequent steps.

2.3.5 Genotype principal component analysis

We computed genotype principal components (PCs) based on the post-sample and variant QC WGS VCF, using EIGENSTRAT
(smartpca.perl -i <geno> -a <snp> -b <ind> -k 20 -m 0 -o out -e out.eval -p out.plot -l out.log; https://
github.com/argriffing/eigensoft/blob/master/EIGENSTRAT/). PCA was performed on a set of LD-independent variants
with a call rate ≥ 99% and MAF ≥ 0.05. LD pruning was performed using Plink (plink --bfile input --indep-pairwise
200 100 0.1 --out).

The 838 post-QC GTEx samples clustered into 3 main subpopulations: European, African, and Asian (fig. S3A). We used
the top 5 genotype PCs to correct for population stratification, as the top 3 PCs proportionately captured the most variance
among subpopulations (fig. S3B), and the top 5 PCs significantly correlated with 11 subpopulations inferred for all GTEx WGS
samples, using 1000 Genomes Project samples and k-nearest neighbors clustering (fig. S3C, P < 3× 10−8 from F test; adjusted
R2 = 0.053− 0.98)

https://github.com/argriffing/eigensoft/blob/master/EIGENSTRAT/
https://github.com/argriffing/eigensoft/blob/master/EIGENSTRAT/
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Fig. S3. Genotype principal components. A) Top three genotype principal components (PCs), color coded by race as reported in the subject
phenotype annotation file. B) Percent variance explained (PVE) for the top 15 genotype PCs. C) Correlation of genotype PCs with race as
reported in the subject phenotype annotation file (top) and with 11 subpopulations inferred for all GTEx WGS samples, using 1000 Genomes
Project samples and k-nearest neighbors clustering (bottom).

2.3.6 Variant identifiers

Variant IDs were constructed by concatenating chr, position, REF and ALT alleles, and a suffix indicating the genome build (b38),
separated by an underscore. For insertions and deletions, the preceding base is added. RS IDs from dbSNP 150 GRCh38p7 (ftp:
//ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b150_GRCh38p7/VCF) were added to a variant lookup table available
through the GTEx Portal.

2.4 Read-aware phasing

To enable better functional interpretation of regulatory effects and to impute missing calls, read-aware phasing was performed on
the sample- and variant-QC’d VCF of 838 samples, using SHAPEIT v2 (r837) with extractPIRs (r68) [64]. The phasing procedure
in SHAPEIT2 imputes missing calls and was performed in the following order:

1. extractPIRs was run to extract phase informative reads (PIRs) from the WGS BAMs from all individuals with the command:
extractPIRs --bam ${bam_list} --vcf ${vcf} --out ${pir}. Defaults were used for filtering on minimal read map-
ping quality (≥10) and base quality (≥13).

2. SHAPEIT 2 was run with the command:
shapeit -assemble --input-vcf ${vcf} --input-pir ${pir} -O ${haplotypes}.
For chromosome X, PAR regions and non-PAR regions were phased separately, with PAR regions phased like autosomes
and the non-PAR region phased using the --chrX and --input-sex flags.

3. The following post-processing step were applied: (i) calls with dosage differences before and after phasing were set to
missing (1,185,212 sites had ≥1 sample set to missing); (ii) calls in split biallelic sites that were compound HETs (e.g.,

ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b150_GRCh38p7/VCF
ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b150_GRCh38p7/VCF
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ALT1/ALT2) or alleles absent in that sample (e.g., a REF/ALT2 call for a REF/ALT1 bi-allelic site) that were coded as missing
prior to phasing were reset to missing (43,380 sites had a different dosage after phasing in≥1 sample); (iii) sites that became
monomorphic after phasing or as a result of post-processing steps were removed; (iv) sites with missingness ≥15% after
the above changes were removed.

The final phased VCF, which contains 46,526,292 sites, was the Analysis Freeze WGS VCF v8 used for downstream analyses.
See also Section 6 for description of further RNA-seq read-backed phasing.

3 RNA Expression

3.1 RNA library preparation and sequencing

RNA sequencing was performed at the Broad Institute using the Illumina TruSeqTM RNA sample preparation protocol, which was
based on polyA+ selection of mRNA and was not strand-specific. This protocol was used continuously throughout the project to
reduce the introduction of batch effects.

Briefly, total RNA was quantified using the Quant-iTTM RiboGreen®RNA Assay Kit and normalized to 5 ng per µL. An aliquot
of 200 ng for each sample was transferred into library preparation, which was an automated variant of the Illumina TruSeqTM RNA
sample preparation protocol (Revision A, 2010; http://www.illumina.com/documents/products/datasheets/datasheet_
truseq_sample_prep_kits.pdf). This method used oligo dT beads to select mRNA from the total RNA sample followed by
heat fragmentation and cDNA synthesis from the RNA template. The resultant cDNA then went through library preparation (end
repair, base ‘A’ addition, adapter ligation, and enrichment) using Broad Institute-designed indexed adapters substituted in for
multiplexing. After enrichment, the libraries were quantified with qPCR using the KAPA Library Quantification Kit for Illumina
Sequencing Platforms and then pooled equimolarly. The entire process was performed in 96-well plates and all pipetting was
performed by either Agilent Bravo or Hamilton Starlet liquid handlers with electronic tracking throughout the process in real-time,
including reagent lot numbers, specific automation used, time stamps for each process step, and automatic registration.

Pooled libraries were normalized to 2 nM and denatured using 0.1 N NaOH prior to sequencing. Flow cell cluster amplification
and sequencing were performed according to the manufacturer’s protocols using either the HiSeq 2000 or HiSeq 2500. Sequencing
generated 76bp paired-end reads and an eight-base index barcode read, and was run with a coverage goal of 50M reads (the
median achieved was ~83M total reads). Raw sequence data were processed using the Broad Institute’s Picard pipeline, which
includes de-multiplexing and data aggregation steps.

3.2 RNA-seq alignment and quality control

RNA-seq data were aligned to the human reference genome GRCh38/hg38 (excluding ALT, HLA, and decoy contigs) with STAR
v2.5.3a [65]. To avoid potential artifacts from allelic mapping bias in allelic expression and sQTL analyses, the RNA-seq data were
re-aligned with STAR v2.6.0c using the --waspOutputMode option [66] and a VCF containing the corresponding genotypes. These
data were used in splicing quantification and allelic expression analysis.

Quality control of the samples was performed as described in [9]. Briefly, low-quality samples were identified and removed
based on the following alignment metrics: < 10 million mapped reads; read mapping rate < 0.2; intergenic mapping rate > 0.3;
base mismatch rate (mismatched bases divided by total aligned bases) > 0.01 for read mate 1 or > 0.02 for read mate 2; rRNA
mapping rate > 0.3. Additionally, outlier samples were identified based on expression profile using a correlation-based statistic
and sex incompatibility checks, following methods described in [67]. Among technical replicates (same aliquot sequenced multiple
times for QC purposes), the sample with the highest number of reads was retained for inclusion in the analysis freeze set. Finally,
samples from donors with cytogenetic anomalies (see Section 2) were excluded from analyses.

3.3 Analysis freeze of tissues and samples for eQTL analyses

After QC, the v8 release contained 17,382 RNA-seq samples. Among these, samples were selected based on donor genotype
availability and a threshold of at least 70 samples per tissue, resulting in a set of 15,201 samples from 49 tissues across 838
donors used for QTL analyses. The tissues and samples are summarized in fig. S2, which also contains the abbreviations and
color scheme used throughout the paper.

http://www.illumina.com/documents/ products/datasheets/datasheet_truseq_sample_prep_kits.pdf
http://www.illumina.com/documents/ products/datasheets/datasheet_truseq_sample_prep_kits.pdf
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3.4 Quantification of gene expression and splicing

3.4.1 Gene annotation

The quantification was based on the GENCODE Release 26 annotation (https://www.gencodegenes.org/human/release_
26.html), collapsed to a single transcript model for each gene, using a custom isoform collapsing procedure, comprising the
following steps: 1) exons associated with transcripts annotated as “retained_intron” and “read_through” were excluded; 2) exon
intervals overlapping within a gene were merged; 3) the intersections of exon intervals overlapping between genes were excluded;
4) the remaining exon intervals were mapped to their respective gene identifier and stored in GTF format. This annotation is
available on the GTEx Portal (gencode.v26.GRCh38.genes.gtf).

All gene biotypes were used in QTL mapping in order to create a comprehensive cis-QTL data set for all quantified genes.
However, since poly-A RNA-sequencing data is not expected to capture many noncoding gene types and their annotation and
functional interpretation is often unclear, we used only protein-coding and lincRNA genes in downstream analyses. In trans-QTL
mapping only protein-coding and lincRNA genes were used to avoid genes enriched for mapping artefacts.

3.4.2 Gene expression quantification

Gene-level expression quantification was performed using RNA-SeQC [68]. Gene-level read counts and TPM values were pro-
duced using the following read-level filters: 1) reads were uniquely mapped (corresponding to a mapping quality of 255 for STAR
BAMs); 2) reads were aligned in proper pairs; 3) the read alignment distance was ≤ 6; 4) reads were fully contained within exon
boundaries. Reads overlapping introns were not counted. These filters were applied using the “-strictMode” flag in RNA-SeQC.

Gene expression values for all samples from a given tissue were normalized for eQTL analyses using the following procedure:
1) read counts were normalized between samples using TMM [69]; 2) genes were selected based on expression thresholds of
≥0.1 TPM in ≥20% of samples and ≥6 reads (unnormalized) in ≥20% of samples; 3) expression values for each gene were
inverse normal transformed across samples.

3.4.3 Splicing quantification

We quantified splicing based on the intron excision phenotypes computed by LeafCutter [13] with the following steps and filters:
1) Intron usage was quantified using the bam2junc.sh script provided by the LeafCutter software, with an additional step to
filter out reads that did not pass WASP filtering (specifically, reads with the tag vW:i:[2-7]; see Section 3.2); 2) Intron clusters
were generated using the leafcutter_cluster.py script from LeafCutter, with the following options: --min_clu_reads 30
--min_clu_ratio 0.001 --max_intron_len 500000 and mapped to genes using the map_clusters_to_genes.R script with
exon coordinates derived from the collapsed gene model described in Section 3.4.1; 3) Introns with few counts or low complexity
(diversity of counts across samples) were filtered out as follows to avoid numerical issues with the calculation of Beta-approximated
empirical p-values in FastQTL: introns without any read counts in >50% of samples, or with fewer than max(10, 0.1n) unique
values, where n is the sample size, were filtered out. Additionally, introns with insufficient variability across samples were removed
based on thresholds applied to a z-score, z, of cluster read fractions across individuals (∗_perind.counts.gz files): (

∑
i(|zi| <

0.25) ≥ n−3)∧ (
∑

i(|z| > 6) ≤ 3). The latter step only removed a small number of outlier introns across tissues, with a maximum
of 31 in Kidney - Cortex; 4) The filtered counts were normalized using the prepare_phenotype_table.py script from LeafCutter
and the resulting per-chromosome files merged and converted to BED format with the start/end position corresponding to the TSS
of the gene to which each intron was mapped in step 2.

3.5 Latent factor analysis of expression and splicing variation

3.5.1 PEER analysis of gene expression variation

To account for hidden batch effects and other technical and biological sources of transcriptome-wide variance in the gene expres-
sion data, we used the Probabilistic Estimation of Expression Residuals (PEER) method to estimate a set of latent covariates for
gene expression levels for each tissue type [70]. The number of PEER factors was selected to maximize cis-eGene discovery,
across four sample size bins: tissues with fewer than 150 samples, tissues with ≥ 150 and < 250 samples, tissues with ≥ 250
and < 350 samples, and tissues with ≥ 350 samples. The optimization was performed as described in [10], and resulted in the
selection of 15, 30, 45 and 60 PEER factors, respectively, for the four sample size bins.

The gene expression variance captured by PEER factors from each tissue was correlated with known technical and biological
covariates recorded for each sample and donor (fig. S4). The covariates that were most consistently associated with PEER factors
include factors related to parameters of donor death, ischemic time, sequencing quality control metrics, and nucleic acid isolation
and library construction batches.

https://www.gencodegenes.org/human/release_26.html
https://www.gencodegenes.org/human/release_26.html
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Fig. S4. PEER factors for eQTL mapping. Proportion of expression variance captured by the PEER factors computed for each tissue (R2, top
bar), and proportion of variance (adjusted R2) removed by the PEER factors explained by known sample and donor covariates. Each cell shows
the total proportion of variance removed by all PEER factors. Only covariates with ≥0.05 R2
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are ordered based on hierarchical clustering with average Euclidean distance. Gray cells indicate unavailable data.

3.5.2 PEER analysis of splicing variation

For splicing quantifications, PEER factors were computed based on the normalized counts matrices described in Section 3.4.3.
Unlike cis-eQTL discovery, the number of cis-sGenes increased only marginally with increasing numbers of PEER factors, and
varied less across tissues (fig. S5). As a result, 15 PEER factors were uniformly computed for each tissue.

The splicing variance captured by PEER factors most consistently correlated with nucleic acid extraction and library preparation
batches, and also parameters of donor death and ischemic time (fig. S5).
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4 QTL mapping

4.1 Covariates for QTL analysis

To control for population effects on the discovery of QTLs, genotype principal components (PCs) are typically used as covariates in
QTL mapping. In order to select the appropriate number of PCs, we inspected their correlation with ancestry (fig. S3, and Section
2). The first 5 PCs capture the major population structure among GTEx donors, but PC 9 also has a slight correlation to ancestry.
Thus, we tested the robustness of cis-eQTL discovery to inclusion of additional PCs beyond the first five (fig. S6). The inclusion
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of additional PCs reduces overall eGene discovery power in tissues with small sample sizes, leading to a smaller proportion of
discovered eGenes. In a tissue with a larger sample size, inclusion of 9 PCs shows a handful of eQTLs where a decrease in
significance indicates that they may be affected by population structure; however they remain significant eQTLs. These effects
are similar if PCs 1-8+10 are used instead of 1-9, indicating that the differences are not specific to PC 9. Thus, we concluded
that 5 PCs is a good choice that controls for population structure reasonably well while avoiding reduction of power in smaller
tissues. A further analysis of how local ancestry along chromosomal segments affects eQTL discovery and downstream analyses
is described in [71].

Additionally, WGS sequencing platform (HiSeq 2000 or HiSeq X), WGS library construction protocol (PCR-based or PCR-free)
and donor sex were included in the set of covariates used in the association analyses. We consider these to be the minimal set
of covariates to use in most QTL mapping with GTEx data. For eQTL mapping in cis and trans we used PEER factors optimized
by sample size as described above in Section 3.5.1. For sQTL mapping in cis and trans we used 15 PEER factors as described
above in Section 3.5.2.
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Fig. S6. Effect of additional population structure corrections on cis-eGene discovery. For three tissues, nominal p-value of the top eVariant
of discovered eGenes after correcting for: A) genotype PCs 1-5 compared to 1-9; B) genotype PCs 1-5 compared to genotype PCs 1-8 & 10; C)
genotype PCs 1-9 compared to PCs 1-8 & 10.

4.2 cis-eQTL mapping

cis-eQTL mapping was performed using FastQTL [72]. The mapping window was defined as 1 Mb up- and down-stream of the
transcription start site (TSS), and the adaptive permutation mode was used with the setting --permute 1000 10000. The phased
VCF described in Section 2.4 was used, and all variants with minor allele frequency ≥ 0.01 across the 838 donors were included.
The same set of variants was tested in all tissues. The beta distribution-extrapolated empirical P-values from FastQTL were used
to calculate gene-level q-values [73] with a fixed P-value interval for the estimation of π0 (the ‘lambda’ parameter was set to 0.85).
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A false discovery rate (FDR) threshold of ≤ 0.05 was applied to identify genes with at least one significant cis-eQTL (“eGenes”).
While FDR ≤ 0.05 was used for the GTEx eQTL release and subsequent analysis, we also applied FDR ≤ 0.01 to compare the
discovery with a more stringent FDR, enabled by the large sample size and good statistical power (see fig. S7).

To identify the list of all significant variant-gene pairs associated with cis-eGenes, a genome-wide empirical P-value threshold,
pt, was defined as the empirical P-value of the gene closest to the 0.05 FDR threshold. pt was then used to calculate a nominal
P-value threshold for each gene based on the beta distribution parameters (from FastQTL) of the minimum P-value distribution
f(pmin) obtained from the permutations for the gene. Specifically, the nominal threshold was calculated as F−1(pt), where F−1 is
the inverse cumulative distribution. For each gene, variants with a nominal P-value below the gene-level threshold (fig. S8) were
considered significant and included in the final list of variant-gene pairs.
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There are a small number of genes for which we do not observe a cis-eQTL in any tissue. We used the PANTHER over-
representation test (release 20171205) against 21,042 human genes as background to test for enrichment in GO biological pro-
cesses of different sets of non-eGenes using the GO database release 2018-04-04. Significant GO IDs (Bonferroni-adjusted
P-value < 0.05) were selected for analysis with REVIGO to group similar ontological terms. Non-eGenes genes are enriched for
processes such as detection of (chemical) stimuli that include olfactory genes that are not well captured in GTEx gene expression
data (fig. S9).
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Fig. S9. Properties of genes that do not have cis-eQTLs. A) Gene Ontology (GO) analysis of tested protein-coding non-eGenes (408 genes),
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4.3 cis-sQTL mapping

The overall mapping approach for cis-sQTLs was based on and largely similar to the cis-eQTL mapping approach described in
Section 4.2. cis-sQTL mapping was performed with FastQTL, testing for associations with variants within ±1Mb of each gene’s
TSS, and using the covariates described in Section 4.1 as well as 15 PEER factors calculated from the splicing quantifications
(Section 3.5.2). We used grouped permutations (--grp option) to jointly compute an empirical p-value over all intron clusters
of a gene. The top nominal cis-sQTL for a gene was defined as the top association among all of its assigned clusters and
introns. Empirical p-values were obtained by computing this top association for 1,000-10,000 permutations of the sample labels
(--permute 1000 10000 option). To identify cis-sGenes, FDR was computed in the same manner as for cis-eQTLs (Section 4.2),
including the computation of a sGene-level nominal p-value threshold used to identify all significant variant-intron pairs (fig. S8).

4.4 cis-QTL discovery

As expected, cis-QTL discovery was strongly correlated with sample size in each tissue, as well as the number of expressed genes
per tissue with especially testis expressing many more genes than other tissues (Fig. 2, fig. S7, table S2). At a more stringent
FDR ≤ 0.01, there was a slight decrease in total number of eGenes and sGenes. The comparison of cis-eQTL discovery across
the GTEx pilot (v3), mid-stage (v6p) and the current v8 release shows a substantial increase as a result of the improved power
(fig. S7).

4.5 Independent cis-QTL mapping

Multiple independent signals (5% FDR) for a given expression phenotype were identified by forward stepwise regression followed by
a backwards selection step, with the same approach applied to both cis-eQTLs and cis-sQTLs. The gene-level significance thresh-
old was set to be the maximum beta-adjusted P-value (correcting for multiple-testing across the variants) over all eGenes/sGenes
in a given tissue. At each iteration, we performed a scan for cis-QTLs using FastQTL, correcting for all previously discovered
variants and all covariates used in regular cis-QTL mapping. If the beta-adjusted P-value for the lead variant was not significant at
the gene-level threshold, the forward stage was complete and the procedure moved on to the backward stage. If this P-value was
significant, the lead variant was added to the list of discovered cis-QTLs as an independent signal and the forward step moved on
to the next iteration. The backwards stage consisted of testing each variant separately, controlling for all other discovered variants.
To do this, for each e/sVariant, we scanned for cis-QTLs controlling for standard covariates and all other e/sVariants. If no variant
was significant at the gene-level threshold, the variant in question was dropped; otherwise the lead variant from this scan, which
controls for all other signals found in the forward stage, was chosen as the variant that represents the signal best in the full model.

We discovered a large number of independent cis-eQTLs (fig. S10), especially in tissues with larger sample sizes and better
statistical power. The number of cis-eQTLs increases linearly with sample size. The number of independent cis-sQTLs is slightly
lower, but this might also be a technical artifact of less statistical power (Fig. 2, fig. S10, table S2).
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Fig. S10. Allelic heterogeneity. A) number of total cis-eQTLs per tissue as a function of sample size; B) allelic heterogeneity of cis-sQTLs.

4.6 trans-eQTL mapping

For trans-eQTL mapping, we used the same covariates as for cis-eQTL analysis (Section 4.1). The genotype, expression
and covariates were used to map trans-eQTLs for all gene-variant pairs not in the same autosomal chromosome, using the
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Tissue Samples Expr genes cis-eGenes eGenes > 1 eQTLs Spliced genes cis-sGenes eGenes > 1 sQTLs
Adipose_Subcutaneous 581 18329 12146 5409 11536 4662 1604
Adipose_Visceral_Omentum 469 18358 9719 3129 11818 3790 1040
Adrenal_Gland 233 18000 6311 1220 11487 2070 364
Artery_Aorta 387 17999 9937 3442 11377 3356 882
Artery_Coronary 213 18358 4840 714 11877 1876 303
Artery_Tibial 584 17716 11970 5628 11048 4377 1465
Brain_Amygdala 129 18649 2794 244 11601 768 55
Brain_Anterior_cingulate_cortex_BA24 147 18739 4312 562 11951 1049 104
Brain_Caudate_basal_ganglia 194 18825 6523 1304 12020 1550 179
Brain_Cerebellar_Hemisphere 175 18520 7734 1960 11637 2101 399
Brain_Cerebellum 209 18656 8720 2519 11576 2447 533
Brain_Cortex 205 18915 7108 1639 12010 1774 293
Brain_Frontal_Cortex_BA9 175 18865 5704 1010 12076 1437 178
Brain_Hippocampus 165 18796 4292 530 11707 1000 102
Brain_Hypothalamus 170 19140 4189 526 12242 1204 108
Brain_Nucleus_accumbens_basal_ganglia 202 18855 6359 1256 12113 1599 207
Brain_Putamen_basal_ganglia 170 18433 5440 914 11485 1169 103
Brain_Spinal_cord_cervical_c-1 126 18849 3414 348 11753 965 102
Brain_Substantia_nigra 114 18642 2500 180 11496 686 45
Breast_Mammary_Tissue 396 18923 8270 2097 12277 3705 981
Cells_Cultured_fibroblasts 483 16763 12280 6335 10631 4204 1394
Cells_EBV-transformed_lymphocytes 147 16585 3747 408 10595 2113 398
Colon_Sigmoid 318 18449 8252 2272 11680 2909 688
Colon_Transverse 368 18787 8943 2548 12265 3103 730
Esophagus_Gastroesophageal_Junction 330 18206 8256 2237 11456 2933 683
Esophagus_Mucosa 497 18038 11723 5057 11271 3577 1027
Esophagus_Muscularis 465 18083 11140 4536 11257 3669 1145
Heart_Atrial_Appendage 372 17645 8751 2574 11397 2725 659
Heart_Left_Ventricle 386 16675 7885 2102 10535 2135 426
Kidney_Cortex 73 18649 868 23 11252 468 27
Liver 208 17243 4415 630 10330 1284 197
Lung 515 18977 10804 3854 12390 4326 1360
Minor_Salivary_Gland 144 18799 3564 373 12354 1432 171
Muscle_Skeletal 706 16584 11092 4937 9928 3759 1270
Nerve_Tibial 532 18853 13337 6635 11795 4793 1688
Ovary 167 18490 4126 518 11705 1721 261
Pancreas 305 17471 7788 2117 10586 2011 407
Pituitary 237 19549 6781 1408 12489 2525 492
Prostate 221 19366 5366 870 12358 2132 378
Skin_Not_Sun_Exposed_Suprapubic 517 18714 12110 5234 11807 4265 1345
Skin_Sun_Exposed_Lower_leg 605 18738 13254 6525 11760 4717 1621
Small_Intestine_Terminal_Ileum 174 19110 4982 730 12621 1802 235
Spleen 227 18546 8225 2051 11699 2492 534
Stomach 324 18389 6838 1499 11809 2350 447
Testis 322 23628 13480 4640 15990 7107 2621
Thyroid 574 18923 13477 6727 11817 4818 1729
Uterus 129 18529 2545 213 11766 1320 156
Vagina 141 18898 2701 255 12320 1270 134
Whole_Blood 670 15771 9979 4342 9005 2735 876

Table S2. Summary of cis-QTLs per tissue

linear_regression() function in Hail v0.2. We filtered variants at MAF > 0.05 (within each tissue) and excluded any variant
with mappability < 1, based on k-mer length 75. Since the number of tests exceed 5 ∗ 1011 in most tissues, we only saved the
pairs that passed a p-value threshold of 10−5. Candidate trans-eGenes were restricted to protein-coding and lincRNA genes, as
annotated in GENCODE v26. Finally, we applied the hg38 cross-mapping filter as described in [16] with settings of k-mer length
75 for exons and 36 for UTRs, applying this to the filtered set of variant-gene pairs with p-values below 10−5 to exclude any gene
with mappability < 0.8 and any variant-gene pair where the target eGene cross-maps with any gene within 1Mb of the variant.

Gene-level FDR was calculated by taking, per tissue, the most extreme P-value per gene across all tested SNPs, multiplying
that P-value by 106, in concordance with the effective number of tests on average assumed in genome-wide association studies.
Even though the use of genotype data from WGS in GTEx might increase the number of tested variants compared to a SNP array
-based GWAS, the number of common variants captured is not dramatically different between genotyping platforms, and the filters
for MAF > 5%, mapping biases, and testing only interchromosomal associations used specifically for trans-eQTLs reduces the
effective number of tests in GTEx compared to most GWAS. We applied Benjamini-Hochberg on the adjusted extreme P-values
across genes to control FDR.

4.7 trans-sQTL mapping

For trans-sQTL mapping, we limited our search to protein coding and lincRNA genes as annotated in GENCODE v26 that had an
average 36-mer mappability ≥0.8 (we used a shorter k-mer length compared to trans-eQTLs due to the higher risk of mapping
artifacts with the split reads used to quantify intron excision ratios). To further minimize potential mapping artifacts, we also
filtered the analysis freeze VCF used for cis-QTLs based on the following exclusion criteria: all variants with missingness in the
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phased VCF (due to phasing errors or multi-allelic sites; 270,106 and 11,021, respectively); variants with missingness > 0.02
in the unphased VCF (704,228); variants with 75-mer SNP mappability <0.9 (1,624,562) [16]; and variants that failed HWE in
the phased VCF separately in EUR and AFR individuals (inferred ancestries) on autosomes/PAR region and EUR females in the
NONPAR region (p-value <10-8; 2855 total), resulting in a VCF with 8,502,701 variants (out of 10,770,860).

We mapped trans-sQTLs using tensorQTL [74], and restricted mapping to the set of variants with MAF ≥ 0.05 in each tissue.
To enable FDR control based on a single set of genome-wide permutations, we inverse normal transformed the LeafCutter phe-
notypes. We generated summary statistics for all associations with p-values < 10−5, and applied the same cross-mapping filter
described for trans-eQTLs [16] to exclude variants within ±1Mb of genes that cross-map with candidate trans-sGenes. For gene-
level FDR control, we applied the following procedure: for each gene, we selected the variant-phenotype pair with the smallest
nominal p-value, and computed the beta-approximated empirical p-value based on 100,000 permutations of a standard normal
distribution (to avoid inclusion of cis effects, an empirical distribution was calculated for each chromosome using variants on all
other chromosomes; these permutations were computed once for each tissue). Since multiple intron excision phenotypes were
tested for each gene, we then used the beta-approximated empirical CDF F (x) to compute the distribution for the minimum p-value
across k phenotypes, which is given by 1− (1− F (x))k. Lastly, we applied the Benjamini-Hochberg correction to these p-values
across genes, and used a 0.05 FDR threshold per tissue to define the set of trans-sQTLs. We further inspected these results
for potential artifacts by checking for RNA-seq coverage differences that reflect alternative splicing (fig. S11) and by identifying
putative cis-regulating genes through mediation and colocalization analyses (Sections 12.4.2 & 12.4.3).
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Fig. S11. Trans-sQTL example. A) RNA-seq coverage for COL5A1 in lung, grouped by genotype for variant rs10047763
(chr13_43507920_A_C_b38). B) Enlarged view of the dashed region from (A), showing the difference in coverage between the two highlighted
exons (red arrowhead) across genotypes. The orange and red introns at the bottom indicate the LeafCutter phenotype group tested, with the
red intron (shared between two annotated isoforms) excision ratio producing the strongest association. Map.: 36-mer mappability. C) P-value
landscapes for the COL5A1 trans-sQTL (top panel), the putative cis-mediating eQTL for ENOX1 (second panel), and the two conditionally inde-
pendent cis-eQTLs for ENOX1 (bottom panels), indicating that only the second independent cis-eQTL mediates the trans effect. PP4: posterior
probability of colocalization from COLOC [75].

5 cis-eQTL replication

In order to evaluate the replication of GTEx cis-eQTLs in external data sets, we used two data sources: 1) TwinsUK [76], which has
eQTL data from subcutaneous adipose (766 samples), LCLs (814 samples), skin (716 samples), and whole blood (384 samples);
and 2) eQTLGen [77] which is a meta-analysis of blood eQTLs from as many as ~32,000 samples.
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In the TwinsUK replication, we chose the lead variants for GTEx eQTLs (best variant per eGene) for the four tissues, and
queried their p-value in TwinsUK summary statistics. About half of the eVariant-eGene pairs had summary statistics available in
TwinsUK, and since those data are provided per exon, we picked the strongest association for each gene-variant pair in GTEx.
The replication was quantified using the π1 statistic, with very high replication rates for all four tissues (fig. S12). This indicates
that GTEx cis-eQTLs are generally very robust and replicate well.
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Fig. S12. Replication in TwinsUK. Replication of the GTEx lead eVariants in TwinsUK, quantified by the π1 statistic for four matched tissues
between the two data sets.

The eQTLGen data from a large sample size of a single tissue (blood) is complementary to GTEx, which has a wide range
of tissues but fewer samples. We used multiple statistics to test the replication of GTEx cis-eQTLs in eQTLGen (fig. S13). First,
evaluating the overlap of genes that have or do not have an eQTL in GTEx tissues, we observed that for tissues that are highly
distinct from blood, approximately a quarter of genes are not detected in eQTLGen, probably due to a lack of expression in blood.
This is the most common reason for a GTEx eGene not replicating in eQTLGen. π1 replication of GTEx lead eVariant p-values in
eQTLGen is typically >80%, with relatively modest differences between tissues, and highest in the matching tissue of blood. The
tissue differences are more pronounced in the colocalization analysis (using coloc with a value of 1e-4 for all priors), which shows
a substantially higher sharing of GTEx blood eQTLs in eQTLGen than eQTLs from other GTEx tissues. This indicates that some
of the eQTLs that seemingly replicate in a different tissue are due to LD rather than true sharing of the causal variant. Altogether,
these analyses show that GTEx eQTLs are highly robust and replicable, and demonstrate the unique gains from multi-tissue
analysis.
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Fig. S13. Replication in eQTLGen. A) For each GTEx tissue and eQTLGen blood eQTL analysis, the overlap is shown for eGenes, genes that
are detected but not eGenes ("gene"), and genes that are not detected. The gene sets for GTEx were defined for each tissue. B) Replication of
the lead eVariant for GTEx eQTLs (best variant per eGene) in eQTLGen, quantified by the π1 statistic; C) Colocalization of GTEx eQTLs with
eQTLGen eQTLs, using coloc.

6 Allele-specific expression

Allelic expression data was produced used the standard alignments, as well as alignments with the WASP filtering strategy to
remove reads with allelic mapping bias (Section 3.2). The latter data was used in downstream analyses.

SNP-level ASE data was generated using the GATK ASEReadCounter tool (v3.8-0-ge9d806836) with the following settings:
--U ALLOW_N_CIGAR_READS -minDepth 1 --allow_potentially_misencoded_quality_scores --minMappingQuality
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255 --minBaseQuality 10. Raw SNP level data, consisting of the GATK tool output, were aggregated per subject across all
tissues and used to produce analysis files, including only sites with ≥8 reads, assigning SNPs to genes, calculating the expected
null ratio for each combination of ref/alt allele [78], calculating a binomial p-value by comparing to the expected null ratio, and
calculating a multiple hypothesis corrected p-value per sample (subject-tissue) using Benjamini–Hochberg. Furthermore, we
flagged sites that lie in low-mappability regions (75-mer mappability < 1, with ≤2 mismatches allowed for the 75-mer alignment),
showed mapping bias in simulation [79], or had no more reads supporting two alleles than would be expected from sequencing
noise alone, indicating a potential genotyping error (FDR < 1%, see [78] for description of test). Note that the genotype warning
test cannot distinguish between strong allelic imbalance and a true genotyping error, so this flag should not be used when studying
phenomena with mono-allelic expression (e.g., imprinting).

Haplotype-level data was generated using phASER v1.0.1 [80]. First, we complemented the WGS-based phasing (see
Section 2.4) by RNA-seq read phasing with phASER, run using all available RNA-seq libraries per subject. These phased
genotype data are provided in dbGap. Next, haplotypic expression was calculated using phASER Gene AE 1.2.0 and gene
annotations with --min_haplo_maf 0.05. Haplotypic expression matrices containing all samples were generated using the
phaser_expr_matrix.py script. This consists of a single string per sample per gene with the format HAP_A_COUNT|HAP_B_COUNT.
One matrix was generated using only haplotypes that could be genome-wide phased such that the haplotypes are consistent
across genes, according to available phasing data (note that some switch errors are expected over longer distances). Additionally,
we provide another data matrix without trying to maintain genome-wide phasing across genes; compared to the previous data this
in some cases includes data from (typically rare) variants with high coverage but unreliable genome-wide phasing.

7 QTL effect sizes

7.1 cis and trans-eQTL effect size

cis-eQTL effect size was defined as allelic fold change (aFC), the ratio between the expression of the haplotype carrying the
alternative eVariant allele to the one carrying the reference allele in log2 scale [21]. This was calculated for each top eVariant
(based on p-value) per gene per tissue using the aFC v0.3 tool [21]. We calculated aFC for cis-eQTLs from two data sources: 1)
raw gene count data that was normalized with DESeq size factors [81] and log2 transformed, with the aFC arguments --min_samps
2 and --min_alleles 1 and including the same covariates that were used for cis-eQTL mapping; and 2) haplotype-level ASE
data, using the phASER add-on phaser_cis_var.py [17] for eQTLs with at least 10 individuals with ASE data and a minimum of
8 reads per individual, and a pseudo-count of 1 added to each the reference and alternative eQTL haplotype counts.

trans-eQTL effect size was calculated as allelic fold change, similarly to the expression-based calculation of cis-eQTLs. How-
ever, the interpretation of allelic fold change for trans-eQTLs comes with certain caveats. The allelic fold chance approach assumes
a linear (i.e., codominant) effect of the genotype, which is the appropriate biological mechanism in cis but not necessarily in trans.
Since trans-eQTL mapping uses a linear model, this assumption is probably not strongly violated, but if it is, the effect size esti-
mates are not necessarily accurate.

The effect size distribution depends on the properties of the discovered eQTLs. In tissues with larger sample sizes, better
power allows discovery of eQTLs of smaller effect than in smaller tissues, which is reflected as a larger proportion of eQTLs having
more than two-fold effect on expression (|aFC| ≥ 1 in log2 scale) in smaller tissues (fig. S14).



25

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

100 300 500 700

0.
1

0.
2

0.
3

0.
4

0.
5

Sample size

Pr
op

or
tio

n 
|a

FC
 (l

og
2)

| >
= 

1

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

|aFC (log2)|

C
um

ul
at

ive
 p

ro
po

rti
on

Muscle_Skeletal
Brain_Substantia_nigra
Pancreas

A B

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

|aFC (log2)|

C
um

ul
at

ive
 p

ro
po

rti
on

●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●

●●●●●
●●●●●
●● ●●● ●●● ● ● ● ●

C

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

100 200 300 400 500 600 700

10
00

30
00

50
00

70
00

Sample size

# 
eG

en
es

 w
/ |

aF
C

 (l
og

2)
| >

= 
0.

25

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

100 200 300 400 500 600 700

10
00

20
00

30
00

40
00

Sample size

# 
eG

en
es

 w
/ |

aF
C

 (l
og

2)
| >

= 
0.

5

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

100 200 300 400 500 600 700

40
0

80
0

12
00

16
00

Sample size

# 
eG

en
es

 w
/ |

aF
C

 (l
og

2)
| >

= 
1

D E F

Fig. S14. Effect size distribution of eQTLs. A) Proportion of cis-eQTLs per tissue with over two-fold effect on gene expression, as a function
of sample size. B) Examples of the absolute allelic fold change distribution for cis-eQTLs in three tissues of different sample sizes: Muscle -
Skeletal (N = 706), Brain - Substantia nigra (N = 114), Pancreas (N = 305). C) The absolute allelic fold change distribution for trans-eQTLs. D-E)
Number of eGenes as a function of sample size for different thresholds of absolute allelic fold change.

7.2 cis-sQTL effect size

The allelic fold change approach is not easily transferable to splicing quantifications. Thus, for cis-sQTL effect sizes we simply used
the linear regression effect size β that lacks the biological interpretability of a fold change. Comparison of this to aFC calculated
from ASE data of cis-QTL heterozygotes indicates the extent to which ASE data reflects different genetic regulatory effects in cis.
The cis-eQTL β is highly correlated with ASE aFC, indicating that cis-eQTLs are strong drivers of allelic imbalance [10]. However,
cis-sQTLs could cause ASE only in the parts of the transcript that are affected by the splicing change, and this does not manifest
in overall ASE data (fig. S15).
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phenotypes I haven’t taken the time to try to pair ASE data from specific relevant exons 
with sQTLs. It’s possible that doing this may yield a stronger correlation, but it’s not 
something I really have time to look into.  With respect to the sign of the correlation, for 
the most part the sQTLs seem to be negatively correlated with ASE data. I’m not entirely 
sure why that is, but I imagine it has to do with the leaf cutter phenotypes.

Extended Results

Per Tissue

sQTL ASE Correlation

Background

We’ve previously shown strong correlation between the eQTL effect size and ASE effect 
size. For V8 were interested in performing the same analysis with sQTLs. The general 
question being, how much of observed allelic imbalance arises as a result of sQTLs?

Method

Using phASER I generated gene level ASE aFC estimates in QTL hets for all top significant 
(FDR < 5%) eQTLs and sQTLs. Then for each tissue, I Spearman correlated fastQTL effect 
sizes with the ASE aFC. Note, a 1:1 correlation is not expected here because for this 
analysis I haven’t calculated aFC for the QTLs, since there is no way to do this at the 
moment for sQTLs.

Results

Overall

Per Tissue
See end of document.

Discussion

From the results it’s clear that at least at gene level ASE is not strongly correlated with the 
top  sQTL for that gene. Due to the somewhat abstract nature of the leaf cutter 

A B

C D

Fig. S15. Correlation of allelic expression and cis-QTL effects. A-B) Correlation of adipose subcutaneous allelic fold change calculated from
allelic expression data. A) cis-eQTL allelic fold change calculated from expression data, and B) cis-sQTL linear regression β. The small but
significant negative correlation in cis-sQTLs is likely due to the direction of the splicing change being difficult to define, since LeafCutter captures
complex features of inclusion/exclusion of different parts of the gene. C-D) Distribution of correlation coefficients from different tissues.

7.3 ASE validation of interaction eQTLs

Since ASE data capture cis-eQTL effects, they can be used for an orthogonal internal validation analysis. In addition to calculating
cis-eQTL aFC as a median of allelic imbalance in individuals heterozygous for the eVariant (Section 7.1), it is also informative to
calculate this for all the individuals that are heterozygous for the eVariant. This is particularly useful for validation of interaction
eQTLs (Sections 8, 9, 15), where correlation between the eQTL interaction factor and aFC of the individuals heterozygous for the
eQTL provides additional validation of the eQTL interaction (fig. S16). This analysis does not require the eVariant and coding
variants (used to measure ASE) to be in high LD, although frequent phasing errors will reduce power. We used the phASER
haplotype-based ASE data for genes with ≥10 eQTL heterozygote individuals with ≥8 reads of ASE data per gene, discussed
in further detail in [17]. It should be noted that since ASE data can be sparse, the ASE replication p-values can be poor due to
the small number of individuals or due to very noisy individual aFC estimates if read counts are low. In the replication of sex- and
population-biased cis-eQTLs, where we compare the effect size of two classes of individuals, the aFCs for the eQTL heterozygotes
were compared with a Wilcoxon rank sum test, and for the cell type interacting eQTLs we used Spearman correlation. Covariates
or potential collinear factors were not included in the ASE replication analysis, since we only tested a single interaction term, which
the ASE analysis is expected to capture.
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Fig. S16. Illustration of interaction cis-eQTL validation with ASE. A) Schematic illustration of a cis-eQTL where the effect size is positively
correlated with an interaction term. While this example shows a continuous effect (such as cell type enrichment), the approach is also applicable
to discrete factors such as sex or population category. B) For eQTL heterozygotes, the extent of allelic imbalance, calculated from ASE of each
individual, should correlate with the interaction term. Here, eQTL heterozygotes on the left hand side, with no eQTL effect, should display no
allelic imbalance, and individuals on the right hand side, for which the eQTL effect is present, should show allelic imbalance.

8 Sex-biased cis-eQTL mapping

To identify cis-eQTLs with a potential sex bias, we tested the set of conditionally independent cis-eQTLs for an interaction between
sex and genotype. We excluded sex-specific tissues and restricted our analysis to the 44 tissues shared between males and
females. We considered variants with MAF ≥0.05 in the corresponding tissue, and in total tested 491,693 eQTLs corresponding
to 30,121 genes and 273,041 variants across the 44 tissues. Specifically, we fitted the model

yi = β0 + β1sex + β2genotype + β3sex× genotype + λC + ε

where yi is the expression of gene i and the matrix C contained the same set of covariates and PEER factors used to map
eQTLs. To identify sex-biased cis-eGenes, we selected the minimum β3 p-value for each gene, and applied Bonferroni correction
by multiplying this p-value by the number of independent cis-eQTLs discovered for the gene. We then computed q-values [73]
for gene-level FDR control based on these Bonferroni-corrected minimum p-values per gene, and used a FDR ≤ 25% threshold
to identify genes with at least one significant sb-eQTL, in each tissue. We used ASE data to validate sb-eQTLs (Section 7.3)
by calculating aFC from the ASE data (ASE-aFC) for individuals of each sex, and used the Wilcoxon rank sum test to identify
differences in ASE-aFC between males and females (sex ∆aFC). We used the π1 statistic to quantify validation (fig. S17). We
note that the interaction analysis above can capture effects that are correlated with sex, such as cell type composition. This effect
is analyzed and discussed in detail in [22].
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Fig. S17. Sex-biased eQTLs (sb-eQTLs). A) Distribution of sex ∆aFC Wilcoxon rank sum test P-values for significant (FDR ≤ 25%) sb-
eQTLs and the corresponding π1 statistic. B) Comparison of rs2273535-AURKA aFC values between female and male skeletal muscle samples
(Wilcoxon rank sum test). C) Regional plot of the AURKA gene locus. The association P-values for the skeletal muscle eQTL signal for variants
within 250 kilobases of the TSS of AURKA are shown for females and males. Variants are color-coded by linkage disequilibrium (r2) with the lead
AURKA sb-eQTL variant rs2273535.

9 Population-biased cis-eQTL mapping

We conducted a systematic approach to characterize population differences in effect sizes of cis-eQTLs in individuals of European
and African ancestry. We defined European Americans (EA, n = 588) and African Americans (AA, n = 86) as the subset of self-
reported White and Black or African American individuals that grouped together tightly according to genotype principal components
1 and 2. We restricted our analysis to 31 tissues with more than 20 individuals from both groups.

We aimed to find significant protein-coding or lincRNA eGenes in GTEx where the cis-eQTL effect size is different between EA
and AA, which we call population-biased eQTLs (pb-eQTLs). For each tissue, we analyzed the lead cis-eVariants for all significant
eGenes with an additional filter of MAF > 10% in both groups. We measured cis-eQTL effect size in EA and AA using allelic fold
change (aFC), which is robust to differences in allele frequency and expression level. We applied it with and without covariates.
Of note, to obtain separate covariates for EA and AA samples, we processed gene expression data separately for EA and AA
individuals, as described in Section 3.4 and 3.5.1, using 5 PEERs for < 40 samples and 10 PEERs for ≥ 40 and < 70 samples.
We excluded gene-variant pairs if aFC using covariates was not within the confidence interval for aFC computed without covariates
or vice versa, and constrained aFC to ± log2(100). To test for the significance of ∆aFC (difference of aFC estimates between EA
and AA), we permuted the ancestry group labels 100,000 times. We calculated the permutation p-value as the proportion of
permuted ∆aFC as extreme as or more extreme than the true ∆aFC, followed by Benjamini-Hochberg correction to account for
multiple testing, using FDR < 25%.

We formed a conservative high-confidence set of pb-eQTLs by using stringent filters to remove differences potentially explained
by LD or other artifacts summarized in fig. S18. The set included 1) pb-eQTLs where the eQTL effect in EA and AA was consistent
but of different magnitude, or 2) pb-eQTLs where there was no strong eQTL effect in one of the populations. Firstly, eQTL mapping
was performed separately in EA and AA groups on separately processed gene expression data and covariates to find the eVariants
with the lowest P-value in each group, denoted as eVariantEA and eVariantAA, respectively, as well as in the standard eQTL mapping
of the entire sample (eVariantall). For 1) all of the following criteria needed to be met: a) eVariantEA and eVariantAA are in strong
LD (r2 > 0.6) with the eVariantall, b) the difference in effect size replicates using eVariantEA and eVariantAA (permutation P-value
of ∆aFC is < 0.05 for both), and c) ∆aFC is similar for eVariantall, eVariantEA and eVariantAA (maximum difference of 1, or even
stronger effect in the right direction for ∆aFC for eVariantEA or eVariantAA). For 2) the following criteria needed to be met: a) very
low LD (r2 < 0.1) between eVariantEA and eVariantAA and eVariantall, and b) no strong eQTL signal in either EA or AA (nominal
P-value of eVariantEA and eVariantAA > 0.001).

We used ASE data to validate pb-eQTLs, as described in Section 7.3. We used the Wilcoxon rank sum test to test for
the difference in ASE aFC between EA and AA. To quantify the validation rate, we calculated the proportion of pb-eQTLs with
Wilcoxon p-value < 0.05, and estimated the concordance between ∆aFC and ∆ASE-aFC (fig. S18).

We note that even in the case of robust, replicating pb-eQTLs, the causes for the difference in effect size are not known, and
include environmental and genetic interactions as well as differences in cell type composition.
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Fig. S18. Population-biased cis-eQTLs (pb-eQTLs). A) Filtering steps to compose the high-confidence set of pb-eQTLs that are not artifacts
of LD differences between European (EA) and African Americans (AA) (see text for description). B) Regional plot of a pb-eQTL association
in esophagus mucosa for SLC44A5. Genetic variants within 250 kilobases of the TSS of the SLC44A5 gene are plotted for EA and AA, with
LD calculated using the respective population group. rs460628 is the eVariant with lowest P-value in EA and AA. C) Validation of pb-eQTL for
SLC44A5 in esophagus mucosa using ASE data. The box plots show the ASE aFC (x-axis) distribution in EA and AA. D) Validation of pb-eQTLs
using ASE aFC. Histogram of the Wilcoxon P-values testing the difference in ASE aFC between EA and AA (left panel) and scatter plot of ∆aFC
and ∆ASE-aFC (right panel). E) Tissue sharing of pb-eQTL signals. ∆aFC was calculated for every high-confidence pb-eGene across 31
tissues (choosing one variant per eGene). Tissue sharing patterns of ∆aFC are illustrated on a heatmap. Euclidean distance was used as the
distance measure, with a complete-linking clustering method. Gray tiles indicate cases where it was not possible to calculate aFC for a given
pb-eGene and pb-eVariant pair in a specific tissue, due to a low number of samples or if the aFC estimate reached the cap value (± log2(100)).
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10 Genomic annotation data

The standard functional annotation was performed on all variants in the pre-QC WGS VCF using Ensembl’s Variant Effect Predictor
(VEP) and Loss-Of-Function Transcript Effect Estimator (LOFTEE) (VEP v85, GENCODE v26) implemented in Hail v0.1. The
annotations were added to a sites-only VCF with all 866 samples pre-sample QC, and a total of 69,763,935 sites (including
monomorphic sites).

For regulatory annotation of the variants, we primarily used the Ensembl Regulatory Build [82] that has compiled and re-
analyzed data from ENCODE, Epigenomics Roadmap, and other projects. This includes 1) annotation of regulatory features
(enhancer, promoter, etc) and their activity in each analyzed tissue and cell type; 2) peaks of transcription factor binding and
DNAseI hypersensitivity; and 3) transcription factor motif overlap.

In analyses of tissue-sharing of regulatory activity, the Epigenomics Roadmap data and chromatin state annotation provided a
substantially better overlap with GTEx tissues than chromatin states available in the Regulatory Build. Thus, in some analyses, as
indicated below, we used the ROADMAP core 15-state model (https://egg2.wustl.edu/roadmap/web_portal/chr_state_
learning.html).

We matched the ENCODE and Epigenomics Roadmap tissues and cell types to GTEx tissues as described in table S3.

GTEx tissue Epigenomics roadmap biospecimen ENCODE biospecimen
Adipose_Subcutaneous Adipose Nuclei (E063) NA
Adipose_Visceral_Omentum Adipose Nuclei (E063) NA
Adrenal_Gland Fetal Adrendal Gland (E080) NA
Artery_Aorta Aorta (E065) NA
Brain_Anterior_cingulate_cortex_BA24 Brain Cingulate Gyrus (E069) NA
Brain_Caudate_basal_ganglia Brain Anterior Caudate (E068) NA
Brain_Cerebellum NA astrocyte of the cerebellum
Brain_Cortex Brain Angular Gyrus (E067),

Brain Inferior Temporal Lobe (E072),
Brain Dorsolateral Prefrontal Cortex (E073)

SK-N-MC

Brain_Frontal_Cortex_BA9 Brain Inferior Temoral Lobe (E072),
Brain - Dorsolateral Prefrontal Cortex (E073)

NA

Brain_Hippocampus Brain Hippocampus Middle (E071) NA
Brain_Spinal_cord_cervical_c-1 NA astrocyte of the spinal cord
Brain_Substantia_nigra Brain Substantia Nigra (E074) NA
Breast_Mammary_Tissue Breast Myoepithelial Primary Cells (E027) T47D
Cells_EBV-transformed_lymphocytes Lymphoblastoid Cells (E116) NA
Colon_Sigmoid Sigmoid Colon (E106) NA
Colon_Transverse Colonic Mucosa (E075),

Colon Smooth Muscle (E076)
DLD1

Esophagus_Gastroesophageal_Junction Esophagus (E079) NA
Esophagus_Mucosa Esophagus (E079) NA
Esophagus_Muscularis Esophagus (E079) NA
Heart_Atrial_Appendage Right Atrium (E104) NA
Heart_Left_Ventricle Left Ventricle (E095) NA
Kidney_Cortex Fetal Kidney (E086) Caki2
Kidney_Medulla Fetal Kidney (E086) NA
Liver Liver (E066) endothelial cell of

hepatic sinusoid
Lung Lung (E096) NCI-H460
Muscle_Skeletal Skeletal Muscle Male (E107),

Skeletal Muscle Female (E108)
SJCRH30

Ovary Ovary (E097) NA
Pancreas Pancreas (E098) Panc1
Prostate NA LNCaP clone FGC
Skin_Not_Sun_Exposed_Suprapubic NHDF-Ad Adult Dermal Fibroblast Primary Cells (E126) NA
Skin_Sun_Exposed_Lower_leg NA RPMI-7951
Small_Intestine_Terminal_Ileum Small Intestine (E109) NA
Spleen Spleen (E113) NA
Stomach Stomach Mucose (E110), Stomach Smooth Muscle (E111) NA
Uterus NA endometrial microvascular

endothelial cells
Whole_Blood Primary mononuclear cells from peripheral blood (E062) NA

Table S3. Pairing of GTEx, ENCODE and Epigenomics Roadmap tissues and cell lines.

11 Fine mapping of cis-eQTLs

11.1 Fine mapping methods

Three fine-mapping methods were applied to the cis-eQTL data to produce estimates of the causal SNPs: CaVEMaN, CAVIAR
and dap-g. The methodologies behind these three methods have been documented elsewhere [30–32], but in brief: CaVEMaN is

https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
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based on a non-parametric resampling approach where the properties of causal variants are estimated from simulation studies;
the CAVIAR method estimates causal posterior probabilities for specific variants using eQTL summary statistics and the linkage
structure in the GTEx genotype data; while dap-g is a computational algorithm designed for Bayesian multi-SNP genetic associ-
ation analysis which employs a spike-and-slab prior model to select potential multiple independent cis-eQTLs in eQTL mapping,
exploring highly plausible association models in an efficient and fully automatic way.

The CaVEMaN and CAVIAR approaches used the results of the cis-eQTL mapping to identify a set of genes in each tissue
with a cis-eQTL, and the methods were only run on these sets of genes. CaVEMaN further used the conditional analysis to identify
the number of independent cis-eQTLs for each gene (as in Section 4.5), and used the methodology previously designed to create
“single signal” phenotypes. In this way for each independent cis-eQTL identified by the conditional analysis, CaVEMaN reports the
most likely causal variant along with the causal probability. CAVIAR maps independent cis-eQTLs as part of the algorithm, for each
gene it reports the expected number of cis-eQTLs and for each gene-variant pair in the cis-window it reports the probability that
variant has a causal effect on the expression of that gene. Dap-g in contrast identifies all cis-eQTLs as part of the algorithm and
thus was applied to all genes. For each gene within each tissue, clusters of variants are identified, corresponding to independent
cis-eQTL signals (see Section 4.5). The causal probability of each cluster is calculated by summing probabilities of individuals
variants. Then, a set of significant clusters, controlling the local false discovery rate at 5%, was called by taking the largest set of
clusters for which the mean causal probability is greater than 95%.

Fig. S19 shows the size of the 90% credible set for dap-g: the number of variants necessary to have a greater than 90%
probability that the causal variant is among them. The distribution is highly long tailed, in some eQTLs including thousands of
SNPs. However, for most eQTLs the credible set is small, and the median size is 6 variants.

Fig. S19. Fine-mapping credible sets. The size of the 90% credible set for cis-eQTLs of each tissue based on dap-g.

The consensus set of high confidence causal variants was created by extracting the most likely causal variant for each of the
independent eQTLs for both CaVEMaN and dap-g, and the most likely causal variant for CAVIAR. The consensus set consisted of
the set of gene-tissue-variant trios where the causal probability was greater than 0.8 in all three methods (fig. S20). We identified
24,740 tissue-gene-variant trios that have high causal probability in all three methods.



32

Fig. S20. Fine-mapping consensus set. The numbers and overlap of causal gene-tissue-variant trios with causal probability greater than 0.8
according to the different methods.

11.2 Experimental validation

For experimental validation of the cis-eQTL fine-mapping results, we used two large-scale screens of regulatory variants, MPRA
data set from lymphoblastoid cell lines [33] and SuRE data set from K562 and HepG2 cell lines [34]. For single SNP analysis, we
annotated the top associated SNP in an eGene as its sole causal eQTL. Both experimental validation datasets (MPRA and SuRE)
utilized p-values to characterize the success of validation for individual SNPs. We employed an EM algorithm (implemented in the
software package torus [83]) to infer the latent validation status based on observed p-values and explicitly incorporate the causal
eQTL annotations from various computational approaches. This analysis yielded an estimate of log-odds ratio and a corresponding
95% confidence interval for each computational annotation, which quantifies the increased likelihood of an annotated SNP being
validated in each experiment in contrast to an unannotated SNP.

11.3 Fine-mapped cis-eQTL for CBX8

eQTL variants are enriched in cis-regulatory elements and can co-localize with GWAS loci, and in such loci fine-mapping of the cis-
eQTL can help pinpoint the causal genetic variant(s) and the functional mechanism(s). With fine-mapping approaches narrowing
our focus to a set of variants which are likely causing the cis-eQTL effects, functional annotations can help suggest mechanisms
for those variants.

First, we annotated fine-mapped variants to find loci where at least one variant overlaps a TF binding site based on ChIP-
seq data and disrupts the TF motif, using 74 TFs from ENCODE (see Section 10). To this end, transcription factor binding
motif information was downloaded from HOCOMOCO v11 and was filtered only for motifs with an A or B quality score (265
TF/motif pairs). Motifs and reverse complement motifs were translated into regex expressions, and lowercase (lower certainty)
motif characters were allowed to be any base. We searched the region within 50 bases of each fine-mapped SNP for each
motif and reverse complement motif using grep, as well as the same region with the alternative instead of reference allele. We
intersected this list of potentially TF binding disrupting variants with those that were putative causal eVariants (in the Caviar 90%
confident set), and where the eQTL effect size (quantified by allelic fold change) had a significant Spearman correlation with the
TF expression level. This resulted in 964 loci, and of these, we focused on nine loci where the eQTL colocalized with at least one
GWAS signal (ENLOC rcp > 0.5).

In Fig. 3, we show results of a potential transcription factor (TF) mechanism of a cis-eQTL for the CBX8 (Chromobox 8,
ENSG00000141570) gene. It has significant cis-eQTLs in multiple tissues, and the cis-eQTL with the largest effect size is found
in lung. The lung cis-eQTL signal for CBX8 co-localized with two GWAS traits: UKB birth weight and BCAC overall breast cancer
(EUR) (ENLOC rcp=0.674 and 0.678, respectively). These GWAS signals had p-values of 2.7e-5 and 4.1e-6, respectively, and
another study has found a genome-wide significant breast cancer association in this locus [84].

. Furthermore, CBX8 has been implicated in various cancers, including breast cancer [85–87].
Caviar detected three SNPs in the 90% confidence set for the CBX8 Lung cis-eQTL: rs9905914, rs1105820, and rs9896202

(Fig. 3). ChIP-seq peak and transcription factor (TF) overlap is depicted for each SNP and its 50-base-flanking region (fig. S21).
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rs9896202 is the only SNP that overlaps both a motif and a ChIP-seq peak for the same TF: EGR1 (Early growth response 1). In
order to further analyze the potential role of EGR1 in the activity of this cis-eQTL, we investigated the relationship between eQTL
effect size and EGR1 expression across tissues. If differential binding of EGR1 to the reference and alternative alleles is causing
the cis-eQTL effect on CBX8 expression, it is reasonable to expect that there will be a relationship between cis-eQTL effect size
and EGR1 activity or its proxy expression level across tissues. For rs1105820, we calculated effect sizes in each tissue using the
allelic fold change (aFC) statistic. We calculated median EGR1 expression (TPM) across individuals in each tissue, and then the
Spearman correlation of median EGR1 expression with the cis-eQTL aFC across tissues. The two measures were significantly
correlated (Fig. 3; Spearman rho=-0.69, p=1.3e-7). Based on Hocomoco v11 EGR1 binding models, the rs9896202 alternative
allele is expected to enhance EGR1 binding, and this allele was associated with decreased expression of CBX8. This would
suggest that EGR1 binding at this locus may repress CBX8 expression.
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rs9905914 chr17:79798269 T>C rs1105820 chr17:79799519 G>A rs9896202 chr17:79804428 T>C

Fig. S21. Fine-mapping and functional analysis of CBX8 cis-eQTL. Transcription factor ChIP-seq peak (dark gray bar) and motif (blue box)
overlap is depicted for three fine-mapped SNPs (red line) for the CBX8 lung cis-eQTL, with 50 bases of flanking region on either side of the SNP.
ChIP-seq bars are collapsed across experiments for the same transcription factor. *denotes a transcription factor for which the ChIP-seq peak
and motif information were both available. rs9896202 (right) is the only SNP that overlaps both a motif and a ChIP-seq peak for the same TF,
EGR1 (Early growth response 1).

12 Functional mechanisms

12.1 Enrichment in genomic annotations

Functional enrichment analyses were performed using torus [83], with the annotations described in Section 10 and the command
torus -d ${qtl_statistics} -annot ${annotation_file} -est --fastqtl. For enrichment of trans-eQTL variants, we
combined the 162 intra-chromosomal variant-gene pairs discovered at 0.05 FDR across tissues, selected a random set of 5 million
total background variants matched to the MAF of each variant (binning variants in the VCF into 50 bins between 0.01 and 0.5 MAF),
excluding variants on the same chromosome as the gene in each pair, and computed the p-values and effect sizes as described
in Section 4.6 in the corresponding tissue. For trans-eQTL enrichment, the option --no_dtss was added to ignore distance to the
TSS.

12.2 cis-eQTL-sQTL overlap

We investigated the overlap of cis-eQTLs and cis-sQTLs by comparing the overlap of the 90% credible sets of likely causal variants
based on CAVIAR. For all the genes that had both an eQTL and and sQTL in cis, we calculated the proportion (# eVariants in
eQTL & sQTL credible sets) / (# eVariants in the eQTL credible set).

The cross-tissue median of mean overlap was 0.12. We observed that across the tissues, a median of 46.2% (range 39.4%
– 54.9%) of eQTL credible sets had zero overlap with likely causal sQTL variants. This proportion was inversely correlated with
effect size (Spearman ρ = -0.72, p = 1.9e-09), probably due to better power of defining the credible sets in larger tissues. Fig.
S22 shows the cumulative distribution of sharing proportions for three tissues of different sizes. These results show that variants
affecting gene expression and splicing are mostly distinct.
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Fig. S23. cis-eQTL enrichment in topologically associated domains (TADs). A-B) Examples of the proportion of cis-eQTLs and null variants
that occur in the same TAD as their target gene, as a function of absolute distance from TSS (in log10 basepairs). The title indicates the
ENCODE cell line and the GTEx tissue name. C) Distribution of odds ratios of cis-eQTL enrichment in the same TAD, compared to null variants
and including distance from TSS in the model, and calculated for each tissue with a matching ENCODE cell type.

12.3 TAD enrichment

We analyzed the enrichment of independent cis-eVariant-eGene pairs being in the same topologically associated domain (TAD).
TAD data based on Hi-C was downloaded from ENCODE using all data released prior to May 2016, with non-overlapping single-
scale TADs called by ENCODE. The coordinates were lifted over from hg19 to hg38 using the UCSC liftOver tool. We matched 13
pairs of ENCODE cell types to GTEx tissues (table S3). Within each tissue, we compared all the top variants of each independent
cis-eQTL to a null of a random selection of 1M variants per tissue, selected from the 1Mb window for the genes that were tested for
cis-eQTLs in that tissue. Fig. S23 shows examples of the proportion of variants that are within the same TAD for real eQTLs and
for the null, demonstrating that due to the large size of TADs, only at distances>100kb are a reasonable proportion of variant-gene
pairs not within the same TAD. We analyzed the enrichment of eQTLs being in the same TAD with logistic regression: SameTAD ~
eQTL + |TSSdistance| + eQTL*|TSSdistance|, where SameTAD is an indicator for whether a variant-gene pair is in the same TAD,
eQTL is an indicator whether the variant-gene pair is an eQTL or a null, and |TSSdistance| is the absolute distance between the
variant and the gene’s TSS.
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12.4 cis-QTL contribution to trans-QTLs

12.4.1 cis-QTL enrichment among trans-QTLs

To test the enrichment of trans-e/sGenes that have cis-QTLs, we took the trans-e/sGenes at FDR < 0.05, and analyzed their lead
e/sVariant. A set of SNPs were randomly sampled to match for MAF of the trans-e/sVariants. We checked whether each of these
SNPs was a) tested in cis analysis in the matched tissue and b) identified as a cis-QTL with any gene in the matched tissue.

12.4.2 trans-QTL mediation analysis

We tested mediation for trans-QTLs that also had a cis-QTL for the corresponding lead trans-eVariant in the matched tissue using
two-stage least squares (TSLS). We first performed ridge regression (α = 100) to estimate the effect of genetic variation on the
cis-eGene or sGene. Next, we used the learned regression coefficients to predict the expression or intron excision ratio of the
cis-e/sGene for each individual, followed by a second regression to calculate the causal effect size of the cis-e/sGene’s predicted
expression on the trans-e/sGene’s measured expression or intron excision ratio. These steps were computed as follows:

x = βcis
TZ + ε1

x̂ = βcis
TZ

y = βTSLSx̂ + ε2

where Z is the matrix of all variants within 1Mb of cis-e/sGene TSS, x is cis-e/sGene expression level or intron excision ratio, y is
trans-e/sGene expression level, and x̂ is the predicted expression of the cis-e/sGene. Note that the gene expression values x,y
were orthogonalized with respect to the covariates used in association mapping. A matched set of βTSLS statistics were generated
with permuted trans-e/sGene levels, using 100 permutations per real trio, and FDR was assessed based on these empirical p-
values using q-values [73]. For splicing QTLs, the βTSLS p-values were adjusted by the number of phenotypes available for the
sGene. The proportion of trans-eQTLs that are significant cis-eQTLs or mediated by cis-eQTLs is shown in Fig. 4D, the proportion
of trans-eQTLs that are significant cis-sQTLs or mediated by cis-sQTLs is shown in fig. S24A, and the proportion of trans-sQTLs
that are significant cis-eQTLs or mediated by cis-eQTLs is shown in fig. S24B.
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Fig. S25. Genome-wide colocalizations of cis-eQTLs mediating trans-eQTLs. A) Number of colocalizations (PP4 > 0.8 and nominal
association with eVariant p < 10−5) for cis-mediators of trans-eGenes and for randomly selected cis-eQTLs. B) Colocalized cis-eQTLs and
trans-eQTLs (PP4 > 0.8) shown for all cis-eQTLs (indicated by gene names) with ≥5 colocalizing trans-eQTLs (nominal association with
discovery trans-eVariant p < 10−5). The color coding indicates tissues.

12.4.3 Colocalization of cis- and trans-QTLs

To identify additional trans-associations (that did not pass the genome-wide significance threshold for discovery) for the cis-
regulating genes identified through mediation analysis (Section 12.4.2), we computed colocalization with coloc (using default
priors). We used the 40 cis-eGenes that passed 0.05 FDR in mediation analyses, and computed colocalizations for all inter-
chromosomal combinations (for genes with average mappability> 0.8, based on 75-mer mappability with at most two mismatches),
using a ±1Mb window around the corresponding eVariant. Candidate trans-associations were retained if the posterior probability
of colocalization (PP4) was greater than 0.8, and if the nominal association p-value for the discovery trans-eVariant was < 10−5.
To determine the extent to which this approach may produce false positives, we repeated this analyses for a background set of
100 randomly chosen cis-eGenes in each tissue. We observed no associations for a majority of background cis-eGenes, with
at most two associations that passed these thresholds (fig. S25A). Cis-mediating genes that were identified through mediation
analysis but did not colocalize (PP4 < 0.8) with the corresponding trans-eGene were excluded. In total, this analysis yielded 248
associations across 15 tissues; the cis-eGenes for which ≥5 associations were found are summarized in Fig. 4E and visualized
in (fig. S25B).

13 Complex trait associations

13.1 GWAS summary results

To investigate the downstream effects of QTL loci using resources from the GTEx Consortium, we first obtained the list of GWAS-
significant SNPs from the GWAS catalog [88] (downloaded on 9/7/2018) containing 80,727 entries. Additionally, we selected GWAS
of 87 phenotypes covering a broad array of categories including anthropometric, cardio-metabolic, immune, blood, psychiatric, and
neurologic traits [89–109] (table S4), and downloaded full sets of summary results from each GWAS consortium or study group;
URLs and additional information is available in table S11.

We harmonized, lifted genomic coordinates over to hg38, and imputed z scores for all missing variants using our own imple-
mentation of BLUP [110,111] (Best Linear Unbiased Prediction). Imputation was performed within approximately independent LD
regions [46], using correlation matrices calculated with GTEx genotype data from European individuals (to reflect the LD structure
in the GWAS, predominantly conducted on European populations). This imputation ensured that all common variants in GTEx (i.e.,
with MAF > 0.01) were represented in the GWAS results. For a detailed description of the summary statistics processing, see [41].
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Category Phenotype Abbreviation Sample Size

Psychiatric-neurologic CNCR Insomnia all INSOMN 113006
Psychiatric-neurologic IGAP Alzheimer AD 54162
Psychiatric-neurologic Jones et al 2016 Chronotype CHRONO 128266
Psychiatric-neurologic Jones et al 2016 SleepDuration SLEEP 128266
Psychiatric-neurologic PGC ADHD EUR 2017 ADHD 53293
Psychiatric-neurologic pgc.scz2 SCZ 150064
Psychiatric-neurologic SSGAC Depressive Symptoms DEPR 180866
Psychiatric-neurologic SSGAC Education Years Pooled EDU 293723
Psychiatric-neurologic UKB 1160 Sleep duration SLEEP_UKB 337119
Psychiatric-neurologic UKB 1180 Morning or evening person chronotype CHRONO_UKB 337119
Psychiatric-neurologic UKB 1200 Sleeplessness or insomnia INSOMN_UKB 337119
Psychiatric-neurologic UKB 20002 1243 self reported psychological or psychiatric problem PSY_UKBS 337119
Psychiatric-neurologic UKB 20002 1261 self reported multiple sclerosis MS_UKBS 337119
Psychiatric-neurologic UKB 20002 1262 self reported parkinsons disease PD_UKBS 337119
Psychiatric-neurologic UKB 20002 1265 self reported migraine MIGR_UKBS 337119
Psychiatric-neurologic UKB 20002 1289 self reported schizophrenia SCZ_UKBS 337119
Psychiatric-neurologic UKB 20002 1616 self reported insomnia INSOMN_UKBS 337119
Psychiatric-neurologic UKB 20016 Fluid intelligence score FIS_UKB 337119
Psychiatric-neurologic UKB 20127 Neuroticism score NEUROT_UKB 337119
Psychiatric-neurologic UKB G40 Diagnoses main ICD10 G40 Epilepsy EPI_UKB 337119
Psychiatric-neurologic UKB G43 Diagnoses main ICD10 G43 Migraine MIGR_UKB 337119
Anthropometric EGG BW3 EUR BW 143677
Anthropometric ENIGMA Intracraneal Volume ICV 30717
Anthropometric GEFOS Forearm BMD 49988
Anthropometric GIANT HEIGHT HEIGHT 253288
Anthropometric UKB 20022 Birth weight BW_UKB 337119
Anthropometric UKB 21001 Body mass index BMI BMI_UKB 337119
Anthropometric UKB 23099 Body fat percentage FAT_UKB 337119
Anthropometric UKB 50 Standing height HEIGHT_UKB 337119
Cardiometabolic CARDIoGRAM C4D CAD ADDITIVE CAD 184305
Cardiometabolic MAGIC FastingGlucose FG 46186
Cardiometabolic MAGIC ln FastingInsulin INSUL 38238
Cardiometabolic MAGNETIC CH2.DB.ratio CH2 24154
Cardiometabolic MAGNETIC HDL.C HDLC 19270
Cardiometabolic MAGNETIC IDL.TG IDL 21559
Cardiometabolic MAGNETIC LDL.C LDLC 13527
Cardiometabolic UKB 20002 1065 self reported hypertension HPT_UKBS 337119
Cardiometabolic UKB 20002 1094 self reported deep venous thrombosis dvt DVT_UKBS 337119
Cardiometabolic UKB 20002 1223 self reported type 2 diabetes T2D_UKBS 337119
Cardiometabolic UKB 20002 1473 self reported high cholesterol HC_UKBS 337119
Cardiometabolic UKB 6150 1 Vascular or heart problems diagnosed by doctor Heart attack MI_UKB 337119
Cardiometabolic UKB 6152 5 diagnosed by doctor Blood clot in the leg DVT DVT_UKB 337119
Cardiometabolic UKB 6152 7 diagnosed by doctor Blood clot in the lung PE_UKB 337119
Blood Astle et al 2016 Eosinophil counts EC 173480
Blood Astle et al 2016 Granulocyte count GC 173480
Blood Astle et al 2016 High light scatter reticulocyte count HRET 173480
Blood Astle et al 2016 Lymphocyte counts LC 173480
Blood Astle et al 2016 Monocyte count MC 173480
Blood Astle et al 2016 Myeloid white cell count MWBC 173480
Blood Astle et al 2016 Neutrophil count NC 173480
Blood Astle et al 2016 Platelet count PLT 173480
Blood Astle et al 2016 Red blood cell count RBC 173480
Blood Astle et al 2016 Reticulocyte count RET 173480
Blood Astle et al 2016 Sum basophil neutrophil counts BNC 173480
Blood Astle et al 2016 Sum eosinophil basophil counts EBC 173480
Blood Astle et al 2016 Sum neutrophil eosinophil counts NEC 173480
Blood Astle et al 2016 White blood cell count WBC 173480
Cancer BCAC ER negative BreastCancer EUR ERNBC 120000
Cancer BCAC ER positive BreastCancer EUR ERPBC 120000
Cancer BCAC Overall BreastCancer EUR BC 120000
Allergy EAGLE Eczema ECZ 116863
Allergy UKB 20002 1111 self reported asthma ATH_UKBS 337119
Allergy UKB 20002 1452 self reported eczema or dermatitis ECZ_UKBS 337119
Immune IBD.EUR.Crohns Disease CD 20833
Immune IBD.EUR.Inflammatory Bowel Disease IBD 34652
Immune IBD.EUR.Ulcerative Colitis UC 27432
Immune IMMUNOBASE Systemic lupus erythematosus hg19 SLE 23210
Immune RA OKADA TRANS ETHNIC RA 80799
Immune UKB 20002 1222 self reported type 1 diabetes T1D_UKBS 337119
Immune UKB 20002 1313 self reported ankylosing spondylitis ASP_UKBS 337119
Immune UKB 20002 1453 self reported psoriasis PSO_UKBS 337119
Immune UKB 20002 1461 self reported inflammatory bowel disease IBD_UKBS 337119
Immune UKB 20002 1462 self reported crohns disease CD_UKBS 337119
Immune UKB 20002 1463 self reported ulcerative colitis UC_UKBS 337119
Immune UKB 20002 1464 self reported rheumatoid arthritis RA_UKBS 337119
Immune UKB 6152 8 diagnosed by doctor Asthma ATH_UKB 337119
Immune UKB 6152 9 diagnosed by doctor Hayfever allergic rhinitis or eczema HAY_UKB 337119
Aging UKB 1807 Fathers age at death FAD_UKB 337119
Aging UKB 3526 Mothers age at death MAD_UKB 337119
Digestive system disease UKB 20002 1154 self reported irritable bowel syndrome IBS_UKBS 337119
Endocrine system disease UKB 20002 1225 self reported hyperthyroidism or thyrotoxicosis HYPERTHY_UKBS 337119
Endocrine system disease UKB 20002 1226 self reported hypothyroidism or myxoedema HYPOTHY_UKBS 337119
Skeletal system disease UKB 20002 1309 self reported osteoporosis OST_UKBS 337119
Skeletal system disease UKB 20002 1466 self reported gout GOUT_UKBS 337119
Morphology UKB 2395 2 Hair or balding pattern Pattern 2 BLDP2_UKB 337119
Morphology UKB 2395 3 Hair or balding pattern Pattern 3 BLDP3_UKB 337119
Morphology UKB 2395 4 Hair or balding pattern Pattern 4 BLDP4_UKB 337119

Table S4. GWAS datasets.
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13.2 Summarizing across phenotypes and tissues (“correlated t-test”)

Many of our analyses generate one statistic for each of the 4,263 (87 × 49) phenotype/tissue pairs. These can have a complex
error structure and a wide range of standard errors largely driven by variation in sample size and correlation between tissues.
Thus, the usual iid (independent and identically distributed) assumption behind common statistical tests is not appropriate. When
summarizing across phenotypes for a given tissue, we assume independence across phenotypes, but take into account their
different standard errors. When summarizing across phenotype/tissue pairs, we allow both correlation between tissues, and
correlation between phenotypes, and correct for different standard errors. More specifically, let Stp be some statistic estimated in
phenotype p and tissue t with standard error se(Stp).

In order to summarize across phenotypes for a given tissue, for each tissue t, we summarize St1, · · · , StP by fitting the following
linear model:

Stp = µt
S + εtp (1)

εtp ∼ N(0, se(Stp)2 × σ2
t ) (2)

so that we obtain µ̂t
S and se(µ̂t

S) as the summary of St1, · · · , StP estimates aggregated across traits, which is in essence a
weighted average across phenotypes.

In order to summarize across phenotypes and tissues pairs, similarly, we summarize S11, · · · , Stp, · · · , STP by fitting the
following linear model:

Stp = µS + µt
S + µp

S + εtp (3)

µt
S ∼ N(0, σ2

T ) (4)

µp
S ∼ N(0, σ2

P ) (5)

εtp ∼ N(0, se(Stp)2 × σ2), (6)

where µt
S is a tissue-specific random intercept (this accounts for tissue-specific features common across phenotypes) and µp

S is
a phenotype-specific random intercept (this accounts for phenotype-specific characteristics and thus accounts for the correlation
between tissues for a given phenotype). The estimated µ̂S and se(µ̂S) is the average Stp across all phenotype/tissue pairs
accounting for the complex error structure.

Finally, to test whether two statistics measured across all phenotype/tissue pairs have a different mean, we proceed as follows.
First, we form the test statistic T tp := S1,tp − S2,tp which, under the null H0 : µS1

= µS2
, has T tp ∼ N(0, se(S1,tp)2 +

se(S2,tp)2). Then, we summarize T tp across all phenotype/tissue pairs (by the procedure described in the previous paragraph)
where tissue/trait-specific intercepts are introduced to account for the complex correlation structure among T tp’s. The resulting
statistic T follows T ∼ N(0, se(T )) under the null.

13.3 Enrichment of complex trait associated variants among e/sVariants

We examined whether eVariants and sVariants (e/sVariants for short) were enriched among GWAS significant variants (either
GWAS catalog variants or belonging to the 87 GWAS traits) using multiple non-overlapping lines of evidence.

13.3.1 Overrepresentation of eVariants/sVariants among GWAS catalog variants

We first investigated e/sVariant enrichment in GWAS catalog variants, comparing the proportion of significant cis-e/sVariants and
trans-eVariants (FDR<10%) among GWAS catalog variants to the proportion among all tested variants.

First, we extracted all GWAS catalog variants which were identified as GTEx v8 variants (by matching rsID). These variants
were defined as GWAS catalog variants in this analysis. Next, we defined a variant to be a cis-e/sVariant if it was identified as a
cis-e/sQTL in at least one gene/intron and one tissue. In the same manner, we defined a variant to be a trans-eVariant if it was
identified as trans-eQTL in at least one gene in some tissue. We limited this analysis to autosomal chromosomes. The counts of
e/sVariants in the GWAS catalog and among all GTEx v8 variants are shown in table S5.
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variant type tested signif fraction jackknife_est jackknife_se

cis-eVariant GWAS 44,137 27,819 0.63 0.63 0.011
cis-eVariant All 10,390,085 4,495,884 0.43 0.43 0.009

cis-sVariant GWAS 44,029 16,197 0.37 0.37 0.013
cis-sVariant All 10,299,184 2,027,766 0.2 0.2 0.007

trans-eVariant GWAS 34,406 10 0.00029 0.00029 9× 10−5

trans-eVariant All 5,154,755 215 4.2× 10−5 4.2× 10−5 3.6× 10−6

Table S5. GWAS catalog variant overlap with e/sVariants. The number of tested variants is shown under the column named tested. The
jackknife estimates of fraction for e/sVariants are shown in the jackknife_est and jackknife_se columns.

To compute the standard error of the observed fraction/fold-enrichment (defined below) of e/sVariants in GWAS catalog, we
accounted for the fact that variants included in this analysis were correlated with each other due to LD. So, we performed block
jackknife to obtain the standard error of the fraction/fold-enrichment estimate. Specifically, we ordered the list of variants by
genomic position and divided them into 200 consecutive blocks. Then, we calculated the statistic of interest by removing the
variants in ith block. This procedure gave rise to 200 delete-one statistics, θ̂(1), · · · , θ̂(200). Then, we calculated the jackknife
estimate and standard error as follows:

θ̂(·) =
1

K

K∑
i=1

θ̂(i) (7)

θ̂jack = Kθ̂ − (K − 1)θ̂(·) (8)

Var(θ̂jack) =
K − 1

K

K∑
i=1

(θ̂(·) − θ̂(i))2, (9)

where K was the number of blocks, which was set to 200 in this analysis. Specifically, we were interested in the cases for
measuring the fraction of e/sVariants among a list of variants and/or the enrichment fold of e/sVariants among GWAS catalog
variants versus the baseline. The statistics for each case is specified below:

• Fraction for variant list A:

f̂A =
number of variants in A that are e/sVariants

number of variants in A

• Enrichment of GWAS catalog variants against all variants tested:

f̂GWAS

f̂All

The jackknife estimates of enrichment are shown in Fig. 5A and table S6. Moreover, the jackknife estimate of the fraction for
e/sVariants among GWAS catalog variants is shown and compared with the fraction among all tested variants in fig. S26 (with
numbers reported in table S5).

To rule out the possibility that the enrichment was driven by shared functional features of e/sVariants and GWAS variants,
we corrected for them using QTLEnrich and stratified LDSC regression approaches as described below. Due to the sparsity of
trans-QTL data, these approaches were applied to cis-QTLs only.

variant enrichment jackknife_est jackknife_se

cis-eVariant 1.46 1.46 0.021

cis-sVariant 1.87 1.87 0.0627

trans-eVariant 6.97 6.95 2.12

Table S6. GWAS catalog enrichment among e/sVariants.
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Fig. S26. Enrichment of GWAS catalog variants among e/sVariants. We compared the fraction of cis-e/sVariants and trans-eVariants among
all GTEx variants tested (labeled as All) and among GWAS catalog variants which overlapped with GTEx variants (labelled as GWAS). The
estimated fraction and 95% confidence interval based on jackkife are shown.

13.3.2 QTLEnrich: overrepresentation of complex trait associations among cis-QTLs

To test whether cis-e/sVariants in each of the 49 tissues were enriched for genetic associations with various complex dis-
eases and traits, compared to expectation, we applied an updated version of QTLEnrich (v2) [43] ( https://github.com/
segrelabgenomics/QTLEnrich) that accounts for the increase in the number of genes with e/sVariants discovered in GTEx
v8 compared to v6p. QTLEnrich.v2 assesses the enrichment of top-ranked trait associations (GWAS p-value <0.05 used here)
among a set of significant cis-e/sVariants in a given tissue, accounting for potential confounding factors.

Briefly, an enrichment p-value was computed for each tissue/phenotype pair tested, as the fraction of 1,000 to 100,000 randomly
sampled sets of null variants (of equal size to that of the e/sVariant set), matched on three potential confounding factors relative
to the significant e/sVariants, whose fold-enrichment of top ranked phenotype associations is equal to or larger than that of the
significant set of e/sVariants. An adaptive permutation scheme was used. The confounding factors included: (i) minor allele
frequency that was computed per tissue, (ii) distance of each e/sVariant variant to the transcription start site (TSS) of the nearest
expressed gene in a given tissue, and (iii) number of LD proxy variants (r2 ≥ 0.5), computed using the European subset of
GTEx WGS samples. The null variant sets were randomly sampled from all variants within ±1Mb around the TSS of all genes
expressed in the tested tissue, excluding variants that were significant eVariants or sVariants in any of the 49 tissues analyzed in v8.
Sampling was applied to decile bins of the confounding factors with replacement. Fold-enrichment was computed as the number
of e/sVariants or null variants with a GWAS p-values below 0.05 divided by 5% of the variant set size. An adjusted fold-enrichment
was computed for each cis-e/sVariant set, as the fold-enrichment of the cis-e/sVariant set divided by the median fold-enrichment
of 1,000 randomly sampled sets of confounder-matched null variants. The most significant cis-eVariant or sVariant per eGene or
sGene, respectively (at FDR<0.05) was used to reduce potential inflation of enrichment due to local LD. QTLEnrich.v2 was applied
to 87 GWAS by 49 tissues (4,263 trait-tissue pairs). Bonferroni correction was used to determine significant tissue/phenotype
pairs (P< 1.17 × 10−5), and the adjusted fold-enrichment was used as the test statistic to rank significant tissues based on their
enrichment, as it corrects for enrichment of trait associations among matched null variants.

13.3.3 Stratified LDSC regression-based enrichment

Finally, we examined the enrichment of heritability through stratified LD-score regression (S-LDSC) in cis-e/sVariants relative to
the rest of the genome, in order to corroborate the other enrichment estimates and to analyze how incorporating fine-mapping
information affects the enrichments.

We applied three e/sVariant annotations as proposed in [45]. In particular, for each tissue, the cis-e/sVariant annotation
was defined as the set of cis-e/sVariants identified in that tissue. The fine-mapped cis-e/sVariant annotation was defined as
the set of variants within the 95% credible set in DAPG [112] with posterior inclusion probability (PIP) greater than 0.01 in
eGenes or sGenes. Moreover, we defined the continuous annotation, MaxCPP, as described in [45], based on DAPG PIP.
Specifically, DAPG MaxCPP was defined as maximum PIP of the variant over all DAPG 95% credible sets for eGenes and
sGenes, respectively, in each tissue. All annotations were lifted over to hg19 for this analysis. For each tissue, S-LDSC was
calculated using 1000G phase 3 genotypes available at https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_

https://github.com/segrelabgenomics/QTLEnrich
https://github.com/segrelabgenomics/QTLEnrich
https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_plinkfiles.tgz
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Phase3_plinkfiles.tgz (without MAF filter). S-LDSC regression for each tissue was performed within the list of HapMap3
SNPs available at https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2 with regression weights
from https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_weights_hm3_no_MHC.tgz. We analyzed
all 87 traits in all 49 tissues. For each trait/tissue pair, S-LDSC regression was performed with the baselineLD model (version
1.1) [113] along with either the e/sVariant annotation, the fine-mapped e/sVariant annotation, or DAPG MaxCPP. Furthermore, we
removed trait/tissue pairs with heritability ĥ2g not significantly greater than 0 (at α = 0.05) in subsequent analyses. For each tissue,
we calculated an average enrichment signal across all traits by the procedure described in Section 13.2, and the results are shown
in figure S27.

(A) (B)

(C) (D)

Fig. S27. Enrichment of GWAS associations across tissues. Enrichment estimates by tissue are summarized across traits (on y-axis) with
error bars representing 95% confidence intervals. Tissues are listed on the x-axis, ordered by sample size with abbreviations described in table
S8. Cis-expression results are shown in red and cis-splicing results in green. A) QTLEnrich; B) S-LDSC on the e/sVariant annotation; C) S-LDSC
on the fine-mapped QTL annotation (DAPG); D) S-LDSC on the MaxCPP annotation (DAPG).

13.3.4 Summary statistics of enrichment analysis

The fold enrichment estimates calculated in Sections 13.3.2 and 13.3.3 were meta-analyzed across tissues and traits by the
method described in Section 13.2. The resulting statistics are listed in table S7 and Fig. 5A.

https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_plinkfiles.tgz
https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_plinkfiles.tgz
https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2
https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_weights_hm3_no_MHC.tgz
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regulation enrichment enrichment_se method

cis-expression 1.43 0.0382 QTLEnrich.
cis-splicing 1.52 0.0447 QTLEnrich.

cis-expression 1.44 0.0502 S-LDSC.QTL
cis-splicing 1.56 0.0655 S-LDSC.QTL

cis-expression 2.54 0.199 S-LDSC.Finemapped
cis-splicing 3.1 0.354 S-LDSC.Finemapped

cis-expression 11.1 1.21 S-LDSC.MaxCPP
cis-splicing 14.2 2.41 S-LDSC.MaxCPP

Table S7. Enrichment of GWAS signal among cis-e/sVariants.

13.4 Calculating the joint contribution of e/sVariants to phenotype heritability

The previous analyses showed that when analyzed separately, both cis-eQTLs and cis-sQTLs contribute to GWAS. Next, we
wanted to analyze these in a joint model to evaluate their independent relative contributions to GWAS heritability, using S-LDSC
regression. The annotation-specific regression coefficient τc in S-LDSC measures the contribution of each annotation class c (e.g.,
cis-eVariant or sVariant) to the heritability of the complex trait in the joint analysis — i.e., after accounting for the contribution of
the other classes. Since the magnitude of τc also depends on the total heritability, we scaled τc by chip heritability. Specifically, we
defined Rldsc as the proportion of chip heritability that could be attributed to the eVariant or sVariant annotation. Namely, for the
cth binary annotation in the jth tissue and kth trait,

Rldsc
c,jk =

τc,jkpc,j
h2jk/M

(10)

se(Rldsc
c,jk) =

se(τc,jk)pc,j
h2jk/M

, (11)

where h2jk/M was the per-SNP heritability estimated by S-LDSC, pc,j was the proportion of SNPs lying in the annotation c for
tissue j and τc,jk was the coefficient estimate of cth annotation in the corresponding trait/tissue pair.

In order to examine the independent contribution of cis-e/sVariants to heritability, we used only eVariant, sVariant, and the
’base’ annotation including all SNPs to run S-LDSC. The rationale was that other functional annotations (genomic and epigenomic
annotations) were highly correlated with the e/sVariant annotation, and we were not interested in partitioning heritability among
these annotations. For each tissue/trait pair, we performed S-LDSC regression using the cis-e/sVariant annotation (as described in
Section 13.3.3). We computedRldsc for the e/sVariant annotations in each trait/tissue pair. Trait/tissue pairs with ĥ2g not significantly
greater than 0 (at α = 0.05) were excluded. Rldsc estimates were aggregated across traits using the procedure described in Section
13.2. The resulting aggregated Rldsc along with 95% confidence interval are shown in fig. S28.

13.5 Causal gene prioritization

To identify and prioritize candidate causal genes affecting a complex trait through transcriptome regulation in cis, we employed two
classes of methods to identify the target genes of GWAS loci. One is based on the colocalization of GWAS and cis-QTL loci —
i.e., studying whether the causal variant for the phenotype is the same as the causal variant for the molecular trait. The other class
is based on the association between the genetically regulated component of gene expression (or splicing) with the phenotype.

13.5.1 cis-QTL-GWAS colocalization: ENLOC

To identify target genes and GWAS loci of interest, we performed cis colocalization analysis on 87 GWAS traits across 49 tissues.
After extensive comparison of colocalization methods, we chose ENLOC [32] as our primary approach. The main factors leading
to this decision were the need to account for allelic heterogeneity in expression/splicing traits (Fig. 2, fig. S10), and the high
sensitivity of the methods to the prior on the enrichment of GWAS probability of causality given the cis-e/sQTL’s posterior inclusion
probability (PIP). See details in [41]. In short, ENLOC yields regional colocalization probabilities (rcp) for (GWAS region, trait,
tissue, gene) or (GWAS region, trait, tissue, intron) tuples.

First, for protein-coding and lincRNA genes in the cis-eQTL analysis, the expression levels and genotypes in the cis-window
were processed with DAPG [112]. We used individuals of European ancestry in the GTEx study and variants with MAF >
0.01 to generate eVariant enrichment estimates and variants’ posterior inclusion probabilities (PIP). The main motivation in using
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Fig. S28. Independent GWAS contribution of cis-eQTLs and sQTLs The partitioned contributions of cis-eVariants (red) and cis-sVariants
(green) to complex trait heritability were measured by Rldsc in S-LDSC regression. Here, for each tissue (on x-axis, ordered by sample size
with abbreviations described in table S8), the meta-analyzed Rldsc (across traits) are shown on y-axis, with error bars corresponding to the 95%
confidence interval.

individuals of European ancestry was to match the LD structure as closely as possible to the ones from the GWAS studies (mostly
European-based). Expression levels were corrected by the same covariates as in the main eVariant analysis.

Second, the imputed GWAS summary statistics were split into approximately LD-independent regions [46], with each region
defining a GWAS locus. Lastly, ENLOC was run for all cis-eVariant regions and overlapping GWAS loci for each trait, yielding
colocalization results for 12,662,634 (tissue, gene,GWAS locus, trait) tuples.

We found good agreement between ENLOC results based on all individuals compared to the results using Europeans only
(fig. S29A). When using the best rcp value across tissues for a gene, most colocalized genes can be detected through both
approaches.

For each trait, we counted how many GWAS loci contained a GWAS significant hit, and also contained a gene with ENLOC
colocalization rcp > 0.5. As shown in fig. S30C, across traits, a median 21% of loci with a GWAS signal contain an ENLOC colo-
calized signal. Given ENLOC’s conservative nature, we caution that rcp < 0.5 does not mean that there is no causal relationship
between the molecular trait and the complex trait; rather, it should be interpreted as a lack of sufficient evidence with current data.

We repeated this process for splicing events’ excision ratios from Leafcutter [13], for all 87 traits and 49 tissues; we did
not correct for covariates in this case. There were a few key differences with the eQTL data: the ratios within a cluster were
correlated (since they added up to 1), and the cis-sQTL summary statistics contained a significantly larger number of splicing
events than genes (4,337,796 intron-tissue pairs versus 1,207,976 gene-tissue pairs). We obtained analogous RCP and PIP
values for 82,301,739 (tissue, intron,GWAS locus, trait) tuples. We summarized the findings in fig. S31. We observed a smaller
proportion of GWAS loci containing a colocalized intron (median 11% across traits).
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Fig. S29. ENLOC on different populations. A) ENLOC regional colocalization probabilities (rcp) for genes at representative trait-tissue
combinations (CAD: Coronary Artery Disease, ATH_UKBS: Athma in UK Biobank, HEIGHT: Height in GIANT Consortium; KDNCTX: Kidney
- Cortex, BRNCHA: Brain - Cerebellum, MSCLSK: Muscle - Skeletal). We observe a general agreement for genes achieving rcp > 0.5. B)
Number of gene-phenotype pairs achieving rcp > 0.5 in at least one tissue. Most such pairs are detected in both population sets (17598), with a
small number detected only in either all individuals (623) or European individuals (378).

Fig. S30. GWAS colocalization with cis-eQTLs by ENLOC for each of the 87 GWAS traits aggregated across the 49 tissues. The traits are
ordered by the number of GWAS-significant loci (approximately independent LD regions from [46]). A) Number of colocalized genes achieving
ENLOC rcp > 0.5 in at least one tissue, for each GWAS trait. The number of colocalized results tends to increase with the number of GWAS-
significant loci. B) Number of loci with at least one GWAS-significant variant (dark gray), and among them those with at least one gene reaching
rcp > 0.5 (dark green). The bottom five traits have no loci with GWAS-significant associations. C) Proportion of loci with at least one GWAS-
significant hit that contain at least one colocalized gene. Across traits, a median of 21% of the GWAS loci contain colocalized results. See
phenotype abbreviation list in table S4.
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Fig. S31. GWAS colocalization with cis-sQTLs by ENLOC for each of the 87 GWAS traits aggregated across the 49 tissues. The traits are
ordered by the number of GWAS-significant loci (approximately independent LD regions from [46]). A) Number of colocalized introns, achieving
ENLOC rcp > 0.5 in at least one tissue, for each GWAS trait. As with gene expression results, the number of colocalized results tends to
increase with the number of GWAS-significant loci. B) Number of loci with at least one GWAS-significant variant (dark gray), and among them
those with one intron achieving rcp > 0.5 (dark green). The bottom five traits have no loci with GWAS-significant associations. C) Proportion of
loci with at least one GWAS-significant hit that contain at least one colocalized intron. Across traits, a median of 11% of the GWAS loci contain a
colocalized result, lower than the gene expression counterpart (21%), indicating decreased power in the sQTL study. See phenotype abbreviation
list in table S4.

13.5.2 Trait association with predicted expression and splicing in cis: PrediXcan

To identify target genes and GWAS loci of interest with the association approach, we trained prediction models for expression and
splicing in 49 tissues, performed S-PrediXcan [114] analysis and aggregated the evidence across all tissues with S-MultiXcan [115].

We generated prediction models following methods described in [47] and [114]. The analysis was restricted to genes that
were annotated as protein coding or lincRNA. For each gene/tissue pair, we trained models via the Elastic Net algorithm [116], for
expression levels and genotypes in individuals of European ancestry. We used variants in the eQTL cis-window with MAF > 0.01
belonging to the HapMap [117] CEU track. Expression levels were corrected by the same covariates as in the main eQTL analysis.
We employed a cross-validation strategy, and kept only models that achieved cross-validated correlation ρ > 0.1 and cross-
validated prediction performance p-value p < 0.05. For each gene/tissue pair, we compiled the covariance matrix of variants
present in the model, to be used as an LD reference panel for GWAS summary statistics. For every gene, we also computed the
covariance of all the variants present in the different tissue models, compiling a cross-tissue LD panel to be used with S-MultiXcan.
Analogous models were built for intron splicing ratios instead of expression, using a window from 1Mb upstream of the intron start
to 1Mb downstream of the intron end, as well as matching LD reference panels. Table S8 summarizes the number of models
generated, for a total of 281,902 gene-tissue pairs and 525,823 intron-tissue pairs.
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name abbreviation european samples expression models splicing models

Adipose - Subcutaneous ADPSBQ 491 8606 15068
Adipose - Visceral (Omentum) ADPVSC 401 7336 13765
Adrenal Gland ADRNLG 200 4866 9073
Artery - Aorta ARTAORT 338 7619 12588
Artery - Coronary ARTCRN 180 4000 9264
Artery - Tibial ARTTBL 489 8657 14364
Brain - Amygdala BRNAMY 119 2772 5549
Brain - Anterior cingulate cortex (BA24) BRNACC 135 3568 6758
Brain - Caudate (basal ganglia) BRNCDT 172 5026 7978
Brain - Cerebellar Hemisphere BRNCHB 157 5818 11105
Brain - Cerebellum BRNCHA 188 6824 12051
Brain - Cortex BRNCTXA 184 5447 8827
Brain - Frontal Cortex (BA9) BRNCTXB 158 4580 7680
Brain - Hippocampus BRNHPP 150 3723 6354
Brain - Hypothalamus BRNHPT 157 3659 6932
Brain - Nucleus accumbens (basal ganglia) BRNNCC 181 4909 8204
Brain - Putamen (basal ganglia) BRNPTM 153 4419 6571
Brain - Spinal cord (cervical c-1) BRNSPC 115 3229 6690
Brain - Substantia nigra BRNSNG 101 2542 5167
Breast - Mammary Tissue BREAST 337 6460 13827
Cells - Cultured fibroblasts FIBRBLS 300 8887 14004
Cells - EBV-transformed lymphocytes LCL 116 2940 9375
Colon - Sigmoid CLNSGM 274 6145 11677
Colon - Transverse CLNTRN 306 6295 11534
Esophagus - Gastroesophageal Junction ESPGEJ 281 6346 11632
Esophagus - Mucosa ESPMCS 423 8513 12472
Esophagus - Muscularis ESPMSL 399 8242 13247
Heart - Atrial Appendage HRTAA 322 6653 10704
Heart - Left Ventricle HRTLV 334 5997 8327
Kidney - Cortex KDNCTX 65 1635 4577
Liver LIVER 183 3810 6478
Lung LUNG 444 7925 15494
Minor Salivary Gland SLVRYG 119 2954 8050
Muscle - Skeletal MSCLSK 602 7618 11625
Nerve - Tibial NERVET 449 10006 16809
Ovary OVARY 140 3564 9139
Pancreas PNCREAS 253 5923 7778
Pituitary PTTARY 219 5711 12119
Prostate PRSTTE 186 4298 10077
Skin - Not Sun Exposed (Suprapubic) SKINNS 440 8597 14756
Skin - Sun Exposed (Lower leg) SKINS 517 9265 15440
Small Intestine - Terminal Ileum SNTTRM 144 3633 8875
Spleen SPLEEN 186 5805 10303
Stomach STMACH 269 5149 9179
Testis TESTIS 277 9941 32916
Thyroid THYROID 494 9665 16855
Uterus UTERUS 108 2573 7909
Vagina VAGINA 122 2512 7933
Whole Blood WHLBLD 573 7240 8724

total 281902 525823

Table S8. Summary of prediction models for each tissue, for expression levels and splicing ratios.

We executed S-PrediXcan [114] on the 87 traits for all gene expression models to obtain (gene,tissue,trait) associations, which
were aggregated across tissues with MultiXcan. This process was repeated for intron models. Since we had GWAS summary
results available, we used the summary versions of the methods: S-PrediXcan and S-MultiXcan. In [115] we have shown that
MultiXcan integrates predictions from multiple-tissues simultaneously while accounting for correlation across tissues, achieving
higher power than single-tissue approaches like S-PrediXcan.

Finally, we counted the GWAS loci explained by PrediXcan as follows. For each trait, we split the GWAS study in approximately
independent LD regions [46] and counted which of these loci contained a GWAS significant hit (b < 0.05/n_variants ∼ 5× 10−9).
Among them, we counted which contained a gene achieving S-MultiXcan significance (Bonferroni threshold b < 0.05/n_genes ≈
2 × 10−6), and which of these also contained evidence of colocalization via ENLOC rcp > 0.5. As shown in fig. S32C, around
67% of loci with a GWAS signal contain an S-MultiXcan significant signal, and about 20% is also colocalized via ENLOC. For
splicing models, we summarize the results in fig. S33; panel C shows that the proportion of GWAS loci containing an S-MultiXcan
association is also about 60% similar to expression but only about 11% is colocalized.
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Fig. S32. Expression associations by S-MultiXcan. Summary of S-MultiXcan detections for each of the 87 traits using gene expression
models. The traits are ordered by the number of GWAS-significant variants. A) Number of S-MultiXcan significant genes (yellow) and subset
also achieving ENLOC rcp > 0.5 in any tissue (dark green). B) Number of loci (approximately independent LD regions [46]) with a significant
GWAS association (gray), a significant S-MultiXcan association (yellow), and a significant S-MultiXcan association that is colocalized (dark
green). Anthropometric and Blood traits tend to present the largest number of associated loci, with Height from two independent studies leading
the number of associations. C) Proportions of loci with significant GWAS associations (gray) that contain S-MultiXcan (yellow) and colocalized
S-MultiXcan associations (dark green). S-MultiXcan has a high power for detecting associations: across traits, a median of 67% of GWAS-
associated loci show a S-MultiXcan detection, while 17% show a colocalized S-MultiXcan detection. See phenotype abbreviation list in table
S4.

13.5.3 trans-associations of the cis-eQTL for GATA3

Cis- and trans-eQTLs can provide insights into potential mechanisms and effects of trait-associated variants. In one such example,
rs1775555 on chr10p14 is a fibroblast-specific cis-eQTL for GATA3 (p=7.4x10-70) and a lincRNA gene GATA3-AS1 (p=1.8x10-45)
and a trans-eQTL for MSTN on chromosome 2, which encodes a TGF-β ligand secreted protein (fig. S34) and has a role in
muscle growth and also the immune system [118]. GATA3 is a transcription factor known to regulate a range of immune processes
including T cell development, Th2 differentiation, and immune cell homeostasis and survival [119]. The cis- (GATA3) and trans-
eQTL (MSTN) associations colocalized (PP4 > 0.99) in fibroblasts, and mediation analysis supports that the effect of rs1775555
on MSTN is mediated through GATA3 (p=2.1x10-22, [11]). We also found that the cis- and trans-eQTL effect of rs1775555
colocalized with associations for multiple immune traits, including combined eosinophil and basophil counts, hayfever/eczema,
and asthma (PP4 > 0.97 for all eQTL-trait combinations; fig. S34). DTNA, C4orf26, GK5, HSD11B1, SLC44A1, ARHGAP25,
MAN2A1 are additional genes that had a trans association with this variant (FDR 10%, corrected for number of cross-chromosomal
genes tested for association with rs1775555). As with other trans-eQTLs, variability in cell type composition may influence the
observed expression and trait associations, such as esinophil counts. Under this scenario, the eQTL variant could affect cell type
composition, which could manifest as a trans-eQTL. This eQTL variant is specific to fibroblast cell lines in GTEx, which have some
variability in cell type composition (see Section 15). This eQTL has no significant cell-type interaction eQTL signal for any cell
type, and modest (ρ = -0.153) correlation of the cis-eQTL effect size with fibroblast enrichment (fig. S34; see Section 6 for the
description of the approach). While these cannot exclude the possibility of the trans-eQTL being affected by cell type composition,
and the causal relationships are not obvious, this locus is an example of a broad genetic impact on multiple phenotypes including
both local and distal gene expression.
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Fig. S33. Splicing associations by S-MultiXcan. Summary of S-MultiXcan detections for each of the 87 traits using splicing models. The
traits are ordered by the number of GWAS-significant variants. A) Number of S-MultiXcan significant introns (yellow) and subset also achieving
ENLOC rcp > 0.5 in any tissue (dark green). B) Number of loci (approximately independent LD regions [46]) with a significant GWAS association
(gray), a significant S-MultiXcan association (yellow), and a significant S-MultiXcan association that is colocalized (dark green). As in the case of
expression models, Anthropometric and Blood traits tend to present the largest number of associated loci. C) Proportion of loci with significant
GWAS associations (gray) that contain S-MultiXcan (yellow) and colocalized S-MultiXcan associations (dark green). Across traits, a median of
63% of GWAS-associated loci show an S-MultiXcan detection, while 11% show a colocalized S-MultiXcan detection. These proportions are
lower than those for expression (67% and 17% respectively). See phenotype abbreviation list in table S4.
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Fig. S34. Associations at the GATA3 locus. A) Association landscapes for colocalizing associations for two GWAS traits, trans-eQTL for
MSTN, and cis-eQTL for GATA3 (gene location not shown due to it being nearly a megabase away). B) Correlation of fibroblast abundance
across samples (based on cell type enrichment analysis; see Section 15), and the GATA3 cis-eQTL effect size estimated from ASE data for the
eQTL heterozygote individuals.
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13.6 Concordance of downstream phenotype effects of multiple variants affecting the same gene

Many genes have multiple independent cis-eQTLs, independent cis-eQTLs and sQTLs, as well as both common QTLs and rare
coding variants. This creates an opportunity to test if these different variants have concordant effects on downstream GWAS
phenotypes when the gene appears to contribute to traits.

13.6.1 Concordance of downstream effects on phenotype between independent cis-eQTLs

We first asked whether the downstream GWAS effects of primary eQTLs differed from secondary eQTLs in cis. We defined the
downstream gene-level effect size of independent cis-eVariants on phenotypes as the ratio of the GWAS and cis-eQTL effect
sizes βgene = δGWAS/γQTL. To compare them, we calculated the correlation between the downstream effect sizes of secondary vs
primary cis-eQTL trait-tissue pairs with at least 11 colocalizing genes.

To make sure that the correlation was not driven by any residual LD between independent cis-eQTL signals, we used the
correlation among genes not contributing to GWAS as the null. We would not expect concordance between primary and secondary
cis-eQTLs of these non-causal genes, and thus any correlation would be attributable to LD between the variants. We used the
colocalization probability as a proxy to select the putatively causal and non-causal null gene sets. At colocalization RCP thresholds
of 0, 0.1, and 0.5, respectively, we analyzed a median of 2579, 19, and 13 genes across trait-tissue pairs.

Fig. 5C shows the median correlation between primary and secondary eQTLs for the 87 phenotypes for subsets with increasing
colocalization probability threshold. As the threshold for colocalization increases, enriching for causal genes, the correlation
increases, and the difference relative to low colocalization probability also increases. These observations suggest that the mediated
effects of independent cis-eVariants are concordant.

13.6.2 Concordance of downstream effects of independent eQTLs and sQTLs in cis

Next, we investigated whether the GWAS effects for non-shared cis-eQTLs and cis-sQTLs affecting the same target e/sGene are
concordant. Since the direction of sQTL effects is not directly comparable to eQTL effects, the effect size concordance approach
above was not applicable. Thus, we analyzed this by colocalization concordance. We restricted our analyses to genes that have
independent cis-eQTLs and cis-sQTLs, i.e., max r2 between independent eQTLs and sQTLs for that gene < 0.2. Across the
approximately LD-independent GWAS regions, we estimated the proportion of cis-eQTLs and cis-sQTLs that are colocalized in at
least one tissue, respectively. Then, for colocalized cis-sQTLs, we again estimated the proportion of colocalized cis-eQTLs, and
vice versa, to determine if one type of molecular cis-QTL colocalizing increases the chance of the other molecular cis-QTL also
colocalizing in the same locus (fig. S35). We used Fisher’s exact test to estimate the significance of the association.
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Fig. S35. Concordant colocalization of cis-eQTLs and cis-sQTLs. For GWAS loci that have an independent (LD-pruned) cis-eQTL and
cis-sQTL, A) shows the proportion of colocalising cis-eQTLs in all loci and in loci with a colocalizing cis-sQTL; and B) shows the proportion of
colocalising cis-sQTL in all loci and in loci with a colocalizing cis-eQTL.

An example of a GWAS locus with independent cis-eQTL and cis-sQTL colocalizations - providing a strong hypothesis of
causality - is shown in fig. S36. IFITM2 (Interferon Induced Transmembrane Protein 2) is active against multiple viruses. Also, it
is related to innate immune system and interferon gamma signaling pathways, explaining the association with blood cell traits.
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Fig. S36. GWAS colocalization of a cis-eQTL and cis-sQTL for IFITM2. (A) Variant rs6598043 is an eQTL for the IFITM2 gene in whole
blood, and colocalizes with GWAS for eosinophil counts (RCP = 0.608), granulocyte counts (RCP = 0.936), myeloid white cell count (RCP =
0.948), neutrophil count (RCP = 0.93), sum of eosinophil and basophil counts (RCP = 0.801), and sum of neutrophil and eosinophil counts (RCP
= 0.935). (B-D) Variants rs5789178 (B), rs17174550 (C), rs1058964 (D) are independent sQTLs for IFITM2 in whole blood. The sQTL signal in
the locus colocalizes with GWAS for eosinophil counts (RCP = 0.996), granulocyte counts (RCP = 0.62), myeloid white cell count (RCP = 0.61),
neutrophil count (RCP = 0.537), sum of eosinophil and basophil counts (RCP = 0.99), and sum of neutrophil and eosinophil counts (RCP = 0.62).
Locuszoom plots show two distinct signals on the GWAS p-value landscape, one driven by the eQTL rs6598043 and the other one driven by the
sQTL rs1058964.

13.6.3 Concordance of GWAS effects of rare variants and cis-eQTLs

Finally, we investigated whether the GWAS effects of rare variants and cis-eQTLs are concordant. We used the results of a
genome-wide rare variant association analysis based on 50K exomes from UK Biobank from [48], and colocalized GTEx cis-
eQTLs. Out of 3,166 phenotypes analyzed in [48], 50 were included in the list of phenotypes studied by GTEx (37 UKB traits and
13 other traits where the trait of interest was the same). We counted if a rare variant associated gene is colocalized with the given
trait in at least one tissue in GTEx, using separately rare variant gene-based associations with the non-benign coding variants
(coding model) and loss of function (LoF) variants (LoF model). We summarized the results for three rare variant significance
categories - P ≥ 10−3, P ∈ (10−3, 10−6], P < 10−6 (Fig. 5D, fig S37). To estimate if there is an association between the rare
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variant significance category and the count of colocalized gene-trait pairs, we used Pearson’s chi-squared test with Monte Carlo
simulations (B = 10,000 replicate samples).
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Fig. S37. Concordance of trait associations for rare coding variant and cis-eQTLs. Proportion of colocalized cis-eQTLs with a matching
phenotype for genes with different level of rare variant trait association in the UK Biobank for the coding (A) and the LoF model (B). Error bars
indicate the 95% confidence intervals estimated using bootstrapping. The number of gene-trait pair in each group is written on the given bar. For
the coding model, the two colocalized gene-trait pairs in the P < 5 × 10−9 significance group are ITGA2B-platelet count and TUBB1-platelet
count. For the coding model, the two colocalized gene-trait pairs in the P < 5× 10−9 significance group are ITGA2B-platelet count and TUBB1-
platelet count. For the LoF model, the two colocalized gene-trait pairs in the P < 5×10−9 significance group are APOB-LDL and TUBB1-platelet
count.

13.7 Downstream phenotypic effect of regulatory pleiotropy and tissue sharing

We examined how variants affecting multiple genes in cis — or regulatory pleiotropy, sometimes called coregulation — in single
tissues and across tissues contributes to their phenotypic consequences. To this end, we first compared how regulatory pleiotropy
and cross tissue sharing associates with downstream GWAS association z-scores. We also compared regulatory pleiotropy with
complex trait horizontal pleiotropy as defined in [50]. Briefly, for each cis-eVariant, we defined a score representing regulatory
pleiotropy as the number of significantly associated genes. The tissue sharing status was defined as the tissue sharing pattern
that most closely matched the cis-eVariant association vector across tissues. Next, we provide a detailed description of the
procedure.

13.7.1 Quantifying regulatory pleiotropy

First, we built a representative set of cis-eVariants filtered for potential confounding factors. To select likely causal variants, we used
posterior inclusion probabilities calculated with the fine-mapping method DAPG [112] to select the most probable variant within
each credible set of potentially causal cis-eQTL variants. The union of variants in all tissues was used. To remove any remaining
correlation between selected variants, we performed LD pruning with R2 > 0.1 cutoff inside a 100kb window (PLINK1.9 command
–indep-pairwise 100 10 0.1). To reduce the bias introduced by sample size and also to increase power for tissues with a
low sample size, we applied MASH [51] on all possible variant/cis-gene pairs among the variants of interest across 49 tissues.
Variants regulating no gene at MASH local false sign rate (LFSR) < 0.05 were removed. For each eVariant in the set, we defined a
score of regulatory pleiotropy, Pn, as the number of genes with LFSR < 0.05. We calculated Pn in each tissue and also calculated
an ’Aggregated’ Pn, as the total number of genes the variant regulated across tissues. We found that regulatory pleiotropy was
widespread, as shown in fig. S38A, which shows the fraction of variants regulating more than one gene within each tissue. To
investigate how regulatory pleiotropy co-occurs across tissues, for each variant of interest, we counted the number of tissues in
which the variant was regulating more than one gene. The distribution of this quantity, which measures the level of tissue-sharing
for regulatory pleiotropy, is shown in fig. S38B. We observed that regulatory pleiotropy is extensively shared across tissues.
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13.7.2 Regulatory pleiotropy and GWAS associations

To examine the phenotypic consequences of regulatory pleiotropy, we regressed the significance of GWAS associations (z-score)
on the regulatory pleiotropy score. We present the results using the dichotomized version of the regulatory pleiotropy score
aggregated across tissues but verified that the substance of the results did not change when using the scores directly. The linear
regression

z2gwas ∼ I{Pn > 1}+ LD-score + 1

was performed for each of the 87 traits. LD-score was calculated using genotypes of European individuals on GTEx variants at
MAF ≥ 0.05 to account for high LD being a potential confounder of both regulatory pleiotropy and GWAS association. Fig. S38C
shows the distribution of the regression coefficients. 66 out of 86 of the traits yielded a positive coefficient estimate, indicating
a positive association between regulatory pleiotropy level and GWAS significance. Overall, we observed significantly positive
correlation between regulatory pleiotropy level and GWAS significance at the genomic locus (p = 6.1× 10−7, two-sided t-test with
87 traits) and the positive correlation remained after removing the set of blood cell count traits (p = 2.9 × 10−3, same test) and
further removing one outlier (p = 8.5 × 10−5, same test). Thus, variants affecting multiple genes are more likely to contribute to
downstream traits.
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(A) (B)

(C) (D)

Fig. S38. Regulatory pleiotropy of cis-eVariants. A) Fraction of variants regulating multiple genes among a list of independent fine-mapped
variants across 49 tissues (on x-axis ordered by sample size with abbreviations described in table S8). The dashed line indicates the median
fraction among all tissues and the dotted line shows the fraction of variants regulating multiple genes in any tissue (aggregated across tissues).
B) Number of tissues in which a variant is regulating multiple genes, which represents the level of tissue-sharing of regulatory pleiotropy. C)
Distribution of regression coefficient for regulatory pleiotropy status when regressed against GWAS significance. D) Regulatory pleiotropy versus
bins of complex trait pleiotropy is shown. For each tissue, the fine-mapped cis-eVariants were stratified into bins by the regulatory pleiotropy
along with a "baseline" bin containing randomly selected variants (y-axis). The complex trait pleiotropy of the variants in the bin was summarized
as the median within each tissue and the distribution among 49 tissues is shown on x-axis.

13.7.3 Regulatory pleiotropy and trait pleiotropy

We hypothesized that when variants affect the expression of multiple genes, the downstream cellular effects of these genes
may drive pleiotropic effects also at the level of complex traits. We compared regulatory pleiotropy to trait pleiotropy, which was
measured by trait pleiotropy score for a set of 372 heritable traits from UK Biobank, Pn, as defined in [50]. The comparison was
limited to the intersection between HapMap3 SNPs and the set of DAPG variants with MASH LFSR < 0.05. Among these variants,
we contrasted the level of trait pleiotropy between those regulating only one gene and those regulating multiple genes (aggregated
across all tissues) in Fig. 5E.

In order to analyze how regulatory pleiotropy across tissues contributes to trait pleiotropy, we used the FLASH approach [120]
to classify cis-eQTLs into tissue-shared and tissue-specific sets (see details in [41]). Briefly, for every gene that was tested across
all 49 tissues, the top associated variant was selected and used to find global patterns of tissue sharing using FLASH. One of the
factors represented the broadly shared pattern (tissue-shared) and cis-eQTLs were considered to be tissue-shared if the projection
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of the vector of association effect sizes was large (proportion of variance explained > 20%).
To examine the relationship between tissue-sharing pattern and complex trait pleiotropy, we compared the distribution of trait

pleiotropy (as stated above) between variants without any tissue-shared cis-eQTLs and variants with at least one tissue-shared
cis-eQTL. The result is shown in Fig. 5E, where the distribution for the latter set of variants shifts towards higher trait pleiotropy.
This suggests that variants with tissue-shared eQTLs tend to have higher GWAS pleiotropy.

14 Tissue sharing

14.1 Estimating cross tissue activity of QTLs

In order to analyze the tissue specificity of QTLs, we used MashR [51] for every top cis-QTL per gene per tissue across all tissues
where expression quantification was available. R v3.4.1 was used with mashr v0.2-6 and ashr v2.2-7. MashR was run using
Z-scores as input, and 250,000 randomly selected SNP-gene pairs that were tested across all tissues were used to fit the mash
model. Missing Z-score values (gene or splice quantification absent) were set to 0 and standard error to 1e6. Effect size estimates
and local false sign rate (LFSR) generated by MashR were used as metrics of QTL magnitude and activity respectively. A LFSR <
0.05 was used as a threshold for significant QTL activity unless noted otherwise.

We observed the previously shown [9, 10] U-shaped curve with cis-eQTLs and cis-sQTLs being typically highly shared or
highly specific. In order to understand how these patterns are affected by LFSR threshold as well as differences in sensitivity
of quantifying expression and splicing, we varied these thresholds (fig. S39). In particular, differences between expression and
splicing quantification sensitivity could result in power differences when calling cis-QTLs, and this might cause the observed results
where cis-sQTLs have much higher cross-tissue activity than eQTLs when analyzing only those junctions/genes that were able to
be tested in all tissues. Such a result could arise if there are substantial power differences caused by the quantification thresholds
used for cis-sQTL vs cis-eQTL calling. While finding an equivalent threshold with respect to power between expression TPM
and LeafCutter quantifications is challenging, an alternative option is to repeat the analysis using increasing levels of expression
TPM thresholds for cis-eQTLs (fig. S39). While there is a clear pattern of increased tissue sharing at higher thresholds, even
at the highest cis-eGene TPM threshold tested (TPM > 100), which includes only 0.37% of cis-eQTLs, cis-sQTLs tested in all
tissues (using the default thresholds) still showed much higher tissue sharing, indicating that the result is unlikely purely driven by
a difference in detection power.
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Fig. S39. Thresholds in cis-QTL tissue sharing analysis. A-B) Distributions of the number of active tissues per QTL for all cis-eQTLs and
cis-sQTLs significant (FDR < 5%) in at least one tissue (A) and only those significant cis-QTLs that could be tested across all 49 tissues (B) at
three different local false sign rate (LFSR, equivalent to FDR) thresholds. P-values were generated using a two-sided Wilcoxon signed rank test.
Only cis-QTLs active in at least 1 tissue in the MashR meta-analysis were used. C) Tissue-specificity at different inclusion thresholds for gene
expression and splicing. AT = tested in all tissues (using the standard thresholds from Sections 3.4.2 & 3.4.3), AT:0.001 = median TPM > 0.001
in all tissues, AT:0.01 = median TPM > 0.01 in all tissues, etc. The % of total QTLs that pass the threshold is listed in the legend.

Fig. S40. Tissue sharing of cis- and trans-eQTLs. Distribution of the number of tissues having Meta-Tissue m > 0.5 for the top variant for each
trans-eGene at 50% FDR, and FDR-matched, randomly selected cis-eGenes (also 50% FDR). cis-eGenes were matched for discovery tissue to
the trans-eGenes.

In order to estimate tissue-specificity of trans-eQTLs, and to ensure that the MashR results are robust cis-eQTL tissue-
specificity estimates, we used the previously proposed linear mixed model approach that accounts for multiple tissues from the
same individual and incomplete overlap of samples across tissues [121]. Briefly, for the number of tissues, T , we assume that
there are N incompletely overlapping individuals for each tissue. Then the following linear mixed model can be used to assess the



56

statistical significance between gene expression g and SNP j:

Y g = 1α+Xjβ + u+ e, (12)

where β is the effect coefficient of the SNP j in T tissues, and u is the random effect of the mixed model accounting for the
incompletely overlapping individuals across tissues. We estimated the two variance components using a linear mixed model
approach as implemented in GEMMA [122].

Given the estimate β̂, we combine the information from multiple tissues using meta-analytic approaches as implemented in
metasoft [123], accounting for the covariance structure estimated as described above. We used the posterior probability that the
effect exists in each study, m-value, as our estimate of tissue-specificity.

14.2 Comparison of tissue clustering across data types

Estimates of pairwise tissue similarity were generated as similarly as possible across the 7 data types: (cis-eQTLs, trans-eQTLs,
cis-sQTLs, ASE, splicing, expression, and cell type composition (see fig. S41 for descriptions; trans-eQTLs were too few to be
included). Only tissues that had pairwise similarity estimates across all data types were used, which excluded sex-specific organs
since their similarity could not be estimated within individuals using ASE data. As shown in fig. S41 and Fig. 6A, tissue clustering
appears very similar across data types. In order to quantify this, we compared the clustering similarity. The fossil v0.3.7 package
was used to perform k-means clustering using between 2 and 22 clusters with 50,000 iterations to ensure stability. At each cluster
number a pairwise Rand index was calculated between each of the data types as a measure of clustering similarity. The median
Rand index per pairwise data types across all cluster numbers was reported (Fig. 6B).
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Fig. S41. Pairwise tissue sharing. Tissue clustering based on pairwise Spearman correlation for A) median tissue-level gene expression (all
genes with > 0 expression in at least one of the two pairwise tissues). B) median tissue-level STAR splice junction counts (all junctions with > 0
counts in at least one of the two pairwise tissues). C) allelic expression (gene-level AE for all genes with at least 8 reads in both of the pairwise
tissues. In this analysis, the correlation is calculated intra-individual). D) cis-eQTL effect sizes (LD pruned set of all tissue-level significant (FDR
< 5%) top eQTLs per gene with MashR LFSR < 0.05 in at least one of the two pairwise tissues). E) trans-eQTL effect sizes (all tissue-level
significant (FDR < 5%) top trans-eQTLs per gene with Metasoft M-value > 0.50 in at least one of the two pairwise tissues). F) cis-sQTL effect
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14.3 Allelic expression across tissues and tissue clustering

Allelic expression data from multiple tissues of the same individual can be used to evaluate the similarity of cis-regulatory genetic
effects. We used a beta-binomial mixture to model allelic expression across tissues, with each component corresponding to one
distinct mode of allelic ratio for a gene in an individual. Haplotypic counts were derived for each gene using phASER (see Section
6). Genes with at least 20 reads in at least six tissues were included in the analysis. In total, 6,614,043 gene-individual pairs were
modeled using up to 10 modes of allelic ratio. Let us assume vector x to be the number of reads associated with the first haplotype
and y to be the total number of allelic reads in a given individual (haplotype labels are arbitrary). The data likelihood associated
for a K-component mixture model is:

L(x,y|λ, ρ, σ) =
∏
i

∑
k

λkBB(xi, yi, ρk, σ),

where λk is the mixture weight for the kth component of the mixture (
∑

k λk = 1), and xi, yi are the observed counts in the ith

tissue. The Beta-binomial likelihood function, BB(xi, yi, ρk, σ), was alternatively parameterized using a component-specific allelic
ratio, ρk, and an over-dispersion parameter σ shared by all K mixture components (equivalent to standard parameterization using
shape parameters α and β for ρ = α/(α+ β), σ = α+ β).

A generic gradient-based optimization procedure (Matlab function fmincon) was used for maximizing the data likelihood with
respect to λ, ρ, and σ. The optimization was done using four independent initial values for the parameters and the solution with the
highest likelihood was selected. To select the number of components in the mixture model, K, we used a greedy approach: we
started with a single mode mixture (K = 1), and increased K by one at each step as long as the more complex model with K + 1
modes was significantly better (p<0.01) than the model with K modes. Since the two models are nested and the overdispersion
parameter is shared across components, we performed a likelihood ratio test using a chi-squared distribution with one degree of
freedom to evaluate the goodness of fit at each step.
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Fig. S42. Tissue-specificity of allelic expression. A) Within individuals, haplotypic expression across tissues was measured per gene and
clustered to identify tissue-specific patterns of cis-regulatory effects. Across individuals, tissues that often fall within the same cluster (co-cluster)
share a higher degree of cis-regulatory architecture, as compared to those that do not. B) Proportion of gene × individual analyses with either
one mode of allelic expression (grey, 97.34%), or two (red, 2.61%). Genes with three (0.04%) and four (6.35e-4%) modes are too few to be
visible. C) Heatmap generated using the 2.61% of cases where two modes of allelic expression were observed and calculating the proportion
each tissue appeared in the same cluster as other tissues. High co-clustering with other tissues indicates shared cis-regulatory architecture. D)
Box plot showing the distribution of co-clustering proportions per tissue. Each box represents a row (or column) from the heatmap in (C).

14.4 Correlation of cis-eQTL effect size and cis-eGene expression

Both tissue-specific and tissue-shared eQTLs may have different effect sizes across tissues. Thus, we examined the tissue
variability of cis-eQTL effect sizes across tissues using the allelic fold change (aFC) statistic [21] (Section 7.1). We first explored
the relationship of aFC with cis-eGene expression across all genes, and then in GWAS loci.
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For each cis-eGene, we looked at all tissues with a significant cis-eQTL and selected the “top eVariant” with the largest effect
size, and the tissue that it was found in was called the “discovery tissue.” For each top eVariant, we calculated aFC across all
tissues.

We then examine if there is a relationship between cis-eQTL effect size and cis-eGene expression level. For each top eVariant,
we calculated the Spearman correlation of tissue aFC with cis-eGene median transcripts per million (TPM) for all tissues that had
a median TPM greater than zero. We chose to focus on cis-eQTLs where the effect size does not flip from positive to negative
between tissues, since those may be enriched for LD artifacts (where there are two causal variants active in different tissues), and
the biological mechanism for opposite molecular effects is unclear. Thus, we filtered out cis-eQTL correlations that had “unclear”
directions based on any of the following conditions: 1) over half of the tissue effect sizes were in the opposite direction of the
discovery tissue effect; 2) any tissue effect size was in the opposite direction of the discovery tissue effect and had a magnitude
of at least half the discovery tissue magnitude; or 3) the discovery effect size was 6.64 or higher, which is the maximum possible
calculated aFC and often corresponds to cis-eQTLs with low allele frequency and unstable effect sizes (fig. S43). Next, in order to
make the sign of the correlation coefficient interpretable for both positive and negative effect size cis-eQTLs, we flipped the sign of
the effect sizes (multiplied by -1) if the discovery tissue cis-eQTL effect size was negative. This ensured that the discovery effect
size was always labeled as positive and correlations could be interpreted the same way for both positive and negative effect size
cis-eQTLs.

Of those cis-eQTLs where at least half of the GTEx tissues have a non-zero median cis-eGene expression, cis-eQTL effect size
and cis-eGene expression level are significantly correlated across tissues for 2,637 top cis-eQTLs (5% Benjamini-Hochberg FDR;
N=26,499; fig. S43). Of these, 666 are filtered out because of an unclear correlation direction. The remaining correlations are
split nearly evenly to among positive/negative correlations with a positive/negative discovery tissue effect size (fig. S43). Positive
correlations represent increasing effect size magnitude with increasing cis-eGene expression, and negative correlations represent
decreasing effect size magnitude with increasing cis-eGene expression. The sign of the discovery tissue effect size represents
whether the eVariant is associated with an increase (positive) or decrease (negative) in cis-eGene expression. trans-eGenes
tended to have higher expression in their discovery tissue (fig. S43), but this may be due to better power in highly expressed
tissues.

These results show that cis-eGene expression and cis-eQTL effects are not independent phenomena. Furthermore, it high-
lights the complicated nature of the classical question of which tissues and cell types a given regulatory variant acts in to cause
downstream cellular, physiological, and disease phenotypes. Genes are generally believed to have the strongest functional role in
tissues where they are highly expressed, but when this is combined with small molecular effect of the cis-eQTL (as in our negatively
correlated genes), interpretation of the tissue(s) where that cis-eQTL might have a downstream effect becomes complicated.
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Fig. S43. Correlation between cis-eQTL effect size and cis-eGene expression. A) Top cis-eQTLs with a significant correlation between cis-
eQTL effect size and median cis-eGene expression across tissues (5% Benjamini-Hochberg FDR; N=26,499). Cartoon examples of each type
of correlation are shown, where each dot is a tissue and cis-eQTL effect size is plotted versus median cis-eGene expression. Note that for the
uncertain direction correlations, there were additional patterns observed in the data that are not depicted here. B) Distribution of tissue-specific
gene expression levels of trans-eGenes. For each trans-eGene, the Z-score is computed for its expression level in the corresponding tissue
based on the empirical distribution of its expression levels in all other tissues, in each tissue assessing the mean across individuals. Mean gene
expression in a tissue is measured by mean of log10(TPM + 1) across samples in this tissue. Among 162 trans-eGenes, There are 116 trans-
eGenes with z-score > 0, and 46 trans-eGenes with z-score < 0, representing a strong excess of positive z-scores (p-value 3.7e-8, two-tailed
binomial test).

14.5 Cross-tissue cis-eQTL effect size and cis-eGene expression for GWAS genes

Previous analyses of GWAS loci have shown an enrichment of genes expressed in disease-relevant tissues [44], and the informa-
tiveness of cis-eQTLs in pinpointing causally relevant tissues has been debated [124, 125]. Thus, we sought to shed light on this
question by analyzing colocalized and nearest genes in GWAS loci to examine whether aFC or cis-eGene expression are higher
in potentially disease-relevant tissues.

14.5.1 GWAS locus, tissue and gene selection

In order to study the cross-tissue cis-eQTL effect size and cis-eGene expression patterns in GWAS loci, we analyzed colocalized
GWAS and cis-eQTL data from ENLOC as in Section 13.5.1. For a subset of GWAS traits we assigned a tissue group (blood,
brain, immune, or metabolic) to each GWAS trait, and performed literature searches to select hypothesized trait-relevant tissues
for each trait (table S9). For each filtered, colocalized GWAS/cis-eQTL locus, we also built a set of the nearest protein-coding or
lincRNA genes based on the absolute distance to the transcription start site (TSS). In order to remove redundancy in our dataset,
we removed duplicated colocalized genes and nearest genes for each GWAS trait by first choosing one colocalized cis-eGene
with the highest rcp per each nearest gene-GWAS trait pair, and then choosing one nearest gene with the closest TSS per each
colocalized eGene-GWAS trait pair. This resulted in two gene sets, colocalized cis-eGenes and nearest genes, with each gene
associated with one or more GWAS traits.

14.5.2 Normalization across tissues

We next explored the tissue properties of colocalized and nearest GWAS genes, with the hypothesis that tissues with a potential
causal role in disease should be enriched for high cis-eQTL effect size, high gene expression, or both. In this analysis, the
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colocalized cis-eGenes are compared to the “control” set of nearest genes. In order to achieve a fair comparison of tissues that
differ in their overall expression profiles or regulatory effects (fig. S44), we used additional genome-wide background sets of
tissue expression and cis-eQTL effects in all protein-coding and lincRNA genes. First, we determined the tissue with the highest
significant cis-eQTL effect size (absolute aFC) and the tissue with the maximum median expression (TPM) for each gene in the
GWAS gene sets and the background gene set. Next, we analyzed properties of GWAS genes in GWAS-trait-relevant tissues. We
calculated tissue aFC (a) and expression (e) ranks for tissue t in gene i using rank statistics:

aFC rank statistic = rank(|ait| in |Ai|)/Ni

Expression rank statistic = rank(eit in Ei)/Ni

Ai and Ei are vectors of gene aFC and expression, respectively, in all tissues, and the ranks were normalized by N , the number
of tissues that were not NA for the given measurement. Tissues that had a median TPM of 0 were assigned an expression rank
statistic of 1/N .

We examined the distributions of aFC and expression rank statistics for trait-relevant tissues for colocalized cis-eGenes and
nearest genes. To account for the tissue-specific aFC and gene expression patterns (e.g., blood has low expression levels for most
genes), we performed paired Wilcoxon signed-rank tests between trait-relevant tissue rank statistics for colocalized and nearest
genes and tissue-specific null rank statistics (the median rank statistic of a given tissue in our background gene set).
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Fig. S44. Tissue statistics for effect size and expression. A) Tissue with the highest significant effect size for all protein-coding and lincRNA
genes with a significant cis-eQTL (N=22,298). B) Tissue with the highest median expression for all protein-coding and lincRNA genes (N=26,724).
C) Tissue with the highest significant effect size for each GWAS gene with a significant cis-eQTL (N=1,391). D) Tissue with the highest median
expression for each GWAS gene (N=1,431). Note that the GWAS gene tissue patterns do not represent a generalizable pattern but rather reflect
the traits that were available and selected for the analysis.

14.5.3 Patterns of GWAS genes across tissues

We identified 2,157 filtered GWAS-eQTL ENLOC loci, corresponding to 1,110 colocalized and 1,096 nearest genes and 42 GWAS
traits (table S12). 697 of these loci have different colocalized and nearest genes, and the union of all colocalized and nearest
genes is referred to as “GWAS genes.” The tissues with the highest significant cis-eQTL effect size and the tissues with the highest
median TPM for GWAS genes and for genes in our background gene set (all protein-coding and lincRNA genes) are depicted in
fig. S44. The distribution of tissues differs between the cis-eQTL effect size and the gene expression metrics.



62

Next, we analyzed how tissues potentially relevant for the GWAS traits ranked. For colocalized and nearest genes, the distribu-
tions of aFC and expression rank statistics for potentially trait-relevant tissues are shown in fig. S45. A rank statistic of one means
the gene’s highest effect size or expression level is in the potentially trait-relevant tissue, while 1/49 means the gene’s lowest is
in the tissue. When examining the rank statistic distributions, it is important to keep in mind the overall rank statistic distribution
for each tissue, as observed in our background gene set (fig. S45). We found that GWAS genes have significantly higher effect
sizes and expressions levels in the trait-relevant tissues than expected based on tissue median ranks in the background gene set
(Paired Wilcoxon sign test, p<1e-4; table S9). This is observed both for colocalized and nearest genes.

These results suggest that both cis-eQTL effect size and expression level carry relevant information about the tissue that medi-
ates downstream GWAS phenotype effects of genetic variant. Thus, examining both may be the best approach for understanding
tissues that are causally relevant for human GWAS loci, even in the absence of gold-standards of causal tissues (or cell types) for
a given trait, or specific loci.
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Fig. S45. Tissue enrichment of effect size and expression for GWAS genes. Tissue rank statistics in GWAS genes and all genes. In GWAS
gene plots (a,b,d,e), each dot represents the rank statistic of a tissue in a GWAS gene, and violin plots are included to summarize the data.
GWAS genes are split along the x-axis by the tissue group of the GWAS trait they are related to (blood, brain, immune, and metabolic). Rank
statistics for each tissue in that group are then plotted separately for all genes that colocalize with (a,d) or are nearest to (b,e) the GWAS trait
locus. Panels (a) and (b) display aFC tissue rank statistics in GWAS genes, while panel (c) depicts the aFC rank statistic distribution for those
tissues across all protein-coding and lincRNA genes. Panels (d) and (e) display expression tissue rank statistics in GWAS genes, while panel (f)
depicts the expression rank statistic distribution for those tissues across all protein-coding and lincRNA genes. The rank statistic distributions for
all genes are included for reference, as some tissues tend to always have high or low relative aFC or expression across tissues.

Gene selection Rank method Tissue-gene pairs Median rank GWAS Median rank null P-value

colocalization aFC 3492 0.531 0.510 1.52e-04
nearest aFC 3341 0.542 0.510 3.58e-06
colocalization expr 3503 0.519 0.222 2.62e-294
nearest expr 3460 0.481 0.222 4.57e-255

Table S9. aFC and expression rank statistics of GWAS genes

14.6 Modeling determinants of QTL Tissue Specificity

In order to understand the factors that contribute to tissue-shared cis-eQTLs and cis-sQTLs, a logistic regression model of cis-QTL
tissue activity was built to predict whether a QTL identified in a given discovery tissue is active in a given replication tissue, given
a set of predictors: genomic annotations, tissue specific gene expression, and chromatin states. cis-QTL activity was defined as
MashR LFSR < 0.05 in a replication tissue. Basic QC on the cis-QTL data used to build the model was performed as follows:
expression / splice quantification > 0 in both discovery and replication tissues, cis-QTL MAF > 0.005 in both discovery and
replication tissues, difference in expression level or splice quantification > quantile(0.005) and < quantile (0.995) to exclude the
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most extreme cases of expression or splice difference. R v3.5.1 was used with speedglm v0.3-2. When plotting model predictor
coefficients (Fig. 6), they were standardized using the standardize R package v0.2.1 so that they could be plotted on the same
scale. When reporting AUCs for the model including different sets of features, it was trained on cis-QTLs spanning chromosomes
1-20 and tested on QTLs from chromosomes 21 and 22. Otherwise, tissue level AUCs were generated by holding out holding out
individual tissues and predicting the activity of cis-QTLs found in the other 21 tissues in the held-out tissue.

In total, 22 tissues were used for the analyses, which were chosen based on having appropriately paired epigenomic state
predictions from the ROADMAP Epigenomics Project (table S3). In cases where there were two extremely similar tissues (defined
by pairwise tissue gene expression clustering), the tissue with the higher sample size was used. Chromatin state sharing was
defined as either shared or not shared based on if the ROADMAP Chromatin state prediction was the same (shared) or different
(not shared) between the pairwise tissues. In total the following predictors were used in the model: distance between variant
and TSS, variant MAF in GTEx, effect size in discovery tissue (aFC), global gene expression correlation between discovery
and replication tissue, variant effect prediction, linsight conservation score [126], variant is INDEL, Roadmap state and sharing
between discovery and replication tissue, variant overlaps Ensembl Regulatory Build TF binding site (in any Ensembl tissue),
variant overlaps Ensembl Regulatory Build CTCF binding site (in any Ensembl tissue), variant overlaps Ensembl Regulatory Build
DHS site (in any Ensembl tissue), variant overlaps Ensembl Regulatory Build predicted motif site.
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Fig. S46. Predicting cis-eQTL and cis-sQTL activity in another tissue. Receiver operating characteristic (ROC) curves for a logistic regres-
sion model of cis-eQTL and sQTL tissue sharing, defined as MashR LFSR < 0.05, using 22 GTEx tissues with paired Roadmap Epigenomics
tissues and Ensembl Regulatory Build annotations. A) ROC curves for model trained on eQTLs from chromosomes 1-20 and tested on eQTLs
from chromosomes 21-22. The performance of the model including different groups of predictors is shown: eQTL metrics (GTEx MAF + eQTL
aFC + |tss_distance|), Gene Expression (|ρ expr ∼ aFC| + ρ Disc expr ∼ Rep expr + |∆ expr|), Variant Annotation (VEP effect + Variant IN-
DEL + LINSIGHT Conservation), and Chromatin State (ROADMAP predicted chromatin state in discovery and replication tissues, and Ensembl
Regulatory Build annotations). The performance of the full combined model is also indicated. B) ROC curves for model trained holding out
individual tissues and then tested by predicting the activity of eQTLs found in the other 21 tissues in the held-out tissue. AUC is indicated in
parenthesis beside each held out tissue name in the legend. C) ROC curves for model trained on cis-sQTLs from chromosomes 1-20 and tested
on eQTLs from chromosomes 21-22. The performance of the model including only different groups of predictors is shown: sQTL metrics (GTEx
MAF + sQTL beta + |tss_distance|), Gene Expression and Splicing (ρ Disc splice junctions ~ Rep splice junctions + |∆ expr|), Variant Annotation
(VEP effect + Variant INDEL + LINSIGHT Conservation), and Chromatin State (ROADMAP predicted chromatin state in discovery and replication
tissues, and Ensembl Regulatory Build annotations). The performance of the full combined model is also indicated. D) ROC curves for model
trained holding out individual tissues and then tested by predicting the activity of cis-sQTLs found in the other 21 tissues in the held-out tissue.
AUC is indicated in parenthesis beside each held out tissue name in the legend.

15 Cell type composition

15.1 Estimation of cell type enrichment with xCell

Cell type enrichment scores were computed from the gene expression TPM matrix of the 17,382 samples in the analysis freeze
with the xCell R package [53] using the xCellAnalysis function. The full matrix of expression data was used to maximize tissue
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heterogeneity. For QTL mapping, the enrichment scores corresponding to the subset of samples with available genotypes were
inverse normal transformed.
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Fig. S47. Neutrophil enrichment across GTEx tissues. A) Distribution of xCell enrichment score for neutrophils across all samples of each
tissue. B) Correlation between xCell neutrophil enrichment score and expression of STX3, a marker gene for neutrophils [55]. Orange dots
indicate the samples closest to the 5th and 95th percentile of the neutrophil enrichment score, respectively, and the corresponding histology
images are shown.

Fig. S47 shows the distribution of neutrophil enrichment in GTEx samples, with the highest scores in whole blood, spleen
and lung, which make physiological sense (lung tissue contains substantial amounts of blood cell types). Furthermore, there is
substantial inter-individual variation in neutrophil enrichment within these tissues. The enrichment scores were highly correlated
with expression of STX3, a marker gene for neutrophils [55], and histology images provided additional support that the enrichment
scores represent true inter-individual variation in cell type composition. The median cell type enrichment per tissue was highly
correlated between tissues, following general patterns of tissue relatedness (fig. S48).
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Fig. S48. Pairwise tissue sharing of cell type composition. Tissue clustering generated using pairwise Spearman correlation on median
xCell enrichment estimates across 64 cell types using cell types with > 0 enrichment in at least one of the two pairwise tissues.

15.2 Interaction QTL mapping

Cell type interaction eQTLs and sQTLs (ieQTLs and isQTLs, respectively) were mapped using a linear regression model with an
interaction term accounting for interactions between genotype and cell type enrichment:

p ∼ g + i + g ◦ i + C (13)

where p is the phenotype vector (e.g., gene expression or intron excision ratio), g is the genotype vector, i is the inverse normal
transformed xCell enrichment score, and the interaction term g ◦ i corresponds to point-wise multiplication of genotypes and cell
type enrichment scores. The same covariates, denoted by C, were used as in regular QTL mapping (see Section 4.1). Interaction
QTLs were mapped by testing for the significance of the interaction term, using tensorQTL [74]. TensorQTL computes regression
coefficients and p-values for all terms in the model, enabling comparisons of interaction and main effects. Variants within ±1Mb of
the TSS of each gene were tested, as for regular QTL mapping. To avoid potential regression outlier effects, we restricted ieQTL
mapping to variants with MAF ≥ 0.05 in the samples belonging to each of the top and bottom halves of the enrichment score
distribution, for each tissue-cell type combination (using the --maf_threshold_interaction 0.05 option in tensorQTL). For
isQTL mapping, this threshold was set to MAF ≥ 0.1. The same filtered and normalized gene expression and splicing phenotype
matrices used for regular QTL mapping were used for interaction QTL mapping. To identify genes with at least one significant
ieQTL or isQTL (ieGenes or isGenes, respectively), the top nominal p-values for each gene or phenotype was corrected for multiple
testing at the gene level using eigenMT [127]. Significance across genes was computed by adjusting the eigenMT-corrected p-
values using Benjamini-Hochberg, and applying a 0.05 FDR threshold. For isQTLs, the p-value corresponding to the top splicing
phenotype was selected for each gene-variant pair, and corrected by the number of phenotypes tested (p̃ = min(n ∗ p, 1), where
n is the number of splicing phenotypes for the gene) prior to running eigenMT. QTL mapping and FDR correction were performed
using expression and splicing phenotypes for all biotypes in the GENCODE v26 annotation, but downstream analyses are based
on protein coding and lincRNA genes only, as for regular QTLs. Due to high correlation of cell types in a given tissue (shown in fig.
S50 for blood), cell type interaction QTLs should not be interpreted as cell-type specific QTLs since they can represent regulatory
effects in an (anti)-correlated cell type as well (see also [54]). Enrichment of ieQTLs and isQTLs in functional elements of the
genome was calculated with Torus [83] (Section 12.1; fig. S51).
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Fig. S49. Replication of neutrophil ieQTLs in purified blood cell types. eQTLs from purified neutrophils have higher median neutrophil
ieQTL effect sizes than eQTLs from other cell types or eQTLs shared across cell types (’common’). eQTLs from purified blood cell types were
obtained from [56].
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Fig. S50. Correlation of blood cell types. Spearman correlation between xCell enrichment scores for blood cell types in whole blood.



68

−5 0 5 10
log2(Fold enrichment)

Enhancer
Promoter

Open chromatin
Promoter-flanking
CTCF binding site

TF binding site
3' UTR
5' UTR

Frameshift
Intron

Missense
NC transcript

Splice acceptor
Splice donor
Splice region
Stop gained

Synonymous

eQTL
ieQTL
sQTL
isQTL

Fig. S51. Functional enrichment of ieQTLs and isQTLs. Enrichment in functional annotations of the genome for epithelial cell ieQTLs and
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Fig. S52. SPAG7 ieQTL GWAS colocalization. P-value landscape in the SPAG7 locus for a platelet count GWAS [90], for bulk Whole Blood
cis-eQTL associations (PP4 = 0.00), and neutrophil ieQTL associations (PP4 = 0.94). The top ieQTL variant (rs2243103) is highlighted.

15.3 Colocalization of neutrophil ieQTLs and GWAS traits

Colocalization analysis was conducted using the coloc R package [75]. ENLOC, which was used in Section 13.5.1, could not
be applied to cell type ieQTLs as DAP-G/ENLOC does not provide the option to include an interaction term when modelling
the association (inputs are individual-level genotype and expression data sets). However, COLOC priors can be computed from
ENLOC estimates [32], and we therefore used COLOC with model-based ENLOC priors (see below). COLOC uses summary
statistics from QTL and GWAS studies in a Bayesian framework to identify GWAS signals that colocalize with QTLs. We ran
COLOC for all 1,120 neutrophil ieGenes at FDR ≤ 0.05 and 87 GWAS traits. All variants of the cis-QTL region (±1 Mb of the
TSS of an ieGene) that were available for both the QTL and the GWAS trait were used in the function coloc.abf() with either
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cis-ieQTL or corresponding cis-eQTL p-values and GWAS effect size estimates and their variances. Given the high sensitivity of
colocalization results to the choice of priors, we use model-based priors computed with ENLOC [32] (See Section 13.5.1). The
same model-based priors used for cis-eQTLs were used for cis-ieQTLs assuming that regular cis-eQTLs reflect the average signal
of all ieQTLs for a particular gene. The corresponding prior can thus be interpreted as the average prior of all ieQTLs for that gene
and can be used as an approximated prior for each individual cell type ieQTL. We defined an ieGene or eGene as having evidence
of colocalization when the posterior probability of colocalization (PP4) was higher than 0.5.
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16 Supplementary Table legends

Supplementary tables S10-16 can be found online as excel files.

Table S10. Population-biased eQTLs. Summary statistics of the high confidence pb-eQTLs (FDR < 0.25), including summary statistics
for the eVariantEA and the eVariantAA (lead eVariant in an eQTL mapping analysis separately for individuals of European or African ances-
try, respectively), and validation using allele-specific expression data. Columns are: tissue: GTEx tissue, gene_id: Ensembl gene ID,
gene_name: HGNC gene identificator, variant_id: SNV identificator, comprised of chromosome, position, reference allele, alternative al-
lele, and human genome build, rs_id_dbSNP151_GRCh38p7: corresponding rs identificator from dbSNP151, afc.GTEx_v8: log2 aFC in
GTEx v8, afc_CI.GTEx_v8: upper and lower confidence interval of the log2 aFC in GTEx v8, afc.EA: log2 aFC among the European Amer-
icans, afc_lower.EA: lower confidence limit of the log2 aFC among the European Americans, afc_upper.EA: upper confidence limit of the
log2 aFC among the European Americans, sample_size.EA : number of individuals in the European Americans group, alt_allele_freq.EA:
alternative allele frequency among the European Americans, afc.AA: log2 aFC among the African Americans, afc_lower.AA: lower confi-
dence limit of the log2 aFC among the African Americans, afc_upper.AA: upper confidence limit of the log2 aFC among the African Amer-
icans, sample_size.AA: number of individuals in the European Americans group, alt_allele_freq.AA: alternative allele frequency among
the African Americans, delta_afc: difference of the aFC estimates between European and African Americans (afc.EA - afc.AA), perm_p:
permutation p-value of the significance of the delta_afc by shuffling the ancestry group labels 100,000 times, perm_p.fdr: Benjamini-
Hochberg corrected permutation p-values, lead_variant.EA: SNV with lowest p-value in eQTL mapping conducted only among the Eu-
ropean Americans, lead_variant.EA.pval: p-value of the lead_variant.EA, lead_variant.EA.alt_freq: alternative allele frequency of the
lead_variant.EA, lead_variant.EA.r2_with_lead_GTEx_variant: r2 between the lead_variant.EA and variant_id, lead_variant.EA.afc: log2

aFC of the lead_variant.EA among the European Americans, lead_variant.EA.afc_lower: lower confidence limit of the log2 aFC of the
lead_variant.EA among the European Americans, lead_variant.EA.afc_upper: upper confidence limit of the log2 aFC of the lead_variant.EA
among the European Americans, lead_variant.EA.afc_in_AA: aFC and 95% confidence interval (log2) of the lead_variant.EA among the
African Americans, lead_variant.EA.delta_afc: difference of the aFC estimates between European and African Americans when using the
most significant eQTL among the European Americans (lead_variant.EA.afc - lead_variant.EA.afc_in_AA), lead_variant.EA.perm_p: permuta-
tion p-value of the significance of the lead_variant.EA.delta_afc, lead_variant.AA: SNV with lowest p-value in eQTL mapping conducted only
among the African Americans, lead_variant.AA.pval: p-value of the lead_variant.AA, lead_variant.AA.alt_freq: alternative allele frequency
of the lead_variant.AA, lead_variant.AA.r2_with_lead_GTEx_variant: r2 between the lead_variant.AA and variant_id, lead_variant.AA.afc:
log2 aFC of the lead_variant.AA among the African Americans, lead_variant.AA.afc_lower: lower confidence limit of the log2 aFC of the
lead_variant.AA among the African Americans, lead_variant.AA.afc_upper: upper confidence limit of the log2 aFC of the lead_variant.AA
among the African Americans, lead_variant.AA.afc_in_EA: aFC and 95% confidence interval (log2) of the lead_variant.AA among the Eu-
ropean Americans, lead_variant.AA.delta_afc: difference of the aFC estimates between European and African Americans when using the
most significant eQTL among the African Americans (lead_variant.AA.afc_in_EA - lead_variant.AA.afc), lead_variant.AA.perm_p: permuta-
tion p-value of the significance of the lead_variant.AA.delta_afc, ase.var_het_n.EA: number of individuals heterozygous for the eQTL among
the European Americans, ase.var_het_afc.EA: aFC calculated from the allele-specific expression data (log2) among the European Ameri-
cans, ase.var_het_afc_CI.EA: 95% confidence interval of the log2 aFC among the European Americans, ase.var_het_n.AA: number of in-
dividuals heterozygous for the eQTL among the African Americans, ase.var_het_afc.AA: aFC calculated from the allele-specific expression
data (log2) among the European Americans, ase.var_het_afc_CI.AA: 95% confidence interval of the log2 aFC among the African Ameri-
cans, ase.delta_afc: difference of the aFC estimates based on the allele-specific expression data between European and African Americans
(ase.var_het_n.EA - ase.var_het_n.AA), ase.wilcox.p: Wilcoxon rank-sum test p-value of the significance of the ase.delta_afc.

Table S11. GWAS Metadata with relevant information about each GWAS study used. Columns are: Tag: Internal name to identify the study,
Ref_no: Reference to the source data, PUBMED_Paper_Link: PUBMED entry, Pheno_File: name of downloaded file, Source_File: actual
name of GWAS summary statistics (i.e., downloaded files might contain several traits), Portal: URL to GWAS study portal, Consortium: Name
of consortium if any, Link: download link for the file, Notes: any special comment on the GWAS trait, Header: GWAS summary statistics
header in case the file is malformed, EFO: Experimental Factor Ontology [128] entry if applicable, HPO: Human Phenotype Ontology [129] entry
if applicable, Description: optional description of the study, Phenotype: phenotype name, Sample_Size: number of individuals included in
the study, Population: types of populations present (EUR for European, AFR for African, EAS for East Asian, etc), Date: Date the file was
downloaded, Declared_Effect_Allele: column specifying effect allele, Genome_Reference: Human Genome release used as reference (i.e.,
hg19, hg38), Binary: whether the trait is dichotomous, Cases: number of cases if binary trait, abbreviation: short string for figure and table
display, new_abbreviation: additional abbreviation, new_Phenotype: additional phenotype name, Category: type of trait.

Table S12. Pairing of GWAS traits and putatively relevant tissues. GWAS traits were selected if they could be reasonably assigned to an
affected tissue group: blood, brain, immune, or metabolic. Columns are: Tag: Internal name to identify the GWAS study, Phenotype: phenotype
name, Number of filtered loci: the final number of analyzed loci for each trait, Tissue group: literature-search-based trait-relevant organ system
Trait-relevant tissues: literature-search-based trait-relevant GTEx tissue abbreviations

Table S13. Per-tissue trans-eQTLs. Trans-eQTLs across 49 tissues at gene-level FDR < 0.05 within each tissue. Columns are: Lead variant:
the variant with the lowest p-value for the gene in that tissue, Gene: gene, Tissue: GTEx tissue, P-value: Association p-value, FDR: False
discovery rate
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Table S14. Per-tissue trans-sQTLs. Trans-sQTLs across 49 tissues at gene-level FDR < 0.05 within each tissue. The columns are as above.

Table S15. Trans-eQTL GWAS colocalization analysis. Colocalization analysis of trans-eQTLs that overlap GWAS traits. Of the 25 trans-
eQTLs that overlapped with a GWAS trait (P<5e-8), 10 colocalized with at least one trait at PP4>0.9. Columns are: Gene: gene, Variant: the
lead eVariant (the variant with the lowest p-value for the gene in that tissue), Tissue: GTEx tissue, Trait: Internal name to identify the GWAS
study, PP4: Colocalization posterior probability,

Table S16. Colocalization of cis- and trans-eQTLs. Additional trans-associations from colocalization analysis of the cis-eGenes mediating
trans-eQTLs. 248 associations across 15 tissues are reported. Columns are: cis_gene_id: Ensembl ID of the cis-gene, trans_gene_id: En-
sembl ID of the trans-gene, pp4: posterior probability of colocalization, variant_id: lead eVariant of the cis-mediating gene, pval_nominal:
p-value for the association of the lead eVariant with the trans-gene cis_gene_chr: cis-gene chromosome, trans_gene_chr: trans-gene chromo-
some, cis_gene_name: cis-gene symbol, trans_gene_name: trans-gene symbol, tissue_id: GTEx tissue, trans_gene_mappability: average
75-mer mappability of the trans-gene
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