Appendix

Table of contents

Appendix Figure S1. Construction of Lon and FtsH conditional mutants in M. pneumoniae.

Appendix Figure S2. Growth curve analysis for Δ IndLon, Δ IndFtsH, and Δ IndLon_FtsH strains.

Appendix Figure S3. Dot blot analysis of cellular DNA replication.

Appendix Figure S4. Volcano plots of the differences in protein abundance between inducing and depleting conditions.

Appendix Figure S5. Volcano plots of the differences in mRNA levels between inducing and depleting conditions.

Appendix Figure S6. Immunoblot analyses of selected Lon and FtsH candidate substrates.

Appendix Figure S7. Immunoblot analyses of selected FtsH candidate substrates.

Appendix Figure S8. Analysis of degron motif properties.

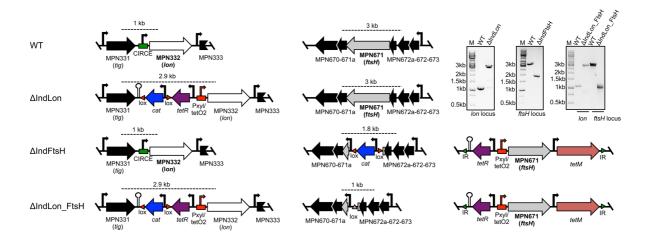
Appendix Figure S9. Sequence alignment of HsdS subunits present in M. pneumoniae.

Appendix Figure S10. Mutational analysis to identify Lon degrons in MPN201 (HsdS).

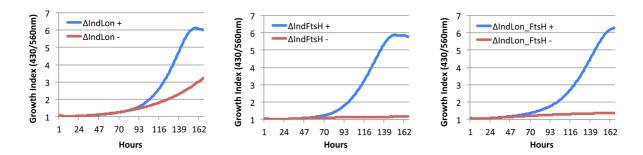
Appendix Figure S11. Mutational analysis to identify Lon degrons in MPN304 (ArcA Nt).

Appendix Figure S12. Correlation between proteome changes in responses to Lon and FtsH depletions.

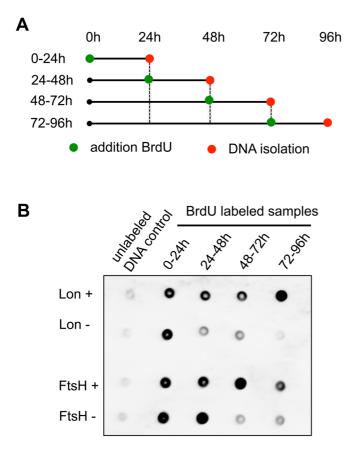
Appendix Figure S13. Fold change distribution of Lon candidate substrates in Triton X-100 insoluble fractions of cells grown under Lon inducing conditions.


Appendix Figure S14. Transposon mutagenesis screening to identify putative gene mutations

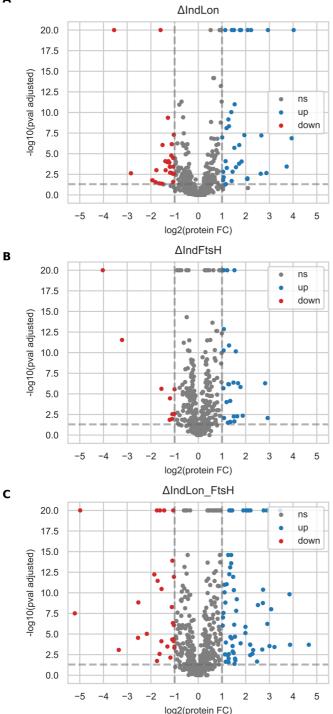
suppressing lethality associated with Lon and FtsH depletion.


Appendix Table S1. Mycoplasma strains used in this study.

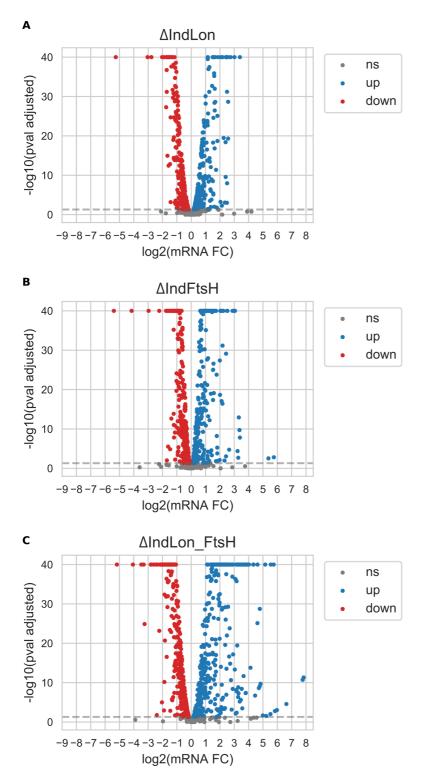
Appendix Table S2. Gibson cloning strategy for each plasmid constructed in this study.


Appendix Table S3. Primers used in this study.

Appendix Figure S1. Construction of Lon and FtsH conditional mutants in *M. pneumoniae*. Schematic representation of the genetic architecture after genome edition of Δ IndLon, Δ IndFtsH and Δ IndLon_FtsH conditional mutants as compared to the wild-type (WT) strain. The DNA rearrangement in the *lon* and *ftsH* locus is shown for each strain. The *ftsH* inducible platform inserted by transposon delivery is also shown for Δ IndFtsH and Δ IndLon_FtsH strains. The Pxyl/tetO2 inducible promoter is highlighted with a red bent arrow and the terminator sequence used to isolate the promoter is represented by a hairpin structure. The *tetR* repressor gene and the resistance markers *cat* and *tetM* are indicated in purple, blue and red, respectively. The CIRCE regulatory element replaced by the *lon* inducible platform is shown in green. Agarose electrophoresis gels showing the PCR screening confirmed the intended genome rearrangements at the *lon* and *ftsH* locus (top right panel). The PCR products and expected sizes for each strain are shown in the scheme.

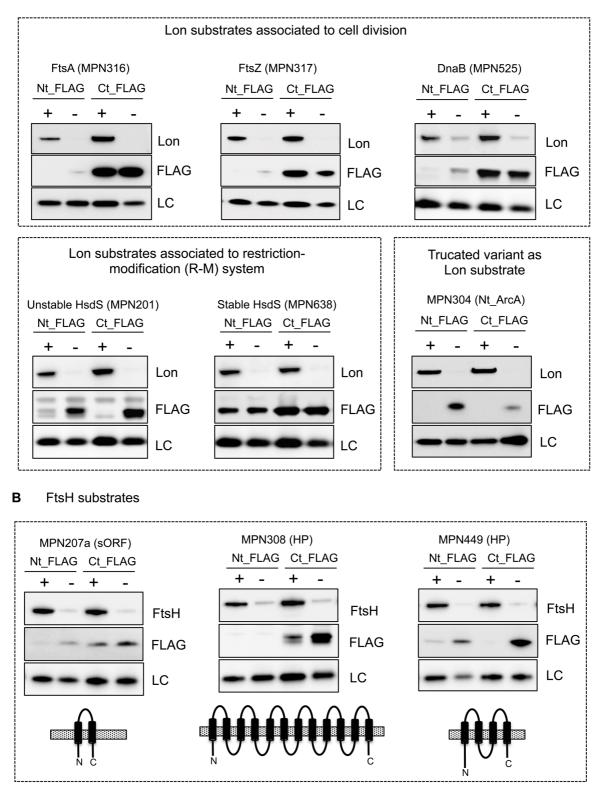


Appendix Figure S2. Growth curve analysis for Δ IndLon, Δ IndFtsH, and Δ IndLon_FtsH strains grown under inducing (+) or depleting (-) conditions as determined by the 430/560 absorbance rate index that shows pH changes in the medium.



Appendix Figure S3. Dot blot analysis of cellular DNA replication.

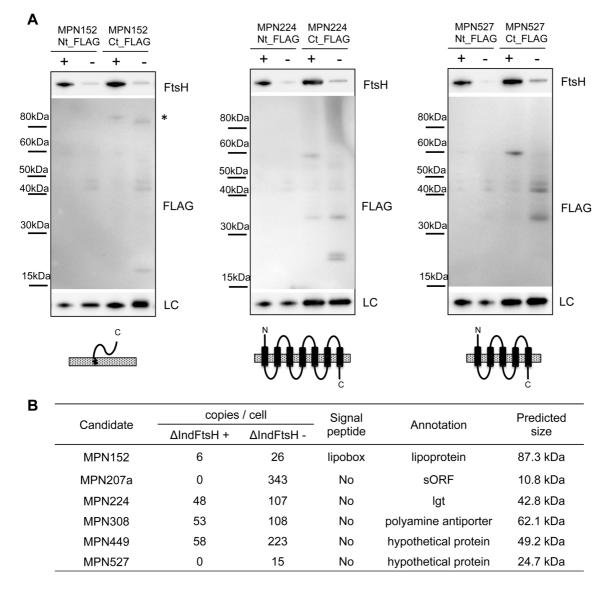
(A). ΔIndLon and ΔIndFtsH strains grown under inducing (+) or depleting (-) conditions were incubated with 100µM BrdU during 24h at different interval time points across the growth curve. After BrdU labeling, BrdU pulse-labeled cells were collected and total DNA extracted.
(B). Dot blot DNA hybridization analysis of BrdU labeled samples indicated in panel A. A DNA unlabeled control was also included. A total of 100 ng of DNA was denatured and spotted on a Hybond-N+ membrane. Following UV cross-linking, labeled DNA was visualized using an anti-BrdU antibody. BrdU incorporation was reduced after 24h and 48h of depletion of Lon and FtsH, respectively. A representative experiment is shown.



Appendix Figure S4. Volcano plots of the differences in protein abundance between inducing and depleting conditions. Differences in protein abundance between inducing (+) and depleting (-) conditions (48h and 72h of depletion for Lon and FtsH, respectively) are reported as log_2 of foldchanges for conditional mutants Δ IndLon (A), Δ IndFtsH (B) and Δ IndLon_FtsH (C). Statistical significance, calculated following a peptide-based statistical method, is reported as $-log_{10}$ of the adjusted p-value after multiple tests correction. Significantly regulated proteins were defined based on a false discovery rate (FDR) of 5% (dashed horizontal line) and a minimum fold change cut-off of 2 (dashed vertical lines). For better visualization, very small p-values were clipped at 1 x 10⁻²⁰.

Appendix Figure S5. Volcano plots of the differences in mRNA levels between inducing and depleting conditions. Differences in mRNA levels between inducing (+) and depleting (–) conditions (48h and 72h of depletion for Lon and FtsH, respectively) are reported as log_2 of fold changes for conditional mutants Δ IndLon (A), Δ IndFtsH (B) and Δ IndLon_FtsH (C). Statistical significance is reported as $-log_{10}$ of the adjusted p-value after multiple tests correction. Significantly regulated genes were defined based on a false discovery rate (FDR) of 5% (dashed horizontal line). For better visualization, very small p-value were clipped at 1 x 10⁻⁴⁰.

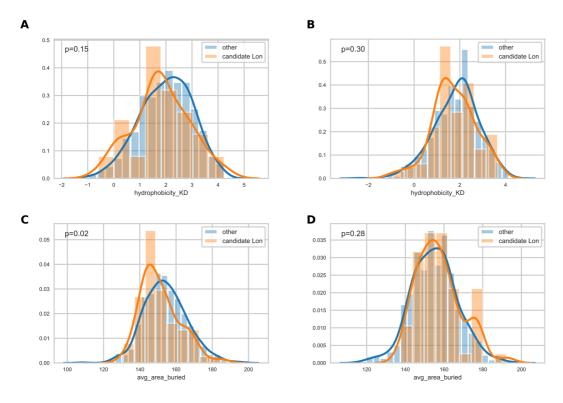
A Lon substrates



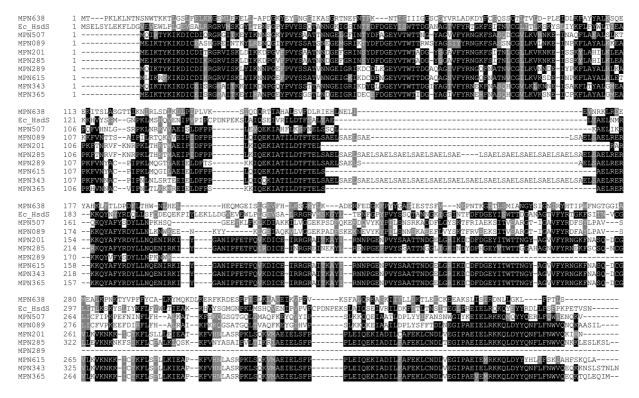
Appendix Figure S6. Immunoblot analyses of selected Lon and FtsH candidate substrates. (A) Lon candidate substrates. (Upper panel) N- and C-terminal FLAG-tagged derivatives of candidates substrates associated to cell division, including FtsA (MPN316), FtsZ (MPN317) and DnaB (MPN525) were expressed in the ΔIndLon mutant. Protein levels of Lon and candidate

substrates were then assessed by immunoblot under inducing (+) or depleting (-) conditions (48h of depletion) using anti-Lon and anti-FLAG antibodies. LC, loading control.

(Lower, left panel) Similar to the upper panel A, but for candidate substrates associated to the R-M system. Protein expression assessed by immunoblot of FLAG-tagged derivatives of MPN201 and MPN638 are shown as representatives of unstable and stable HsdS subunits, respectively. (Lower, right panel) Similar to the upper panel A, but showing an example of a truncated variant as a Lon candidate substrate. Specifically, protein expression assessed by immunoblot of FLAG-tagged derivatives of MPN304 (ArcA-Nt) that encodes the N-terminal fragment of an ArcA truncated variant is shown.


(B) FtsH candidate substrates. N- and C-terminal FLAG-tagged derivatives of MPN207a, MPN308 and MPN449 were expressed in the Δ IndFtsH mutant. Protein levels of FtsH and candidate substrates were then assessed by immunoblot under inducing (+) or depleting (–) conditions (72h of depletion) using anti-FtsH and anti-FLAG antibodies. For each protein, a schematic representation of the predicted transmembrane domains is also shown below.

Appendix Figure S7. Immunoblot analyses of selected FtsH candidate substrates.


(A). N- and C-terminal FLAG-tagged derivatives of candidate substrates were expressed in the Δ IndFtsH mutant (see also Fig. 4). Protein levels of FtsH and the candidate substrates were then assessed by immunoblot analysis during inducing (+) or depleting (-) conditions (72h of depletion) using anti-FtsH and anti-FLAG antibodies. LC, loading control. The asterisk indicates the predicted position of the detected protein. For each protein, a schematic representation of the predicted transmembrane domains is also shown below.

(B). Protein features and estimated protein copy numbers of selected FtsH candidate substrates of Δ IndFtsH mutant grown in inducing (+) or depleting (-) conditions.

Protein sequences at N- (panels A and C) and C-termini (panels B and D) of Lon candidate substrates were analyzed for putative signal in amino acid properties, as for example enrichment of hydrophobic region (panels A and B, Kyte-Doolittle hydrophobicity scale) and the average buried area (panels C and D). The terminus region of protein sequence was selected (25 residues). The average amino acid property score was computed over a rolling window of size 5. The maximum score was selected as representative of the most extreme signal in the terminus score. Distribution of the maximum score for substrate proteins did not show any significant difference (M.W.W. two-sided test) when compared to the background proteins (neither substrate of Lon nor of FtsH). A similar analysis of the average score over the last (first) 5 or 10 amino acids of protein sequences did not yield any significant enrichment.

Appendix Figure S9. Sequence alignment of HsdS subunits present in *M. pneumoniae* compared to *E. coli* HsdS (WP_096840861.1). The structure of the orthologous protein of MPN638 (HsdS) in *M. genitalium* (MG438) has been solved (PDB identifier: 1YDX). The protein sequence of MPN638 differs from the other HsdS subunits, although it is similar to other HsdS at the structural level (Calisto et al., 2005).

Calisto BM, Pich OQ, Piñol J, Fita I, Querol E & Carpena X (2005) Crystal structure of a putative type I restrictionmodification S subunit from Mycoplasma genitalium. J. Mol. Biol. 351: 749–762

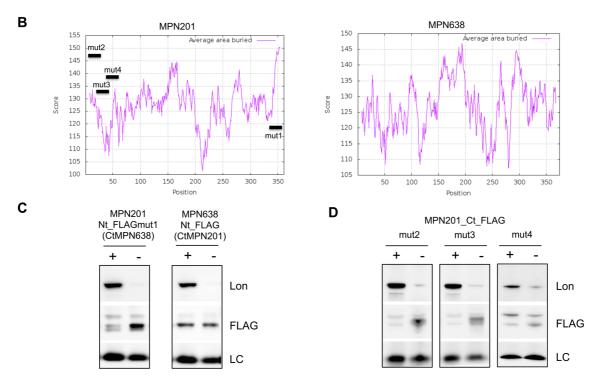
A >MPN201

MEIKTYKIKDICDITRGRVISKLDIKKDPGVFPVYSAATNNDGEFGRINSYDFDGEYVTWTADGYGGAVFYRNGKFSITNLCGLLKVKNKEISSKYLAHIL KLEAPKFTNRVFKNRPKLTHKTMAEIPIDFPPLKIQEKIATILDTFTELRARKKQYAFYRDYLLNQENIRKIYGANIPFETFQVKDICEIRRGRAITKAYI RNNPGENPVYSAATTNDGELGHIKDCDFDGEYITWTTNGYAGVVFYRNGKFNASQDCGVLKVKNKKICTKFLSLLLEIEATKFVHNLASRPKLSQKVMAEI ELSFPPLEIQEKIADILCAFEKLCNDLVEGIPAEIELRKKQLDYYQNFLFNWVQKIRN

>MPN201mut1(CtMPN638)

MEIKTYKIKDICDITRGRVISKLDIKKDPGVFPVYSAATNNDGEFGRINSYDFDGEYVTWTADGYGGAVFYRNGKFSITNLCGLLKVKNKEISSKYLAHIL KLEAPKFTNRVFKNRPKLTHKTMAEIPIDFPPLKIQEKIATILDTFTELRARKKQYAFYRDYLLNQENIRKIYGANIPFETFQVKDICEIRRGRAITKAYI RNNPGENPVYSAATTNDGELGHIKDCDFDGEYITWTTNGYAGVVFYRNGKFNASQDCGVLKVKNKKICTKFLSLLLEIEATKFVHNLASRPKLSQKVMAEI ELSFPPLEIQEKIADILCAFEKLCNDLVEGIPAEIELRKKQLD**SIRDNLLGKLFPTLS**

>MPN201mut2


MEGKTDKGKDGCDGTRGRVISKLDIKKDPGVFPVYSAATNNDGEFGRINSYDFDGEYVTWTADGYGGAVFYRNGKFSITNLCGLLKVKNKEISSKYLAHIL KLEAPKFTNRVFKNRPKLTHKTMAEIPIDFPPLKIQEKIATILDTFTELRARKKQYAFYRDYLLNQENIRKIYGANIPFETFQVKDICEIRRGRAITKAYI RNNPGENPVYSAATTNDGELGHIKDCDFDGEYITWTTNGYAGVVFYRNGKFNASQDCGVLKVKNKKICTKFLSLLLEIEATKFVHNLASRPKLSQKVMAEI ELSFPPLEIQEKIADILCAFEKLCNDLVEGIPAEIELRKKQLDYYQNFLFNWVQKIRN

>MPN201mut3

MEIKTYKIKDICDITRGRVISKLDIKKDPG**DGPDG**SAATNNDGEFGRINSYDFDGEYVTWTADGYGGAVFYRNGKFSITNLCGLLKVKNKEISSKYLAHIL KLEAPKFTNRVFKNRPKLTHKTMAEIPIDFPPLKIQEKIATILDTFTELRARKKQYAFYRDYLLNQENIRKIYGANIPFETFQVKDICEIRRGRAITKAYI RNNPGENPVYSAATTNDGELGHIKDCDFDGEYITWTTNGYAGVVFYRNGKFNASQDCGVLKVKNKKICTKFLSLLLEIEATKFVHNLASRPKLSQKVMAEI ELSFPPLEIQEKIADILCAFEKLCNDLVEGIPAEIELRKKQLDYYQNFLFNWVQKIRN

>MPN201mut4

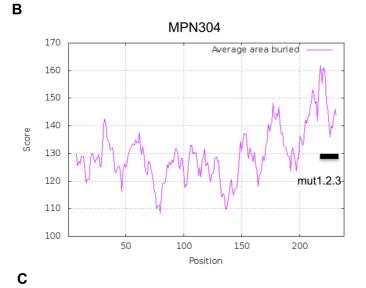
MEIKTYKIKDICDITRGRVISKLDIKKDPGVFPVYSAATNNDGEFGRINS**GDGDGEDGTD**TADGYGGAVFYRNGKFSITNLCGLLKVKNKEISSKYLAHIL KLEAPKFTNRVFKNRPKLTHKTMAEIPIDFPPLKIQEKIATILDTFTELRARKKQYAFYRDYLLNQENIRKIYGANIPFETFQVKDICEIRRGRAITKAYI RNNPGENPVYSAATTNDGELGHIKDCDFDGEYITWTTNGYAGVVFYRNGKFNASQDCGVLKVKNKKICTKFLSLLLEIEATKFVHNLASRPKLSQKVMAEI ELSFPPLEIQEKIADILCAFEKLCNDLVEGIPAEIELRKKQLDYYQNFLFNWVQKIRN

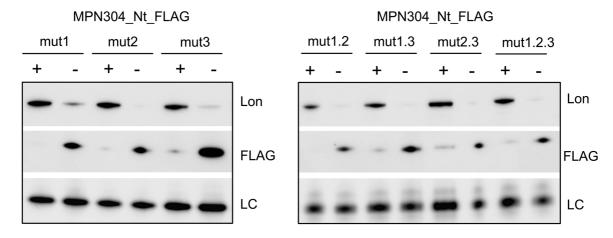
Appendix Figure S10. Mutational analysis to identify Lon degrons in MPN201 (HsdS).

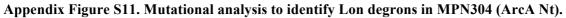
(A) Amino acid sequence of MPN201 and their mutant derivatives. Hydrophobic motifs that can potentially act as Lon degrons are highlighted in bold. Mutations performed in these putative Lon degrons are shown in red.

(B) Sequence analysis showing the surface-area burial score along MPN201 (HsdS) and MPN638 (HsdS) protein sequence. Analysis was performed using the ProtScale Tool selecting the "average area buried" amino acid scale (Gasteiger et al, 2005). Mutated regions in MPN201 are indicated in the plot.

(C) Protein stability assessment of MPN201 and MPN638 N-terminal FLAG-tagged derivatives in which their C-terminal regions were swapped and expressed in the Δ IndLon mutant. Protein levels were then determined by immunoblot using anti-Lon and anti-FLAG antibodies comparing inducing (+) or depleting (–) conditions (48h of depletion). LC, loading control.


(**D**) Protein stability assessment of MPN201 containing mutations in putative Lon degrons. C-terminal FLAG-tagged derivatives with mutations shown in panel A were expressed in the Δ IndLon mutant and protein levels determined by immunoblot as in panel C.


We hypothesized that the C-terminal hydrophobic motif YYQNFLFNWV could be responsible for Lon-mediated degradation, as this motif is mainly conserved in the unstable HsdS, but absent from MPN638 (Appendix Figure S9). To test this, we swapped the C-terminal regions of MPN201 and MPN638 and we assessed the stability of these proteins in the presence of Lon. We found that MPN201 was still degraded, whereas MPN638 remained stable (Appendix Figure S10C). We then searched for sequence motifs in MPN201 with a high score for buried surface-area, as these regions have been shown to correlate well in *E. coli* with Lon-dependent degradation (Gur & Sauer, 2008). As the N-terminal FLAG fusion slightly improved the stability of MPN201 (Appendix Figure S6), we focused particularly on motifs present in the N-terminal region. However, after several mutational analyses in candidate motifs, we were unable to identify a clear degradation signal in MPN201 (Appendix Figure S10D), suggesting the existence of multiple exposed degrons.

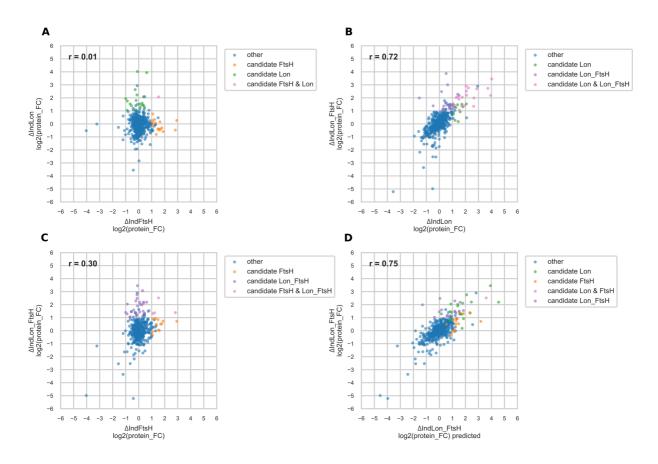

Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A.; *Protein Identification and Analysis Tools on the ExPASy Server;* (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (2005). pp. 571-607

Α

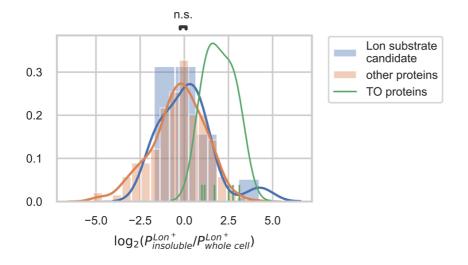
MPN304	LPTTPIIAARKFTLNQLTWAQLR VVIFLYM TNKQ WWWGWV NGQPK LPLMF
MPN304mut1	LPTTPIIAARKFTLNQLTWAQLR DGIDGDM TNKQWWWGWVNGQPKLPLMF
MPN304mut2	LPTTPIIAARKFTLNQLTWAQLRVVIFLYMTNKQ DGDGDG NGQPKLPLMF
MPN304mut3	LPTTPIIAARKFTLNQLTWAQLRVVIFLYMTNKQWWWGWVNGQPK DPDGD

(A) Amino acid sequence of the last 50 residues of MPN304 and their mutant derivatives.Hydrophobic motifs that can potentially act as Lon degrons are highlighted in bold. Mutations performed in these putative Lon degrons are shown in red.

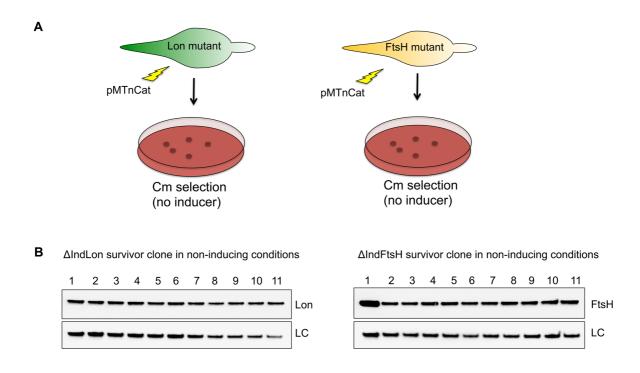
(B) Sequence analysis showing the surface-area burial score along MPN304 protein sequence.


Analysis was performed using the ProtScale Tool selecting the "average area buried" amino acid scale (Gasteiger et al, 2005). Mutated regions in MPN304 are indicated in the plot.

(C) Protein stability assessment of MPN304 N-terminal FLAG-tagged derivatives containing single or combined mutations in putative Lon degrons. MPN304 mutant derivatives were expressed in the


ΔIndLon mutant and protein levels determined by immunoblot using anti-Lon and anti-FLAG antibodies comparing inducing (+) or depleting (–) conditions (48h of depletion). LC, loading control. We searched for sequence motifs in MPN304 with a high score for buried surface-area, as these regions have been shown to correlate well in *E. coli* with Lon-dependent degradation (Gur & Sauer, 2008). Although the C-terminal region of MPN304 has the highest score for buried surface-area of the protein and contains several motifs enriched in hydrophobic residues, only mutations in LPLMF located at the protein C-terminal end had a modest contribution in the stability of the protein (Appendix Figure S11C). The combination of mutated motifs in the C-terminal region did not further improve protein stability (Appendix Figure S11D), suggesting the existence of multiple exposed degrons.

Gur E & Sauer RT (2008) Recognition of misfolded proteins by Lon, a AAA protease. *Genes & Development* 22: 2267–2277 Available at: http://dx.doi.org/10.1101/gad.1670908


Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A.; *Protein Identification and Analysis Tools on the ExPASy Server;* (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (2005). pp. 571-607

Appendix Figure S12. Correlation between proteome changes in responses to Lon and FtsH depletions. Correlation analysis of protein level changes comparing different mutant backgrounds. Data is reported as log_2 of protein fold changes observed after Lon and/or FtsH depletion (48h and 72h of depletion, respectively). (A) Δ IndLon v.s. Δ IndFtsH, (B) Δ IndLon v.s. Δ IndLon_FtsH, (C) Δ IndFtsH v.s. Δ IndLon_FtsH, (D) Δ IndLon_FtsH_predicted v.s. Δ IndLon_FtsH. The predicted changes in the double mutant (referred to as Δ IndLon_FtsH_predicted) were computed as the sum of the log_2 (protein_FC) in the two individual mutant experiments. Insets indicate pearson correlation coefficients.

Appendix Figure S13. MS analysis showing the distribution of \log_2 fold-changes of the Triton X-100 insoluble fraction compared to the whole cell lysate, under Lon inducing conditions. Proteins associated with the terminal organelle (TO proteins), known to be enriched in the insoluble fractions, are shown as reference. No significant difference in \log_2 fold-changes for Lon substrate candidates was observed compared to the other proteins (Mann-Whitney-Wilcoxon two-sided test, p=0.08).

Appendix Figure S14. Transposon mutagenesis screening to identify putative gene mutations suppressing lethality associated with Lon and FtsH depletion.

(A). Schematic representation showing the screening strategy. Lon and FtsH conditional mutants in which the *cat* resistance gene was excised by the Cre-lox system were electroporated with the pMTnCat minitransposon. The resulting transformants were plated on Hayflick agar plates and selected in the absence of inducer and 20 μg/ml Cm. In these selecting conditions, only transformants having transposon insertions in genes that could cause the lethality of Lon or FtsH depletion, or with mutations that derepress the inducible system are expected in principle to be selected. Of note, this screening strategy has the limitation that the effect of essential genes cannot be evaluated. A total of 11 and approximately 100 colonies were obtained after two independent transformation experiments for the Lon and FtsH conditional mutants, respectively. (B) Western blot analysis assessing the expression of Lon and FtsH in 11 survivor clones from each conditional mutant revealed that all clones were capable to express Lon and FtsH, suggesting the presence of mutations affecting the repressing capabilities of the inducible system. LC, loading control.

Appendix Table S1	. Mycoplasma	strains used	in this study.
--------------------------	--------------	--------------	----------------

Strain	Resistance	Reference
M129 GP35	Puro ^R	Piñero-Lambea et al, 2020
ΔIndLon	Puro ^R , Cm ^R	This study
∆IndLon cat-	Puro ^R . Cm ^R	This study
M129_GP35_pMTnTc_ftsH_Ind	Puro ^R , Cm ^R Puro ^R , Tc ^R	This study
ΔIndFtsH	$Puro^{R}$, Cm^{R} , Tc^{R}	This study
ΔIndFtsH cat-	Puro ^R , Cm ^R , Tc ^R Puro ^R , Tc ^R	This study
ΔIndLon FtsH	$Puro^{R}$ Cm^{R} Tc^{R}	This study
ΔIndLon Δhmw2Nt	Puro ^R , Cm ^R , Tc ^R Puro ^R , Cm ^R	This study
ΔIndFtsH_pMTnCat_FLAG_MPN152	$Puro^{R}$, Cm^{R} , Tc^{R}	This study
ΔIndFtsH pMTnCat MPN152 FLAG	Puro ^R , Cm^R , Tc^R	This study
ΔIndFtsH pMTnCat FLAG MPN207a	Puro ^R , Cm^R , Tc^R	This study
ΔIndFtsH pMTnCat MPN207a FLAG	Puro ^R , Cm^{R} , Tc^{R} Puro ^R , Cm^{R} , Tc^{R}	This study
ΔIndFtsH_pMTnCat_FLAG_MPN224	Puro ^R , Cm^R , Tc^R	This study
ΔIndFtsH_pMTnCat_MPN224_FLAG	$Puro^{R}, Cm^{R}, Tc^{R}$	This study
ΔIndFtsH_pMTnCat_FLAG_MPN308	$Puro^{R}, Cm^{R}, Tc^{R}$	This study
ΔIndFtsH pMTnCat MPN308 FLAG	$Puro^{R}, Cm^{R}, Tc^{R}$	This study
ΔIndFtsH_pMTnCat_FLAG_MPN449	Puro ^R , Cm^{R} , Tc^{R}	This study
ΔIndFtsH pMTnCat MPN449 FLAG	$Puro^{R}$ Cm ^R Tc ^R	This study
ΔIndFtsH pMTnCat FLAG MPN527	Puro ^R , Cm ^R , Tc ^R Puro ^R , Cm ^R , Tc ^R	This study
ΔIndFtsH pMTnCat MPN527 FLAG	Puro ^R , Cm^R , Tc^R	This study
ΔIndLon_pMTnTc_FLAG_MPN201	Puro ^R , Cm^R , Tc^R	This study
ΔIndLon_pMTnTc_MPN201_FLAG	$Puro^{R}$ Cm ^R Tc ^R	This study
ΔIndLon_pMTnTc_FLAG_MPN304	Puro ^R , Cm ^R , Tc ^R Puro ^R , Cm ^R , Tc ^R	This study
ΔIndLon pMTnTc MPN304 FLAG	Puro ^R , Cm^R , Tc^R	This study
ΔIndLon_pMTnTc_FLAG_MPN316	Puro ^R , Cm^R , Tc^R	This study
ΔIndLon pMTnTc MPN316 FLAG	$Puro^{R}$ Cm^{R} Tc^{R}	This study
ΔIndLon_pMTnTc_FLAG_MPN317	$Puro^{R}$ Cm ^R Tc ^R	This study
ΔIndLon pMTnTc MPN317 FLAG	Puro ^R , Cm ^R , Tc ^R Puro ^R , Cm ^R , Tc ^R Puro ^R , Cm ^R , Tc ^R	This study
ΔIndLon_pMTnTc_FLAG_MPN525	$Puro^{R}$ Cm ^R Tc ^R	This study
ΔIndLon pMTnTc MPN525 FLAG	Puro ^R , Cm ^R , Tc ^R Puro ^R , Cm ^R , Tc ^R	This study
ΔIndLon_pMTnTc_FLAG_MPN638	Puro ^{R} , Cm ^{R} , Tc ^{R}	This study
ΔIndLon_pMTnTc_MPN638_FLAG	Puro ^R , Cm^R , Tc^R	This study
ΔIndLon pMTnTc FLAG MPN201mut1	$Puro^{R}$ Cm ^R Tc ^R	This study
ΔIndLon_pMTnTc_MPN201_FLAGmut2	Puro ^R , Cm ^R , Tc ^R Puro ^R , Cm ^R , Tc ^R	This study
ΔIndLon pMTnTc MPN201 FLAGmut3	Puro ^R , Cm^R , Tc^R	This study
ΔIndLon_pMTnTc_MPN201_FLAGmut4	$Puro^{R}$ Cm ^R Tc ^R	This study
ΔIndLon pMTnTc FLAG MPN304mut1	Puro ^R , Cm ^R , Tc ^R Puro ^R , Cm ^R , Tc ^R	This study
ΔIndLon_pMTnTc_FLAG_MPN304mut2	$Puro^R Cm^R Tc^R$	This study
ΔIndLon pMTnTc FLAG MPN304mut3	Puro ^R , Cm ^R , Tc ^R Puro ^R , Cm ^R , Tc ^R	This study
ΔIndLon_pMTnTc_FLAG_MPN304mut1.2	Puro ^R , Cm^R , Tc^R	This study
ΔIndLon pMTnTc FLAG MPN304mut1.3	Puro ^R , Cm^R , Tc^R	This study
ΔIndLon pMTnTc FLAG MPN304mut2.3	Puro ^R , Cm^{R} , Tc^{R}	This study
ΔIndLon pMTnTc FLAG MPN304mut1.2.3	Puro ^R , Cm^R , Tc^R	This study
ΔIndLon pMTnTc FLAG MPN316mut1	Puro ^R , Cm^R , Tc^R	This study
ΔIndLon pMTnTc FLAG MPN316mut2	Puro ^R , Cm^R , Tc^R	This study
ΔIndLon pMTnTc FLAG MPN316 L413D	Puro ^R , Cm^R , Tc^R	This study
ΔIndLon_pMTnTc_FLAG_MPN316_V414G	$Puro^{R}$ Cm^{R} Tc^{R}	This study
ΔIndLon pMTnTc FLAG MPN316 L417D	Puro ^R , Cm ^R , Tc ^R Puro ^R , Cm ^R , Tc ^R	This study
ΔIndLon pMTnTc FLAG MPN316 I418G	$Puro^{R}$ Cm^{R} Tc^{R}	This study
ΔIndLon pMTnTc FLAG MPN317mut1	Puro ^R , Cm ^R , Tc ^R Puro ^R , Cm ^R , Tc ^R	This study
ΔIndLon pMTnTc FLAG MPN317mut2	$Puro^{R}$ Cm ^R Tc ^R	This study
ΔIndLon pMTnTc FLAG MPN317 F378D	Puro ^R , Cm ^R , Tc ^R Puro ^R , Cm ^R , Tc ^R	This study
ΔIndLon pMTnTc FLAG MPN317 Y380G	Puro ^R , Cm^R , Tc^R	This study
ΔIndLon_pMTnTc_FLAG_MPN525mut1	Puro ^R , Cm^{R} , Tc^{R}	This study
ΔIndLon pMTnTc FLAG MPN525 V391G	$Puro^{R}, Cm^{R}, Tc^{R}$	This study
ΔIndLon pMTnTc FLAG MPN525 Y393D	Puro ^R , Cm^R , Tc^R	This study
ΔIndLon pMTnTc FLAG MPN525 F394G	Puro ^R , Cm^R , Tc^R	This study
ATTALATE DIVETTER FLAXE VIE N.J.C.J. F.J.74VI	1 mo, cm, 10	i mo study
ΔIndLon pMTnTc FLAG MPN638CtMPN201	Puro ^R , Cm^{R} , Tc^{R} Puro ^R , Cm^{R} , Tc^{R}	This study

Piñero-Lambea C, Garcia-Ramallo E, Martinez S, Delgado J, Serrano L & Lluch-Senar M (2020) Genome Editing Based on Oligo Recombineering and Cas9-Mediated Counterselection. *ACS Synth. Biol.* **9:** 1693–1704.

Gibson component	Primers	Template	Gibosn assembly
p∆LonPr In	d		ussennory
PCR1	p_LA_Lon_F / ter_LA_LonR	gDNA M129	х
PCR2	ter lox66 F / tetR lox71 R	pMTnCat(lox) ⁽¹⁾	х
PCR3	lox71 tetR F / RALonIndPr R	pMTnParGP35eiCas9 eNT2 ⁽²⁾	X
PCR4	IndPr RALon F/p RALon R	gDNA M129	Х
Vector		pBSK EcoRV digested	x
pMTnTc_ftsl	H Ind		
PCR1	ter625_TetR_F / ftsH_IndPr_R	$p\Delta Lon Pr_Ind^{(3)}$	
PCR2	p_ter625 _F / ftsH_IndPr_R	PCR1	Х
PCR3	IndPr_LAFtsH_R / p_ftsH_R	gDNA M129	Х
Vector		pMTnTetM438 EcoRV digested (4)	Х
$p\Delta FtsH$			
PCR1	p_LA_ftsH_F / P438_LA_ftsH_R	gDNA M129	х
PCR2	P438_lox66_F / RA_ftsH_lox71_R	pMTnCat(lox) ⁽¹⁾	х
PCR3	lox71_RA_ftsH_F / p_RA_ftsH_R	gDNA M129	х
Vector		pBSK EcoRV digested	х
o∆Nt-hmw2			
PCR1	p_LA_hmw2_F / LA_hmw2_R	gDNA M129	Х
PCR2	LA_hmw2_lox71_F / RA_hmw2_lox66_R	pMTnCat(lox) ⁽¹⁾	Х
PCR3	RA_hmw2_F / p_RA_hmw2_R	gDNA M129	Х
Vector		pBSK EcoRV digested	Х
pMTnTc luc	2 F89E		
PCR1	P438_luc2_F / luc2_F89E_R	pMTnCat_luc2Ind_K ⁽⁵⁾	
PCR2	p_P438_F / luc2_F89E_R	PCR1	х
PCR3	luc2_F89E_F / p_luc2_R2	PCR1	Х
Vector		pMTnTetM438 EcoRV digested (4)	Х
N-terminal F	FLAG variants of FtsH substrates (XXX i	ndicates the corresponding gene	e number)
PCR1	FLAG_MPNXXX_F / p_MPNXXX_R	gDNA M129	
PCR2	p_P438FLAG_F / p_MPNXXX_R	PCR 1	х
Vector		pMTnCat EcoRV digested (6)	Х
	FLAG variants of FtsH substrates (XXX i		e number)
PCR1	P438_MPNXXX_F / FLAG_MPNXXX_R	gDNA M129	
PCR2	p_P438_F / p_FLAG_Ct_R	PCR 1	х
Vector		pMTnCat EcoRV digested ⁽⁶⁾	Х
N-terminal F	FLAG variants of Lon substrates (XXX in		number)
PCR1	FLAG_MPNXXX_F / p_MPNXXX_R	gDNA M129	
PCR2	p_P438FLAG_F / p_MPNXXX_R	PCR 1	Х
Vector		pMTnTetM438 EcoRV digested ⁽⁴⁾	Х
C-terminal F	FLAG variants of Lon substrates (XXX in	1 00	number)
PCR1	P438_MPNXXX_F / FLAG_MPNXXX_R	gDNA M129	
PCR2	p_P438_F / p_FLAG_Ct_R	PCR 1	х
Vector		pMTnTetM438 EcoRV digested (4)	Х
	minal FLAG variants with mutated degr	ons	
	AG_MPN201mut1		
PCR1	FLAG_MPN201_F / MPN201_Ct638_R	pMTnTc_FLAG_MPN201 ⁽³⁾	
PCR2	p_P438FLAG_F / p_MPN638_R	PCR 1	х
Vector		pMTnTetM438 EcoRV digested (4)	Х
	PN201_FLAGmut2		
PCR1 -	MPN201mut2_F / p_FLAG_Ct _R	pMTnTc_MPN201_FLAG ⁽³⁾	
PCR2	P438_MPN201mut2_F/ p_FLAG_Ct _R	PCR1	
PCR3	p_P438_F / p_FLAG_Ct_R	PCR2	Х
Vector		pMTnTetM438 EcoRV digested (4)	х

Appendix_Table S2. Gibson cloning strategy for each plasmid constructed in this study.

Gibson component	Primers	Template	Gibosn assembly
pMTnTc MP	N201 FLAGmut3		•
PCR1 –	p_P438_F / MPN201mut3_R	pMTnTc_MPN201_FLAG ⁽³⁾	Х
PCR2	MPN201mut3_F / p_FLAG_Ct_R	pMTnTc_MPN201_FLAG ⁽³⁾	х
Vector		pMTnTetM438 EcoRV digested (4)	Х
pMTnTc MP	N201 FLAGmut4		
PCR1 –	p_P438_F / MPN201mut4_R	pMTnTc_MPN201_FLAG ⁽³⁾	Х
PCR2	MPN201mut4_F / p_FLAG_Ct _R	pMTnTc_MPN201_FLAG ⁽³⁾	х
Vector		pMTnTetM438 EcoRV digested (4)	х
pMTnTc FL	AG MPN304mut1		
PCR1 –	p_P438FLAG_F / MPN304mut1_R	pMTnTc_FLAG_MPN304 ⁽³⁾	х
PCR2	MPN304mut1_F / p_MPN304 _R	pMTnTc_FLAG_MPN304 ⁽³⁾	х
Vector		pMTnTetM438 EcoRV digested (4)	х
pMTnTc FLA	1G MPN304mut2		
PCR1	FLAG MPN304 F / MPN304mut2 R	pMTnTc_FLAG_MPN304 ⁽³⁾	
PCR2	p P438FLAG F/p MPN304 R	PCR1	х
Vector		pMTnTetM438 EcoRV digested (4)	х
nMTnTc FLA	1G MPN304mut3		
PCR1	p P438FLAG F / p MPN304mut3 R	pMTnTc FLAG MPN304 ⁽³⁾	х
Vector		pMTnTetM438 <i>Eco</i> RV digested ⁽⁴⁾	X
	1G MPN304mut1.2	phillipedilipe Deoler algested	7 x
PCR1	p_P438FLAG_F / MPN304mut1_R	pMTnTc FLAG MPN304mut2 ⁽³⁾	х
PCR2	MPN304mut1 F/p MPN304 R	pMTnTc_FLAG_MPN304mut2 ⁽³⁾	
Vector	MFN304IIIut1_F/ p_MFN304_K	pMTnTetM438 <i>Eco</i> RV digested ⁽⁴⁾	X
		piwini retwi438 Ecok v digested	Х
	$1G_MPN304mut1.3$	$MT T = FLAC MDM204^{(3)}$	
PCR1	p_P438FLAG_F / MPN304mut1_R	pMTnTc_FLAG_MPN304 ⁽³⁾	Х
PCR2	MPN304mut1_F/ p_MPN304mut3 _R	$pMTnTc_FLAG_MPN304^{(3)}$	Х
Vector		pMTnTetM438 EcoRV digested (4)	Х
· _	1G_MPN304mut2.3	(2)	
PCR1	p_P438FLAG _F / p_MPN304mut3 _R	pMTnTc_FLAG_MPN304mut2 ⁽³⁾	х
Vector		pMTnTetM438 EcoRV digested ⁽⁴⁾	Х
	1G_MPN304mut1.2.3	(2)	
PCR1	p_P438FLAG_F / MPN304mut1_R	pMTnTc_FLAG_MPN304mut2 ⁽³⁾	Х
PCR2	MPN304mut1_F/ p_MPN304mut3 _R	pMTnTc_FLAG_MPN304mut2 ⁽³⁾	Х
Vector		pMTnTetM438 EcoRV digested (4)	Х
pMTnTc_FLA	1G_MPN316mut1		
PCR1	FLAG_MPN316_F / MPN316mut1_R	pMTnTc_FLAG_MPN316 ⁽³⁾	
PCR2	p_P438FLAG_F / p_MPN316_R	PCR1	х
Vector		pMTnTetM438 EcoRV digested (4)	х
pMTnTc FLA	1G MPN316mut2		
PCR1	FLAG_MPN316_F / MPN316mut2_R	pMTnTc_FLAG_MPN316 ⁽³⁾	
PCR2	p_P438FLAG_F/ p_MPN316mut2_R	PCR1	х
Vector		pMTnTetM438 EcoRV digested (4)	х
pMTnTc_FLA	IG MPN316 L413D	-	
PCR1	$p_P438FLAG F / p_MPN316_L413D_R$	pMTnTc FLAG MPN316 ⁽³⁾	х
Vector		pMTnTetM438 <i>Eco</i> RV digested ⁽⁴⁾	x
	1G MPN316 V414G	1	
PCR1	p P438FLAG F/p MPN316 V414G R	pMTnTc_FLAG_MPN316 ⁽³⁾	х
Vector	P_1 1001 Dato 1 / p_1011 1010_04140_K	pMTnTetM438 <i>Eco</i> RV digested ⁽⁴⁾	X X
	AC MDN216 1417D	pivititi cuvi436 ECORV digested	Λ
	$1G_MPN316_L417D$	$mMT_{12}T_{2} ELAC MDN21C(3)$	
PCR1	p_P438FLAG <i>F</i> / p_MPN316_L417D_R	$pMTnTc_FLAG_MPN316^{(3)}$	Х
Vector		pMTnTetM438 EcoRV digested (4)	Х

Appendix_Table S2. Gibson cloning strategy (cont.).

Gibson component	Primers	Template	Gibosn assembly
	ninal FLAG variants with mutated degr	ons	J
	AG MPN316 1418G		
PCR1	p_P438FLAG <i>F</i> / p_MPN316_I418G_R	pMTnTc_FLAG_MPN316 ⁽³⁾	х
Vector	·- ·	pMTnTetM438 <i>Eco</i> RV digested ⁽⁴⁾	х
pMTnTc FL	AG MPN317mut1		
PCR1	FLAG MPN317 F/ MPN317mut1 R	pMTnTc_FLAG_MPN317 ⁽³⁾	
PCR2		PCR1	х
Vector		pMTnTetM438 EcoRV digested (4)	х
pMTnTc FLA	AG MPN317mut2		
PCR1 _		pMTnTc_FLAG_MPN317 ⁽³⁾	
PCR2	p_P438FLAG_F / p_MPN317mut2_R	PCR1	х
Vector		pMTnTetM438 EcoRV digested (4)	х
pMTnTc FLA	AG MPN317 F378D		
PCR1	p_P438FLAG <i>F</i> / p_MPN317_F378D_R	pMTnTc_FLAG_MPN317 ⁽³⁾	х
Vector		pMTnTetM438 EcoRV digested (4)	х
pMTnTc FL	AG MPN317 Y380G		
PCR1	p_P438FLAG <i>F</i> / p_MPN317_Y380_R	pMTnTc FLAG MPN317 ⁽³⁾	х
Vector	·- ·	pMTnTetM438 <i>Eco</i> RV digested ⁽⁴⁾	х
pMTnTc FL	AG MPN525mut1	· · ·	
PCR1	FLAG MPN525 F / MPN525mut1 R	pMTnTc_FLAG_MPN525 ⁽³⁾	
PCR2	p_P438FLAG_F / MPN525mut1_R	PCR1	х
PCR3	MPN525mut1 F / p MPN525 R	pMTnTc_FLAG_MPN525 ⁽³⁾	х
Vector		pMTnTetM438 <i>Eco</i> RV digested ⁽⁴⁾	х
pMTnTc FL	AG MPN525 V391G		
PCR1	FLAG_MPN525_F / MPN525_V391G_R	pMTnTc_FLAG_MPN525 ⁽³⁾	
PCR2	p P438FLAG F/MPN525 V391G R	PCR1	х
PCR3	MPN525 V391G F / p MPN525 R	pMTnTc_FLAG_MPN525 ⁽³⁾	х
Vector		pMTnTetM438 EcoRV digested ⁽⁴⁾	х
pMTnTc FL	AG MPN525 Y393D	· · ·	
PCR1	FLAG_MPN525_F / MPN525_Y393D_R	pMTnTc_FLAG_MPN525 ⁽³⁾	
PCR2	p_P438FLAG <i>F</i> / MPN525_Y393D_R	PCR1	х
PCR3	MPN525_Y393D_F / p_MPN525_R	pMTnTc_FLAG_MPN525 ⁽³⁾	х
Vector		pMTnTetM438 <i>Eco</i> RV digested ⁽⁴⁾	х
	AG MPN525 F394G		
PCR1	FLAG MPN525 F / MPN525 F394G R	pMTnTc_FLAG_MPN525 ⁽³⁾	
PCR2	p P438FLAG F/MPN525 F394G R	PCR1	х
PCR3	MPN525_F394G_F / p_MPN525_R	pMTnTc FLAG MPN525 ⁽³⁾	х
Vector		pMTnTetM438 <i>Eco</i> RV digested ⁽⁴⁾	X
	AG MPN638CtMPN201		
PCR1	FLAG MPN638 F / MPN638 Ct201 R	pMTnTc_FLAG_MPN638 ⁽³⁾	
PCR2	p P438FLAG F / p MPN201 R	PCR1	х
Vector		pMTnTetM438 <i>Eco</i> RV digested ⁽⁴⁾	X

Appendix_Table S2. Gibson cloning strategy (cont.).

⁽¹⁾In-house cloning vector containing the *cat* gene flanked by lox sites.

⁽²⁾ Piñero-Lambea C, Garcia-Ramallo E, Martinez S, Delgado J, Serrano L & Lluch-Senar M (2020)

Genome Editing Based on Oligo Recombineering and Cas9-Mediated Counterselection. ACS Synth.

Biol. **9:** 1693–1704.

⁽³⁾ This study.

⁽⁴⁾ Pich, O.Q., Burgos, R., Planell, R., Querol, E., and Piñol, J. (2006). Comparative analysis of antibiotic resistance gene markers in Mycoplasma genitalium: application to studies of the minimal gene complement. Microbiology 152, 519–527.

⁽⁵⁾Weber M, Burgos R, Yus E, Yang J-S, Lluch-Senar M & Serrano L (2020) Impact of C-terminal amino acid composition on protein expression in bacteria. *Mol. Syst. Biol.* **16:** e9208

⁽⁶⁾ Burgos, R., Wood, G.E., Young, L., Glass, J.I., and Totten, P.A. (2012). RecA mediates MgpB and MgpC phase and antigenic variation in Mycoplasma genitalium, but plays a minor role in DNA repair. Mol. Microbiol. 85, 669–683.

Appendix	_Table	S3 .	Primers	used	in	this	study.	
----------	--------	-------------	---------	------	----	------	--------	--

Primer name	Sequence (5' to 3') ^a
Construction of plasma	
pALonPr_Ind	
p_LALon_F	ACGGTATCGATAAGCTTGAT <u>ACTTACTTTCATAAGTTAGTTTC</u>
ter_LALon_R	ATACCTGAAAGACTCAGGTATTTTTT <u>GAGTGCTAATGAGTGGAGTA</u>
ter_lox66 _F tetR lox71 R	TACCTGAGTCTTTCAGGTATTTTTT <u>TACCGTTCGTATAGCATAC</u> TGGGTCTTAATACCGTTCGTATAATGTATG
lox71 tetR F	ACGAACGGTATTAAGACCCACTTTCACATTTA
RALon IndPr R	CAGCTGGCATATGCTCTATCAATGATAGAGGA
IndPr_RALon_F	GATAGAGCATATGCCAGCTGTAAAAAAACCA
p_RALon_R	CCGGGCTGCAGGAATTCGAT <u>TCTTTTGGTACCTTAGATAGC</u>
pMTnTc_ftsH_Ind	
p_ter625 _F ter625 TetR F	ACGGTATCGATAAGCTTGATAAAAAA <u>TACCTGAGTCTTTCAGGTATT</u> TACCTGAGTCTTTCAGGTATTTTTT <u>TTAAGACCCACTTTCACATTTA</u>
ftsH IndPr R	TTTTTTTCATATGCTCTATCAATGATGAGAGG
IndPr_LAFtsH_R	GATAGAGCATATGAAAAAAAAAAAAAGGACTTAACG
p_ftsH_R	TCTAAATACTAGAATTCGAT <u>TTAACTGTTTGTTTCACTGTCT</u>
p∆FtsH	
p_LA_ftsH_F P438 LA ftsH R	ACGGTATCGATAAGCTTGAT <u>CTTGTACTGCCTTTTGGTGC</u> GTATTTAGAATTAATAAAGTGCAAGAACAGCAAGCCAAAC
P438 lox66 F	ACTITATIAATICTAAATACTATACCGTTCGTATAGCATAC
RA_ftsH_lox71_R	ACTACGAGCGAAAAACCGCATACCGTTCGTATAATGTATG
lox71_RA_ftsH_F	TGCGGTTTTTCGCTCGTAGT
p_RA_ftsH_R	CCGGGCTGCAGGAATTCGAT <u>CCTAAAGGCAAGGACATTCTT</u>
p∆Nt-hmw2 p LA hmw2 F	ACGGTATCGATAAGCTTGATCGCCATCTTTTCGATGCGC
LA hmw2 R	CGGTTAAAAGAGCCAGTGTT
LA hmw2 lox71 F	AACACTGGCTCTTTTTAACCGTACCGTTCGTATAATGTATG
RA_hmw2_lox66_R	CTGTTCTAAGTGTTTAGCAA <u>TACCGTTCGTATAGCATAC</u>
RA_hmw2_F	TTGCTAAACACTTAGAACAGCA
p_RA_hmw2_R pMTnTc_luc2_F89E	CCGGGCTGCAGGAATTCGAT <u>GTCAGCTTGGTACTGCCTT</u>
p_P438_F	ACGGTATCGATAAGCTTGATTAGTATTTAGAATTAATAAAGTATG
luc2 F89E R	ACACGGGCAT <i>TTC</i> GAACTGCAAG
P438_luc2_F	TAGTATTTAGAATTAATAAAGTATGGAAGATGCCAAAAACATTA
luc2_F89E_F	CTTGCAGTTCGAAATGCCCGTGT
p_luc2_R2	TCTAAATACTAGAATTCGATTTACACGGCGATCTTGCCG
	recombineering substrates and PCR screening [biotin]ACTTACTTTCATAAGTTAGTTTC
Bio_lonPr_F Pro_lonPr_R	T*C*T*T*TTGGTACCTTAGATAGC
Pro KOftsH F	C*T*T*G*TACTGCCTTTTGGTGC
Bio_KOftsH_R	[biotin]CCTAAAGGCAAGGACATTCTT
Pro_KOhmw2_R	G*T*C*A*GCTTGGTACTGCCTT
Bio_KOhmw2_F	[biotin]CGCCATCTTTTCGATGCGC
p_P438_F	d C-terminal FLAG variants
p_F438_F p FLAG Ct R	ACGGTATCGATAAGCTTGAT <u>TAGTATTTAGAATTAATAAAGTATG</u> TCTAAATACTAGAATTCGATTTATTTG <u>TCATCATCGTCCTTGTAGTC</u>
p_P438FLAG_F	ACGGTATCGATAAGCTTGATTAGTATTTAGAATTAATAAAGTATGGACTACAAGG
FLAG_MPN152_F	AATAAAGTATGGACTACAAGGACGATGATGACAAAAAATTTAAGTACGGCGCTATT
p_MPN152_R	TCTAAATACTAGAATTCGAT <u>CTATTCCATCACGGAAACGA</u>
P438_MPN152_F FLAG MPN152 R	TAGTATTTAGAATTAATAAAGT <u>ATGAAATTTAAGTACGGCGCT</u> TCATCATCGTCCTTGTAGTCTTCCATCACGGAAACGACC
FLAG_MPN207a F	AATAAAGTATGGACTACAAGGACGATGATGACAAACGAAAAGGTTGTATACGCATG
p_MPN207a_R	TCTAAATACTAGAATTCGATTTACTTAAACATTGAGGGAATG
P438_MPN207a_F	TAGTATTTAGAATTAATAAAGT <u>ATGCGAAAAGGTTGTATACGC</u>
FLAG_MPN207a_R	TCATCATCGTCCTTGTAGTC <u>CTTAAACATTGAGGGAATGGA</u>
FLAG_MPN224_F p MPN224 R	AATAAAGTATGGACTACAAGGACGATGATGACAAA <u>AATCCTAGTGTTAGTAGCAG</u> TCTAAATACTAGAATTCGAT <u>CTAAGCTTCCGGCACTGC</u>
P438 MPN224 F	TAGTATTAGAATTAGAATAGAAGT <u>ATGAATCCTAGTGTTAGTAGC</u>
FLAG_MPN224_R	TCATCATCGTCCTTGTAGTCAGCTTCCGGCACTGCTTC
FLAG_MPN308_F	AATAAAGTATGGACTACAAGGACGATGATGACAAAAAACAACAACAAAAAACCCAAAATTAG
p_MPN308_R P438_MDN308_E	TCTAAATACTAGAATTCGAT <u>TTAACCGTTAATGGTGGAGT</u>
P438_MPN308_F FLAG_MPN308_R	TAGTATTTAGAATTAATAAAGT <u>ATGAAACAACAAAAAACCCAAA</u> TCATCATCGTCCTTGTAGTC <u>ACCGTTAATGGTGGAGTG</u>
FLAG_MPN449 F	AATAAAGTATGGACTACAAGGACGATGATGACAAAACTTTTAGCGATCTTTTAACCA
p_MPN449_R	TCTAAATACTAGAATTCGATTTACCCAAAAACAGCTGGGG
P438_MPN449_F	TAGTATTTAGAATTAATAAAGT <u>ATGACTTTTAGCGATCTTTTAAC</u>
FLAG_MPN449_R	TCATCATCGTCCTTGTAGTC <u>CCCCAAAAACAGCTGGGGGT</u>
FLAG_MPN527_F p MPN527 R	AATAAAGTATGGACTACAAGGACGATGATGACAAA <u>AATGGTGCAAGAATAGCTTT</u> TCTAAATACTAGAATTCGAT <u>TTAATAGACAATCTGCGCTTTC</u>
P438 MPN527 F	TAGTATTTAGAATTAGAATAGAATGAATGAATGGTGCAAGAATAGC
FLAG_MPN527_R	TCATCATCGTCCTTGTAGTCATAGACAATCTGCGCTTTCT

Primer name	Sequence (5' to 3') ^a
Construction of N- a	nd C-terminal FLAG variants (cont.)
FLAG MPN201 F	AATAAAGTATGGACTACAAGGACGATGATGACAAAGAGATTAAAACTTACAAAATCA
p_MPN201_R	TCTAAATACTAGAATTCGATCTAATTTCTTATTTTTTGAACTCAATTAAATAAGAAG
P438 MPN201 F	TAGTATTTAGAATTAATAAAGTATGGAGATTAAAACTTACAAAATC
FLAG MPN201 R	TCATCATCGTCCTTGTAGTCATTTCTTATTTTTGAACTCAATT
FLAG MPN304 F	AATAAAGTATGGACTACAAGGACGATGATGACAAAAAGTACAACATCAACGTTCAT
p MPN304 R	TCTAAATACTAGAATTCGATCTAAAACATTAATGGCAGCTTC
P438_MPN304_F	TAGTATTTAGAATTAAAAGTATGAAGTACAACATCAACGTTC
FLAG_MPN304_R	TCATCATCGTCCTTGTAGTCAAACATTAATGGCAGCTTCGG
FLAG_MPN316_F	AATAAAGTATGGACTACAAGGACGATGATGACAAA <u>TATAACCTCAAAAACATCTACG</u>
p_MPN316 _R	TCTAAATACTAGAATTCGAT <u>TTACTTTATTAGTTTTTGCACTA</u>
P438_MPN316_F	TAGTATTTAGAATTAATAAAGT <u>ATGTATAACCTCAAAAAACATCTAC</u>
FLAG_MPN316_R	TCATCATCGTCCTTGTAGTC <u>CTTTATTAGTTTTTGCACTAACT</u>
FLAG_MPN317_F	AATAAAGTATGGACTACAAGGACGATGATGACAAA <u>GATTGAATACAAACAGCAGG</u>
p_MPN317 _R	TCTAAATACTAGAATTCGAT <u>CTAATAATTAAATCCGGTTTGC</u>
P438_MPN317_F	TAGTATTTAGAATTAATAAAGT <u>ATGGATTGAATACAAACAGCA</u>
FLAG_MPN317_R	TCATCATCGTCCTTGTAGTC <u>ATAATTAAATCCGGTTTGCTG</u>
FLAG_MPN525_F	AATAAAGTATGGACTACAAGGACGATGATGACAAACAGCCGAACTATTACCGTG
p_MPN525 _R	TCTAAATACTAGAATTCGAT <u>TTAGCGTTTGTGTTTTCCATTT</u>
P438_MPN525_F	TAGTATTTAGAATTAATAAAGT <u>ATGCAGCCGAACTATTACC</u>
FLAG_MPN525_R	TCATCATCGTCCTTGTAGTC <u>GCGTTTGTGTTTTCCATTTTCC</u>
FLAG_MPN638_F	AATAAAGTATGGACTACAAGGACGATGATGACAAA <u>ACTCCTAAATTAAAGCTTAACA</u>
p_MPN638_R	TCTAAATACTAGAATTCGATTTAAGATAGTG <u>TTGGGAACAATTTGCCCAA</u>
P438_MPN638_F	TAGTATTTAGAATTAATAAAGT <u>ATGACTCCTAAATTAAAGCTTAA</u>
FLAG_MPN638_R	TCATCATCGTCCTTGTAGTCAGATAGTGTTGGGAACAATTTG
	nd C-terminal FLAG variants with mutated degrons
MPN201_Ct638_R	TTGGGAACAATTTGCCCAATAAGTTATCGCGAATACTATCCAATTGCTTTTTACGCA
MPN201mut2_F	GGCAAAACTGACAAAGGCAAAGATGGCTGTGATGGCACACGCGGTAGAGTTATC
P438_MPN201mut2_F	TAGTATTTAGAATTAATAAAGTATGGAG <u>GGCAAAACTGACAAAGGC</u>
MPN201mut3_R	CGAGCCATCAGGGCCATCTCCTGGATCTTTTTTAATGTC
MPN201mut3_F	GAGATGGCCCTGATGGC <u>TCGGCAGCTACTAATAACGA</u>
MPN201mut4_R	TACCATCTTCACCATCGCCGTCACCAGAATTTATTCGACCAAACT
MPN201mut4_F	CGGCGATGGTGAAGATGGTACTGATACAGCTGACGGTTATGG
MPN304mut1_R	ATATCCCCATCTATCCCGTCCCTCAATTGTGCCCATGT
MPN304mut1_F	GACGGGATAGATGGGG <u>ATATGACCAACAACAG</u>
MPN304mut2_R	<u>AAACATTAATGGCAGCTTCGGTTGTCCGTTCCCGTCACCGTCTCCGTCCTGTTTG</u> TCTAAATACTAGAATTCGATCTAA <i>TC</i> CC <i>CGTC</i> TGG <i>GTC</i> CTTCGGTTGTCCGTTC
p_MPN304mut3_R MPN316mut1_R	CTTTATTAGTTTTTGCACTAACTTATTAATGTGCGTGTG <i>AT</i> CCTT <i>GCCATCGCCATC</i> CGACT
MFN3T0IIIut1_K	TTTTAAACTGC
MPN316mut2 R	GCCATCTTTTTGGCCATCCTTATTAATGTGCGTGTGTAC
p MPN316mut2 R	TCTAAATACTAGAATTCGATTTACTTGCCATCTTTTTGGCCATCC
p_MPN316_L413D_R	TCTAAATACTAGAATTCGATTTACTTATTAGTTTTTGGACATCCTTATTAATGT
p_MPN316_V414G_R	TCTAAATACTAGAATTCGATTTACTTTATTAGTTTTTGGCCCTAACTTATTAATGT
p MPN316 L417D R	TCTAAATACTAGAATTCGAT <u>TTACTTTAT<i>ATC</i>TTTTTTGCACTAACTTATTAATGT</u>
p_MPN316_I418G_R	TCTAAATACTAGAATTCGATTTACTT <i>GCC</i> TAGTTTTTGCACTAACTTATTAATGT
MPN317mut1_R	CTAATAATTAAATCCGGTTTGCTGTTTGCCATCTTTGCCTCCATCCTCCTTTAAATC
p MPN317mut2 R	TCTAAATACTAGAATTCGATCTA <i>GCC</i> ATTA <i>TC</i> TCCGGTTTGCTGTTT
p_MPN317_F378D_R	TCTAAATACTAGAATTCGATCTAATAATTA <i>TC</i> TCCGGTTTGCTGTTT
p MPN317 Y380G R	TCTAAATACTAGAATTCGATCTAGCCATTAAATCCGGTTTGCTGTTT
MPN525mut1 F	CTGATGACGGCAATGACGGTTTAAACCGT
MPN525mut1_R	ACGGTTTAAACCGTCATTGCCGTCATCAG
MPN525_V391G_F	CTGATGACGGCAATTACTTTTTAAACCGT
MPN525_V391G_R	ACGGTTTAAAAAGTAATTGCCGTCATCAG
MPN525_Y393D_F	CTGATGACGTCAATGACTTTTTAAACCGT
MPN525_Y393D_R	ACGGTTTAAAAAGTCATTGACGTCATCAG
MPN525_F394G_F	CTGATGACGTCAATTACGGTTTAAACCGT
MPN525_F394G_R	ACGGTTTAAACCGTAATTGACGTCATCAG
MPN638 Ct201 R	TTGAACTCAATTAAATAAGAAGTTCTGATAGTAGATTAAAGACTTAGCTTCTTC

Appendix_Table S3. Primers used in this study (cont.).

^a The underlined sequences indicate the priming sequences. Depending on the primer, the remaining sequence of the primer was designed to introduce promoter and terminator sequences, mutations (in italic bases) or overlapping sequences for Gibson assembly.