
Supplementary Information 

 

I. Maps of spectral energy and retinotopy in macaque V1, using GCaMP6f 

Recent studies using the synthetic calcium indicator OGB identified maps of preferred spatial frequency 

(SF) and their relationship to some other established maps in macaque V1 (Nauhaus et al., 2012a, 2016). 

Here, we replicate some of these results, but with the calcium indicator GCaMP6f. Different calcium 

indicators are known to have distinct dynamics, contrast between neuropil and cell-bodies, and 

nonlinearity.  

We first examined the micro-organization of orientation and preferred SF (fo). Visual inspection 

of the orientation (Fig. S1a,b) and fo color maps (Fig. S1d,e) reveals a clustering of tuning preference. 

Clustering was quantified by computing the Pearson correlation of the tuning preference between 

neuronal pairs (DeAngelis et al., 1999), as a function of cortical distance between the pairs (Nauhaus et 

al., 2012a). Orientation is a circular parameter, which precludes the use of standard correlation 

coefficients, so we used a normalized measure of “directional similarity” (Nauhaus et al., 2012a), along 

with random shuffling to assess significance (Methods). The metric yields +1 if the pairs all have the 

same orientation and -1 if they are all 90o apart. It yields 0 if the pairs are uncorrelated or tuned 45o apart. 

For fo, we used the Pearson correlation between the log of the pair of fo’s. As shown by the first two data 

points in Figs. S1c,f, when two neurons in an ROI are close (< 150 m), both fo and orientation preference 

are significantly correlated. At greater distances (~300 m separation), they become significantly 

negatively correlated. Together, this replicates the previous finding with OGB that orientation and fo maps 

are periodic, with a similar spatial period. We also replicated the result that the joint pairwise relationship 

between fo and orientation preference is anticorrelated. We computed the pairwise correlation coefficients 

between the absolute change in fo and the absolute change in orientation preference. At the distance bin 

between 150 and 225 m, the correlation was -0.115 (p = 0.008). The joint correlation was not significant 

at the other distance bins. 

 

 

Next, we characterized the micro-organization of RF tiling using responses to the random bar 

stimulus. Fig. S2 shows maps of orientation preference and retinotopy from the same ROIs as in Figure 

S1. Also shown are the population of orientation tuning curves and RF envelopes, which illustrates the 

Figure S1:  Maps of orientation and fo. (a,b) Maps of orientation preference at two different depths in layer 

2/3, and same lateral position. (c) Pairwise correlation of orientation preference (see Methods for metric 

used for circular variables) computed for all 3 ROIs in the data set, binned by cortical distance. Each bin has 

edges that are 75 m apart. The symbol at each distance bin indicates the correlation’s level of significance: 

A small dot is p>0.01, asterisk is p<0.01, asterisk and open circle is p<0.001. (d,e) fo maps from the same 

population as in ‘a’ and ‘b’. (f) Pairwise Pearson correlation coefficient of log2(fo), binned by cortical distance 

between pairs. Same population of cell pairs as in ‘c’. Like in ‘c’, the symbol indicates the p-value. 



diversity of orientation tuning and contrasting redundancy of RF spatial coverage. Although the maps of 

RF position exhibit a retinotopic gradient, the RF envelopes encode overlapping regions of visual space. 

The RF scatter, computed as the mean distance (o) of the RFs’ centers from an x/y planar fit (o), divided 

by the average RF width (1), was 0.2, 0.25, and 0.34 in the 3 ROIs from this study.  Although these 

values are about 10% higher than previously found with OGB (Nauhaus et al., 2016), they confirm the 

general finding that retinotopy is quite smooth in L2/3 of macaque V1. The difference could be due to 

OGB vs. GCaMP6 nonlinearities. The GCaMP6 nonlinearity is more “accelerating” than “saturating” 

(Akerboom et al., 2012; Chen et al., 2013), making it more likely to yield smaller RFs than OGB, thus 

increasing the computed scatter. Section V below goes into greater depth on the impact of fluorescence 

nonlinearities on main results. In either case, it is worth noting that RF “outliers” have never been found – 

e.g. a neuron with a RF center that is displaced from the planar fit of retinotopy by more than 1 of its RF 

size.  

 

 

II. Logarithmic spatial frequency bandwidth as a function of fo 

The main text compared fo against linear SF bandwidth (Fig. 5). Here, we extend this analysis to a 

comparison between fo and logarithmic SF bandwidth, log(𝑓). Scale invariance predicts that log(𝑓) is 

independent of fo (Eq. 3). Although the linear dependency between log(𝑓) and log2(fo) (Fig. S3a) is 

indeed shallow (slope = -0.31), the correlation is strong (r = -0.76; p=3.6e-34), which is consistent with 

previous reports (De Valois et al., 1982; Xing et al., 2004). To illustrate the consistency of this 

dependence with pooled scale invariance in the linear SF domain, we plugged the fit to linear bandwidth 

at the output of the pooling model (Eq. 7), 𝑓,p(𝑓𝑜), into Eq. 3,  

 

log(𝑓)(𝑓o)  =  log2[(𝑓o + 𝑓,p(𝑓o))/𝑓o]   Log SF bandwidth from pooled scale invariance (Eq. 8) 

Figure S2:  Measuring orientation tuning and RF envelopes from a random bar stimulus. The 

results of one ROI are depicted in the top panels (a-g), and the results of another ROI are in the 

bottom set of panels (h-n). They are the same ROIs as in Fig. S1. (a) Orientation preference map. It 

looks very similar to the map in ‘S1a’ obtained from the grating stimulus. (b) Map of horizontal, 

‘X’, retinotopy. (c) Map of vertical, ‘Y’, retinotopy. (d) Overlay of all Gaussian fits to the orientation 

tuning curves from the ROI from ‘a’. (e) Overlay of the x-axis projection of 2D Gaussian fits to the 

RF envelope. (f) Overlay of the y-axis projection of 2D Gaussian fits to the RF envelope. (g) 2D 

contour at 1 wide of all the reconstructed RF envelopes in the ROI.  



 

which is the green curve in Figure S3a. These results provide a model to more formally describe the 

dependence of log(𝑓) on log2(fo), which is an invariant pooling parameter in the linear SF domain.  

Next, we characterized the functional architecture of log(𝑓). The maps in Figure S3c are visibly 

much flatter than the fo maps in Figure S1d,e, when placed in the same 5-octave color scale. However, 

strong clustering of log(𝑓) is expected given its dependence on fo. Indeed, there is a significant local 

clustering of log(𝑓) (Fig. S3b, black) that follows the trend for fo. The marginal and joint statistics of 

log(𝑓)and fo are summarized in Table 1 and Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3:  Characterizing the representation of fo and logarithmic SF bandwidth (log(𝑓)). (a) Scatter plot 

compares fo (x-axis) to log(𝑓) (y-axis). Green line is the fit to the pooled scale invariance model for linear SF 

bandwidth (Eq. 7; Fig. 5a green), followed by a conversion to log SF bandwidth (Eq. 8). (b) Pearson 

correlation coefficient between pairs, at 75 m cortical distance bins. Black and blue curves are clustering 

of log(𝑓) and fo. Symbol at each distance bin indicates Pearson correlation level of significance: Small dot is 

p>0.01, asterisk is p<0.01, asterisk and open circle is p<0.001. (c) Maps of log(𝑓) at two depths and similar 

x/y location. Same ROIs as in Fig. S1. 

 



III. More example tuning curves 

 

IV. Spike-to-fluorescence nonlinearities, and their potential effect on main results 

It is well known that a nonlinearity resides within the transformation between spikes and the measured 

fluorescence of a calcium indicator (Yasuda et al., 2004), which can alter the measured width of tuning 

(Nauhaus et al., 2012b). Our use of reverse correlation stimuli can help to recover the tuning functions 

before they are passed through an output nonlinearity (Chichilnisky, 2001; Nauhaus et al., 2012b), yet this 

was not directly measured, so a more thorough characterization of how fluorescence nonlinearities may 

have affected our results is warranted. Here, we modeled the spike-to-fluorescence nonlinearity to infer its 

effect on our results.  To begin, we consider a neuron’s spike rate as a function of some arbitrary stimulus 

variable, ‘x’, which can be approximated by a Gaussian, 𝐴𝑒𝑥𝑝(−𝑥2

2𝜎2⁄ ). We then pass the Gaussian 

tuning curve through a power law nonlinearity to model the observed fluorescence tuning curve, 

[𝐴𝑒𝑥𝑝(−𝑥2

2𝜎2⁄ )] 𝑁𝐿, where NL is a coefficient.  The second moment of a Gaussian (or any distribution) 

scales inversely with NL, so the tuning at the output of the fluorescence nonlinearity has a new 𝜎 of 

Figure S4: These panels show all of the tuning curves and fits from one of the three ROIs (viz. Fig. 7). Also, this 

population corresponds to the open circles in Figures 3a, 4a, 5a, 6a. The black dots are the raw data points and 

the red curves are the fits. 4 of the 71 neurons were excluded from analysis because of inaccurate fitting in one 

of the four response domains shown here. These excluded four do not show a red fit. The line under each 

tuning curve is at zero on the y-axis (gray). The text above each tuning curve is the selectivity metric. (a) 

Response as a function of bar position.  The x-axis spans 1.8o of visual field. σ of Gaussian fit is shown in title. (b) 

Response to each phase of a grating, at the preferred orientation and SF. F1/F0 from sinewave fit is in each title. 

(c) Response to each SF (0.25 to 8 cyc/o). The difference-of-Gaussian fit gives the linear bandwidth (cyc/o) value 

in the title, as defined in Methods. (d) Response to each grating orientation. Title shows σ of Gaussian fit. 



𝜎/√𝑁𝐿. This means that tuning will broaden for saturating nonlinearities (NL<1) and sharpen for 

accelerating nonlinearities (NL>1). Furthermore, the magnitude by which 𝜎 is scaled, 1/√𝑁𝐿 , is 

independent of the Gaussian’s amplitude or width at the input of the nonlinearity. This means that scale 

invariance of RFs will be maintained if passed through a power law nonlinearity, in general. We make 

this derivation more concrete in the simulations described in sections IV.1 and IV.2 below.  However, for 

nonlinearities in general, special circumstances may arise whereby they can introduce systematic biases in 

tuning that are not scale invariant. In section IV.3, we test for the possibility that deviations from scale 

invariance in our data are due to differing tuning amplitudes that are coupled to fo. 

 

IV.1 Can a fluorescence nonlinearity account for deviations from scale invariance? 

A concern may be that the population in our data is scale invariant, yet a fluorescence nonlinearity makes 

it appear less so, and more consistent with the pooling model. However, the above derivation, and 

simulation in Figure S5, shows that scale invariance is maintained with a power law nonlinearity. 

Specifically, RF size and SF bandwidth would still scale in proportion to fo, yet they have a different slope 

(Fig. S5a,b; dashed blue). Furthermore, the GCaMP6 nonlinearity is empirically accelerating (Chen et al., 

2013), which sharpens the scale invariant tuning curves, pushing the scale invariant model down and 

further from the data. Applying a nonlinearity to a scale invariant population also cannot account for the 

trends between F1/F0 vs. fo (Fig. S5c), or orientation bandwidth and fo (Fig. S5d). To simulate F1/F0, 

post-nonlinearity, we squared a rectified sinewave, and then recomputed the F1/F0, which increases 

F1/F0 above π.  In the case of orientation bandwidth, we again scaled the bandwidths by 1/√𝑁𝐿, where 

NL = 2. 

 

IV.2 How does a fluorescence nonlinearity effect the pooling model?  

Although a power law nonlinearity cannot account for the deviation from scale invariance, it will affect 

the parameter values computed in the pooling model. Here, we assumed that the measured tuning curves 

were passed through a power law fluorescence nonlinearity, which allowed for a straightforward 

inversion of the nonlinearity to compute underlying tuning widths. In the case of an accelerating 

Figure S5:  Modeling the effect of a fluorescence nonlinearity on main results. Each panel shows data (black) 

and models (solid blue and green lines) that were presented in the main text. Here, we also show the 

potential effect of a GCaMP6 nonlinearity on the measured tuning of a scale invariant population (dashed 

blue). We also asked how a GCaMP6 nonlinearity would affect the pooling model. (a) The same data and 

models are shown as in Figure 3a. The dashed blue line is the result of passing the scale invariant spatial 

tuning curves through an accelerating power law nonlinearity (e.g. GCaMP fluorescence); viz. squaring the 

tuning curves. The dashed green line is the result of re-fitting the pooling model after inverting the same 

accelerating nonlinearity; viz. applying  [ ]0.5 to the measured tuning curves. (b,c,d) Same data and models 

are shown as in Figure 5a,4a,6a, respectively.  The modeling of nonlinearities (dashed lines) was performed 

as in ‘a’. 



nonlinearity with NL = 2, we would invert the nonlinearity by applying NL = 0.5, which entails scaling 

the measured σ by 1/√0.5. This “correction” shifts the data points in Figs. S5a,b,d up by a factor of ~1.4. 

In the case of F1/F0, we passed the rectified sinewave through the same correction, and then recomputed 

the F1/F0. Raising the data points in this way increases their distance from the model of scale invariance 

(solid blue), which produces the new fit shown as dashed green in each panel. The pooling window to 

account for RF width is 0.24 deg (Fig S5a; solid green) and 0.37 deg (Fig S5a; solid green), before and 

after the inversion of the nonlinearity. Similarly, the pooling window in the SF domain changes from 0.85 

cyc/o (Figs S5b,d, solid green) to 1.57 cyc/o (Figs S5b,d, dashed green). Other accelerating nonlinearites 

will change the pooling model in the same direction.  

 

IV.3 Potential biases in response amplitude to the stimulus bar, as a function of SF tuning 

In section IV.1 above, we showed that scale invariance is maintained after tuning curves are passed 

through a static nonlinearity. Also, note that scale invariance holds independent of the spike rates, when 

the nonlinearity can be approximated by a power law []NL . That is, the second moment of the tuning 

curve scales by 1/NL, regardless of the tuning curve’s amplitude. However, other classes of nonlinearities 

are not scale invariant (Mineault et al., 2016). This is particularly relevant to the analysis of RF width vs. 

fo (Fig. 3), which uses a 0.2o wide bar. As with any real stimulus, the bar’s Fourier energy spectrum is not 

flat, so it is expected to drive some neurons more than others depending on their SF tuning. If a neuron’s 

optimal bar width is a half cycle of fo, then a 0.2o bar maximally drive neurons with fo = 2.5 cyc/o – i.e. the 

bar width is suboptimal for any neuron with fo above or below 2.5 cyc/o. Theoretically, this should not 

have a major impact on response amplitude, as 2.5 cyc/o lies inside the bandwidth of most neurons that we 

recorded – the median low cutoff (flow) and high cutoff (fhi) was 0.79 and 3.77 cyc/o (at 61% of peak), 

respectively. It should be noted that we chose a bar width that is optimized for the high side of this SF 

range to minimize the “smearing” in our RF measurements (section VI).  

Next, we compared response amplitude to the bar stimulus against SF tuning. Again, a 0.2o bar 

maximally drives neurons with fo = 2.5 cyc/o. We divided the study’s population into 3 groups: 1) 

Neurons with fhi < 2.5 cyc/o (the “low SF group” - 6%), 2) neurons with flow > 2.5 cyc/o (the “high SF 

group” - 3%), and 3) neurons with flow < 2.5 cyc/o > fhi (the “optimal SF group” - 91%). We computed the 

mean response amplitude to the best bar for each neuron, and then the median of each of the 3 groups. 

The response amplitude of the high SF group was 23% lower than the optimal group, and the response 

amplitude of the low SF group was 5% lower than the optimal group. Lastly, we found no correlation 

between fo and response amplitude to the bars (r = -0.17; p = 0.12). We conclude that most of the neurons 

are theoretically and empirically well driven by the 0.2-degree bars without significant dependence on 

their SF tuning, suggesting that nonlinearities – power law or otherwise - are unlikely to have a 

significant effect on RF width vs. fo.    
 

V. Performance comparison between pooled scale invariance and a descriptive linear model 

In the Results section, “Summary of pooled scale invariance model and its performance”, we showed that 

pooled scale invariance is dramatically superior to scale invariance at predicting the data. Here, we 

performed a similar analysis to compare pooled scale invariance against a descriptive linear model. We 

chose a line in log-log coordinates as the descriptive model given its simplicity and the linear appearance 

of the data, especially in the case of SF bandwidth (Fig. 5a) and orientation bandwidth (Fig. 6a). As noted 

previously, and as summarized in Table 2 (row 3), there is a significant correlation coefficient between 

log(fo) and every other RF parameter measured. To further quantify relative performance between the 

linear model and pooled scale invariance, mean-squared error (MSE) distributions were computed for 

each of the following: log2(RF width), F1/F0, log2(SF bandwidth), and log2(orientation bandwidth). 

“Leave-one-out cross-validation” was used to create the prediction errors. Based on paired t-tests of MSE, 

the linear fit showed a subtle but significant improvement over scale invariant pooling model for log2(RF 

width) (p=0.004; 95% ci = [-0.06 -0.01]), log2(SF bandwidth) (p=0.006; 95% ci = [-0.04 -0.007]), 
log2(orientation bandwidth) (p=0.007; 95% ci = [-0.06 -0.01]), and F1/F0 (p=0.0004; 95% ci = [-5.1 -1.5]).  
At the same time, scale invariant pooling requires far fewer parameters (viz. 3) than fitting lines (viz. 8). 

Furthermore, unlike the linear fits, pooled scale invariance provides an intuitive amendment to the classic 

model of scale invariance. In conclusion, pooled scale invariance provides a more parsimonious 

description of the data, using parameters with meaningful units.  

 
 



VI. Correcting for the effects of eye movements and stimulus bar width on RF size 

Slow eye drift was measured by taking the average RF within roughly 4-minute blocks of data collection, 

in a 20-minute experiment. See title in each panel of Figure S6 for trial delineation. This gave 5 

independent samples of relative eye position across the experiment. Although RFs from individual 

neurons are noisier when measured with so few trials, only the average RF position in the ROI is needed 

to estimate eye position, which will be far more accurate. Figure S6 shows the results from the ROI that 

yielded the strongest responses in our data set (Fig. S1, right panels), which allowed for the most accurate 

assessment of eye position from short blocks of time. This ROI gave RF widths that were representative 

of the entire data set (Fig. 3a, open circle data points). In summary, the X / Y range of movement was 

0.104o / 0.059o, and the X / Y standard deviation across the 5 experimental windows was 0.039o / 0.025o. 

This is about 10x smaller than the RF widths (), so it’s likely that some of the computed drift is due to 

inevitable measurement noise when computing RFs in a short time window. Nonetheless, we can use it to 

compute an upper limit of the effect of slow eye drift on the relationship between fo and RF width 

reported in Figure 3.  

The impact of eye movements on RF width can be modeled as an additional variable in Eq. 5, 

now giving p′(x)
2 = x

2(𝑓𝑜) + h(x)
2 + EM

2, where EM
2 is the variance of eye movements and p′(x)

2  is 

the observed RF width that is inflated by the eye movements. The measured pooling window was h(x)
2  = 

0.242 = 0.058, whereas the measured Y-axis variance in eye position was EM
2 = 0.0392 = 0.0015. We 

can then obtain a corrected estimate of h(x)
2  by “deconvolving” the eye movements by subtracting the 

variance: (0.242 -0.0392)0.5, or ~0.237. The corrected value of h(x) (0.237o) is only slightly different than 

the uncorrected value (0.24o). In conclusion, the magnitude of eye movements in the anesthetized, 

paralyzed experiment is unlikely to have an impact on the pooled scale invariance model in the spatial 

domain, which describes RF width and spatial phase selectivity as a function of fo (Figs. 3&4).   

Similar to eye drift, computing the effect of stimulus bar width (0.2o) on measured RF size can be 

performed by assuming the addition of variances through convolution. Here, the convolution is between a 

“rect” function (i.e. the bars) and a Gaussian (our 1D RF fits at the preferred orientation).  A rect function 

has a second moment (i.e. variance) that is width2/12.  Convolution of the rect function with a Gaussian 

produces a Gaussian-like function that has a variance that is the sum of the rect and Gaussian variances.  

This may be provable analytically, but we instead confirmed this in simulation using Gaussian RFs and 

bar widths that were near the actual values. The variance of the bars is B
2 = 0.22/12, so we can compute 

the corrected pooling window, ′
h(x), by deconvolving both bar width and eye movements by taking  

′h(x)
2 = h(x)

2 − EM
2 − B

2   = (0.242 -0.0392 – 0.0582)0.5 ~ 0.23.  In summary, there is little difference 

from the uncorrected estimate.  

 

Figure S6:  Measuring eye movements in 5 independent blocks of a 20 min experiment. Each panel 

shows the RF positions of all the RFs in the ROI (black dots), and the median RF is red.  The positions are 

all relative to the mean RF position in the first block.  



Next, although an analytical treatment of the smearing of the bar is given above, to help make 

this more concrete, we provide a simulation that compares the “actual” RF width against the 

“measured” RF width. This simulation closely mimics the measurement and analysis described in the 

Methods, such as the initial sample spacing in the stimulus, along with offline binning. We first 

simulated a population of scale invariant simple cells with ON and OFF subfields (Fig. S7a, solid lines). 

The relationship between RF width and fo is consistent with the scale invariant model described in the 

main text. We then “measure” both ON and OFF subfields by convolving them with the 0.2o bar, then 

sample every 0.1o, then bin every two samples to obtain 0.2 o/sample (Fig. S7a, dashed lines).  Next, we 

obtained the RF envelope by adding the subfields (Fig. S7b). Finally, as in Figure 3, the RF width is 

computed based on a Gaussian fit to the envelope. Figure S7c gives a summary of these simulated 

results, which has the same axes as Figure 3a. The effect of the stimulus and our analysis (black) cannot 

account for the deviation from scale invariance (green). 

 

VII. Effects of neuropil subtraction on receptive field width 

Here, we performed an analysis of neuropil subtraction to assess its impact on metrics of tuning selectivity. 

A tuning curve was computed for a region of pixels surrounding each neuron, and then subtracted from the 

tuning curve of the cell body in the middle. The widths of the “neuropil corrected” tuning curves were then 

re-computed exactly as described in the main text. We found that this procedure had very little effect on 

RF width, SF bandwidth, and orientation bandwidth. 
Like prior studies (Bonin et al., 2011; Kerlin et al., 2010), we assume that the measured tuning 

curve from each cell body (KcellBody) is a weighted sum of two tuning curves: one from the neuron itself 

(Kneuron) and one from the surrounding neuropil (Kneuropil).  

 

KcellBody = Kneuron + αKneuropil      Supp. Eq. 1 

To compute the neuropil signal, Kneuropil, we took a Gaussian-weighted average of pixels surrounding each 

cell body, where the 2D Gaussian σ = 8 m. The Gaussian-weighted average excluded pixels in the cell 

body ROI.  

We asked the following: What happens to tuning width as one subtracts variable amounts of 

Kneuropil?  More specifically, how does the tuning width computed from 𝑲̂neuron = KcellBody – αKneuropil change 

as a function of α? We note that subtracting neuropil tuning from cell body tuning is equivalent to 

subtracting the timecourse of the neuropil from the timecourse of the cell body, followed by computing the 

subsequent tuning. This equivalence is due to the fact that computing each tuning curve is a linear operation. 

Figure S7:  Simulating the effects of 0.2o bar stimuli on the measured RF width. (a) Each of the four panels 

shows the difference of Gaussian RF model for a different  fo. Solid line is the “actual” subfield. Dashed line is 

what can be measured with the 0.2o bars.  i.e. it is the actual subfield convolved with the 0.2 o bar. (b) The RF 

envelope; i.e. addition of the subfields shown in ‘a’.  Solid line is the actual envelope. Dots simulate our 

measured data points of the RF envelope; they are the measured envelope sampled at 0.1o, followed by 

binning every two samples to achieve 0.2o sample rate. Title gives the RF width of the measured and actual RF 

width (degrees), respectively.  (c) RF width vs.  fo plot, like Figure 3a in the manuscript. Specifically, the black 

curve comes from Gaussian fits to the simulated measurement of the envelope.  

 



For simplicity, we simply discuss this analysis in the context of the former operation, the subtraction of 

neuropil tuning from cell body tuning.   

To begin the analysis, we first normalized the amplitude of our two known tuning curves, KcellBody 

and Kneuropil , to each have a peak of 1. Next, 𝑲̂neuron(α,i) = KcellBody(i)– αKneuropil(i) was computed for each 

cell body (i) and a range of coefficient values; α = [0 .2 .4 .6 .8].  Next, a function was fit to each 𝑲̂neuron(α,i) 

in the manner described in the Methods. This general procedure was performed for RF width, SF bandwidth, 

and orientation bandwidth (Fig. S8). This gave a tuning width for each cell, as a function of α. As α 

increased, 𝑲̂neuron(α,i) from most cells began to look less like a Gaussian and therefore less likely to yield 

an accurate tuning fit, which was quantified with % variance accounted for by the fit. A plot of %variance 

vs. α is shown in Figures S8a-c. In each case, there is a steady drop in the average goodness-of-fit.  

Figure S8d plots the mean and SE of the RF width as a function of the amount of neuropil 

subtraction, α. For each neuron, the RF width at each level of α was normalized by the RF width without 

any neuropil subtraction. Specifically, the error bars show the mean and SE of σ(α,i)/σ(0,i), across all three 

imaging regions. Note that σ(0,i) is how widths were calculated in the main text. There is a shallow drop in 

RF width as α increases to 0.6.  At α = 0.6, the RF widths shrank by approximately 7%. In the case of SF 

bandwidth, there was not a noticeable change with neuropil subtraction. In the case of orientation 

bandwidth, it shrank by 18% when α = 0.8. The relative narrowing of orientation bandwidth by this 

procedure is likely due to more heterogeneity in the neighboring preferred orientation map, relative to the 

retinotopy or fo map. We did not show the case of α = 1.0, as this reduces the amplitude of the tuning curves 

to zero.   

In summary, we calculated changes in tuning width, from modest to extreme levels of neuropil 

subtraction. Neither end of the spectrum supports the notion that neuropil significantly broadened the tuning 

measurements in the main Results. An alternative scenario is that the signals at cell bodies are completely 

swamped by the neuropil. However, this seems extremely unlikely based on previous studies with 

GCaMP6, along with the fact that cell body ROIs were identified as regions with the highest independence 

from the surround (Fig 2b). 

 

Figure S8: Effects of neuropil subtraction on tuning width. The error bars in ‘a’ and ‘d’ show the mean and SE across 

the same population of 157 neurons as in Figure 3a (2 animals, 3 ROIs). The error bars in ‘b’,’c’,’e’, and ’f’ show the 

mean and SE across the same population of 174 neurons as in Figures 5a,6a (2 animals, 3 ROIs). (a) Dependence 

of the quality of a Gaussian fit (spatial envelope) on the magnitude of neuropil subtraction. X-axis is the amount 

of neuropil subtraction; i.e. α in Supp. Eq. 1. Y-axis is the %variance accounted for by the fit to the RF along the 

axis of optimal orientation. (b) Same as ‘a’, but for SF bandwidth. (c) Same as ‘a’, but for orientation bandwidth. 

(d) Dependence of RF width on the magnitude of neuropil subtraction. X-axis is the amount of neuropil subtraction; 

i.e. α in Supp. Eq. 1. Y-axis is the ratio of RF width (after neuropil subtraction), over the RF width (before neuropil 

subtraction). Only values out to α = 0.8 are shown because values greater than this are difficult to interpret due to 

poor Gaussian fits. (e) Same as ‘d’, but for SF bandwidth. (f) Same as ‘d’, but for orientation bandwidth.  



 

VIII. Recording chamber 

One of the two animals was initially used for widefield recording in the awake preparation, and had an 

imaging chamber as described in (Seidemann et al., 2016). In this case, the widefield chamber was 

removed and replaced with a recording chamber and window used for an acute imaging session, as 

described in (Nauhaus et al., 2012a). The second animal was initially implanted with a chamber designed 

for chronic two-photon imaging, illustrated in Figure S9.     
  

Figure S9:  Imaging chamber in the 

“Sealed” and “Open” configuration. 

“Sealed chamber”: The titanium base at 

the top right is the one chronically 

implanted element. The inner diameter is 

24 mm, the inner threading is M36, and 

the total height is 5.7mm.  The next 

elements are layered to form a sealed 

chamber that can be viewed by removing 

the top cap. “Open chamber for 2p”: For 

two-photon imaging the “stabilizing 

window holder” is screwed into the 

“stabilizing base” by an amount that 

keeps the brain stable. Multiple versions 

of these plastic elements were machined 

in order to accommodate variable brain 

position and desired imaging location. 

One version of the window holder had 

M18 threading, a 10 mm aperture, and 

held a 12 mm diameter cover glass.  
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