## The human respiratory tract microbial community structures in healthy and cystic fibrosis infants

Marie-Madlen Pust<sup>1,2</sup>, Lutz Wiehlmann<sup>3</sup>, Colin Davenport<sup>3</sup>, Isa Rudolf<sup>1,2</sup>, Anna-Maria Dittrich<sup>1,2</sup> and Burkhard Tümmler<sup>1,2</sup>

<sup>1</sup>Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Germany <sup>2</sup> Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Germany

<sup>3</sup>Research Core Unit Genomics, Hannover Medical School, Germany

Corresponding author: tuemmler.burkhard@mh-hannover.de

## **Supplementary Material**

## **Supplementary Figures**



**Supplementary Figure 1. Experimental controls reveal high-abundance of low quality and human sequence reads and typical patterns of microorganisms.** Blank swabs (**left**) and empty water controls (**right**) were prepared and sequenced in parallel with patient samples. Raw counts were divided by sequencing depth (proportion of reads). Most of the reads from experimental controls aligned to the human reference genome or were discarded as low-quality reads. Three microorganisms were constantly tracked in all experimental controls, including *Cutibacterium acnes*, *Ralstonia pickettii* and *Achromobacter xylosoxidans*. The background contamination of independent sequencing runs was reduced to a minimum by implementing the ultra-clean guidelines that have been proposed in the method section. The lower and upper boundary of the boxplot represent the first (25<sup>th</sup> percentile) and third (75<sup>th</sup> percentile) quartile and hence define the interquartile range (IQR). Whiskers extend from the box to the largest/smallest non-outlier data point (1.5 \* IQR).



Supplementary Figure 2. Bacterial load in the respiratory tract of healthy and CF children. (Left) Comparison of bacterial cells per human cell between healthy and CF infants in the first three years of life. Healthy children seemed to have more bacterial cells per human cell than CF children (Wilcoxon p-value = 0.008, r = 0.34, CI = 0.10 - 0.55). (**Right**) Comparison of bacterial cells per human cell in healthy and CF pre-school children between four and six years of age. Healthy children showed higher bacterial loads than CF children (Wilcoxon p-value = 0.001, r = 0.57, CI = 0.28 - 0.77). The lower and upper boundary of the boxplot represent the first ( $25^{th}$  percentile) and third ( $75^{th}$  percentile) quartile and hence define the interquartile range (IQR). Whiskers extend from the box to the largest/smallest non-outlier data point (1.5 \* IQR).



Supplementary Figure 3. Comparison of Shannon diversity indices between CF children (grey) and healthy children (white) in different age groups and age-dependent changes in the healthy and CF groups. (Left) Between the age of four and six years, the diversity of the 95% most abundant species was significantly different between healthy and CF children (Wilcoxon rank-sum p-value = 0.02, r = 0.41, CI = 0.08 - 0.71). In healthy children, the species diversity of core species constantly increased over time (Kruskal-Wallis p-value = 0.0003, e2 = 0.28, CI = 0.11 - 0.52). In CF children, no significant difference in diversity of core species was observed with increasing age (Kruskal-Wallis p-value > 0.05, e2 = 0.09, CI = 0.01 - 0.29). (Right) Concerning the rare taxa, defined as the 5% least abundant species, significant differences between CF and healthy children were not observed. Pairwise comparisons were done using the Conover-Iman test with Benjamini-Hochberg adjustment

(pairwise p-values are given in the diagram with \* = p < 0.05, \*\*\* = p < 0.001). The lower and upper boundary of the boxplot represent the first (25<sup>th</sup> percentile) and third (75<sup>th</sup> percentile) quartile and hence define the interquartile range (IQR). Whiskers extend from the box to the largest/smallest non-outlier data point (1.5 \* IQR).



Supplementary Figure 4. Non-metric multidimensional scaling of Bray-Curtis dissimilarity indices of the CF cohort (a) Investigation of longitudinal samples. Each colour represents one longitudinally sampled CF infant. No individual CF signature was observed. The longitudinal samples of one patient clustered across the spectrum of healthy and CF children. (b) Investigations of cross-sectional CF microbial community profiles revealed extensive overlap between pancreatic insufficient (PI) and pancreatic sufficient (PS) patients. A permutation test was approached to fit clinical metadata (Supplementary Table 4) onto the ordination. None of the variables explained cluster behaviour.

S. aureus absent present



Supplementary Figure 5. Impact of *Staphylococcus aureus* - DNA detection on the respiratory tract metagenome of CF and healthy infants. (a) Proportion of *S. aureus* – positive children in the CF and healthy cohorts. In the CF cohort, there were five infants below the age of one, twenty between one to three years of age and sixteen children between four to six years of age. In the healthy cohort, there were twenty-eight infants below the age of one, nine children between one to three years of age and fifteen pre-school children were four to six years of age. The presence of *S. aureus* as a rare species in the respiratory tract did not influence (b) core species diversity (SDI, Wilcoxon p- value = 0.97, r = 0, CI = -0.2 - 0.2), (c) absolute abundance of core species (Wilcoxon p-value = 1, r = 0, CI = -0.2 - 0.2), (d) rare species diversity (Wilcoxon p-value = 0.93, r = 0.01, CI = -0.2 - 0.2). The lower and upper boundary of the boxplot represent the first ( $25^{th}$  percentile) and third ( $75^{th}$  percentile)

quartile and hence define the interquartile range (IQR). Whiskers extend from the box to the largest/smallest non-outlier data point (1.5 \* IQR).



Supplementary Figure 6. Association of *P. aeruginosa*-DNA detection with further clinical and environmental metadata. (Left) Proportion of cough swabs (in percentage) from healthy and CF children, which were *P. aeruginosa*-DNA positive (present) or negative (absent). (Centre) Number of *P. aeruginosa*-DNA positive (present) and negative (absent) children (in percentage) per age group. (**Right**) Percentage of *P. aeruginosa*-DNA positive (present) and negative (present) and (negative) cough swabs collected at different seasons. The three variables were not associated with significantly increased or decreased *P. aeruginosa*-DNA detection. Fisher's exact test was employed for statistical evaluation of count data with small sample sizes.



**Supplementary Figure 7. Patterns of** *P. aeruginosa*-DNA detection in the longitudinal cohort. Three CF children from the longitudinal cohort were picked to represent the three different patterns of *P. aeruginosa*-DNA detection in the group. Each construct was made of two rings, where the outer green ring represents the alignment of *P. aeruginosa* reads (dots) towards the *P. aeruginosa* reference genome (PAO1) in the cough swab obtained at time point one. The inner blue ring shows the alignment of reads towards the reference genome in the sample collected at time point two. (a) *P. aeruginosa*-DNA was detected in both consecutive samples of the patient, who remained *P. aeruginosa*-negative in culture diagnostics. (b) *P. aeruginosa*-DNA was never detected and the patient remained *P. aeruginosa*-negative in culture. (c) *P. aeruginosa*-DNA was absent in the first sample but detected in the second sample. At the second time point, the patient was *P. aeruginosa*-positive in culture for the first time.

## **Supplementary Tables**

**Supplementary Table 1.** Clinical data of CF patients (cross-sectional CF cohort and longitudinal CF cohort).

**Supplementary Table 2.** Median relative abundance of core species in healthy and CF children across different age groups. The Mann-Whitney U test was approached for statistical comparison with the corresponding effect size (r) and the confidence intervals of the effect size (CI).

**Supplementary Table 3**. Variables contributing to the variance observed during the principal component analysis.

**Supplementary Table 4.** Non-metric multidimensional scaling based on Bray-Curtis dissimilarity matrices of CF patients.

**Supplementary Table 5.** Programmes for cell lysis (programme 1) and DNA fragmentation (programme 2) using the Covaris S220 Focused-ultrasonicator.

| Supplementa               | Supplementary Table 1. Clinical data of CF patients (cross-sectional CF cohort and longitudinal CF cohort) |                            |                                               |              |                 |                |                |                              |               |                |      |     |                                             |                                                    |                      |                  |
|---------------------------|------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|--------------|-----------------|----------------|----------------|------------------------------|---------------|----------------|------|-----|---------------------------------------------|----------------------------------------------------|----------------------|------------------|
| Cross-sectional CF cohort |                                                                                                            |                            |                                               |              |                 |                |                |                              |               |                |      |     |                                             |                                                    |                      |                  |
| Patient                   | Sample                                                                                                     | CF diagnosis (months/year) | Diagnosis                                     | Sample taken | Age (in months) | Height (in cm) | Weight (in kg) | BMI (in kg/ m <sup>2</sup> ) | FVC (Z score) | FEV1 (Z score) | LCI  | Sex | Antimicrobial therapy                       | CFTR mutation                                      | Class of mutation ** | Pancreatic state |
| EMCF01                    | 1                                                                                                          | 04/2013                    | Gastrointestinal and/or pulmonary<br>symptoms | 04.03.2019   | 75              | 114            | 19.9           | 15.3                         | 0.5           | 1.2            | 6.3  | m   | yes *                                       | p.Phe508del/c.1234delG                             | пл                   | Ы                |
| EMCF02                    | 1                                                                                                          | 08/2015                    | Meconium ileus                                | 18.02.2019   | 44              | 102            | 17.6           | 16.9                         | -0.4          | -0.5           | 9.1  | m   | none                                        | p.Phe508del/c.1585-1G>A                            | пл                   | PI               |
| EMCF03                    | 1                                                                                                          | 08/2013                    | Family history                                | 05.03.2019   | 72              | 119            | 20.9           | 14.8                         | 0.1           | 0.3            | 8.0  | f   | none                                        | p.Phe508del/p.Phe508del                            | плі                  | PI               |
| EMCF04                    | 1                                                                                                          | 11/2014                    | Gastrointestinal and/or pulmonary<br>symptoms | 04.02.2019   | 54              | 109            | 16             | 13.5                         | -0.1          | -0.2           | 7.3  | f   | none                                        | p.Phe508del/p.Leu1335Pro                           | 11/11                | PI               |
| EMCF05                    | 1                                                                                                          | 06/2016                    | Gastrointestinal and/or pulmonary<br>symptoms | 08.03.2019   | 37              | 90             | 12.6           | 15.6                         | NA            | NA             | NA   | m   | none                                        | p.Phe508del/p.Phe508del                            | 11/11                | PI               |
| EMCF06                    | 1                                                                                                          | 11/2018                    | Gastrointestinal and/or pulmonary<br>symptoms | 08.03.2019   | 38              | 97             | 14.7           | 15.6                         | 0             | 0              | 8.8  | m   | none                                        | No mutations in coding region                      | V/V                  | PS               |
| EMCF09                    | 1                                                                                                          | 09/2015                    | Family history                                | 15.02.2019   | 44              | 99             | 14.6           | 15                           | 0             | -0.2           | 9.2  | m   | none                                        | p.Phe508del/c.3773_3774insT                        | пл                   | PI               |
| EMCF10                    | 1                                                                                                          | 11/2016                    | Gastrointestinal and/or pulmonary<br>symptoms | 22.01.2019   | 31              | 92             | 15             | 16.2                         | NA            | NA             | NA   | f   | none                                        | p.Phe508del/p.Phe508del                            | плі                  | PI               |
| EMCF13                    | 1                                                                                                          | 05/2017                    | Gastrointestinal and/or pulmonary<br>symptoms | 15.04.2019   | 43              | 100            | 16.2           | 16.2                         | NA            | NA             | NA   | m   | Amoxicillin clavulanic acid                 | p.Phe508del/c.54-5940_273+10250<br>del21kb         | ПЛ                   | PI               |
| EMCF14                    | 1                                                                                                          | 09/2017                    | Gastrointestinal and/or pulmonary<br>symptoms | 28.01.2019   | 44              | 89             | 15             | 18.9                         | 0             | 0              | 8.0  | f   | none                                        | p.Phe508del/p.Glu92Lys                             | П/П                  | PS               |
| EMCF16                    | 1                                                                                                          | 12/2017                    | Newborn screening                             | 22.01.2019   | 14              | NA             | 11.3           | NA                           | NA            | NA             | NA   | m   | yes *                                       | p.Phe508del/p.Phe508del                            | 11/11                | PI               |
| EMCF17                    | 1                                                                                                          | 06/2013                    | Meconium ileus                                | 15.04.2019   | 70              | 122            | 21.6           | 14.5                         | -0.5          | -0.4           | 7.4  | m   | none                                        | p.Phe508del/c.1585-1G>A                            | пл                   | PI               |
| EMCF18                    | 1                                                                                                          | 03/2019                    | Gastrointestinal and/or pulmonary<br>symptoms | 26.04.2019   | 32              | 81             | 12.4           | 18.9                         | 0.5           | 0.3            | 6.8  | f   | Cefuroxime                                  | p.Phe508del/p.Phe508del                            | 11/11                | PI               |
| EMCF19                    | 1                                                                                                          | 04/2013                    | Gastrointestinal and/or pulmonary<br>symptoms | 29.04.2019   | 73              | 119            | 20.5           | 14.5                         | 1             | -0.5           | 7.5  | m   | none                                        | p.Phe508del/p.Asp1152His                           | шлу                  | PS               |
| EMCF21                    | 1                                                                                                          | 04/2013                    | Gastrointestinal and/or pulmonary<br>symptoms | 04.02.2019   | 78              | 106            | 16.8           | 15                           | -3.5          | -2.4           | 13.6 | f   | Cefpodoxime, Amoxicillin<br>clavulanic acid | c.579+1G>T/c.54-<br>5940_273+10250del21kb          | пл                   | PI               |
| EMCF22                    | 1                                                                                                          | 07/2014                    | Meconium ileus                                | 03.06.2019   | 60              | 110            | 19.8           | 16.3                         | 0.4           | 0.6            | 5.9  | m   | none                                        | p.Phe508del/p.Gly542Ter                            | пл                   | PI               |
| EMCF25                    | 1                                                                                                          | 12/2013                    | Gastrointestinal and/or pulmonary<br>symptoms | 28.06.2019   | 69              | 115            | 20.4           | 15.5                         | -0.1          | 0              | 7.9  | f   | Tobramycin                                  | p.Phe508del/no second mutation in<br>coding region | II/V                 | PI               |
| EMCF26                    | 1                                                                                                          | 06/2014                    | Gastrointestinal and/or pulmonary<br>symptoms | 29.07.2019   | 66              | 108            | 15.6           | 13.4                         | -2.8          | -3.7           | 12.8 | f   | yes *                                       | p.Leu671Ter/p.Arg1066Cys                           | плі                  | PI               |
| EMCF27                    | 1                                                                                                          | 11/2015                    | Family history                                | 18.07.2019   | 47              | 101            | 17             | 16.7                         | 0             | 0.1            | 11.0 | m   | none                                        | p.Phe508del/p.Phe508del                            | плі                  | PI               |
| EMCF28                    | 1                                                                                                          | 06/2017                    | Newborn screening                             | 19.07.2019   | 25              | 91             | 12.5           | 15.1                         | NA            | NA             | NA   | m   | none                                        | p.Phe508del/p.Phe508del                            | плі                  | PI               |
| EMCF29                    | 1                                                                                                          | 04/2016                    | Meconium ileus                                | 19.07.2019   | 40              | 97             | 13.8           | 14.8                         | 0.1           | 0.2            | 8.8  | m   | none                                        | p.Phe508del/p.Gln1411Ter                           | пл                   | PI               |
| EMCF30                    | 1                                                                                                          | 02/2015                    | Gastrointestinal and/or pulmonary<br>symptoms | 05.08.2019   | 79              | 123            | 24             | 15.9                         | 0.6           | 1.4            | 9.9  | m   | Cefuroxime                                  | p.Phe508del/p.Phe508del                            | плі                  | PI               |
| EMCF31                    | 1                                                                                                          | 06/2017                    | Newborn screening                             | 12.08.2019   | 26              | 92             | 14.9           | 17.6                         | NA            | NA             | NA   | m   | none                                        | p.Phe508del/p.Ala1087Pro                           | плі                  | PS               |
| EMCF32                    | 1                                                                                                          | 06/2014                    | Gastrointestinal and/or pulmonary<br>symptoms | 23.08.2019   | 78              | 110            | 18.6           | 15.4                         | -0.1          | -0.1           | 8.3  | f   | yes *                                       | p.Phe508del/p.Phe508del                            | шлі                  | PI               |

| EMCF33      | 1           | 10/2015                    | Gastrointestinal and/or pulmonary<br>symptoms | 06.09.2019   | 52                 | 104               | 16.8           | 15.5                            | NA               | NA                | 4    | m   | none                    | p.Phe508del/p.Tyr1092Ter                   | пл                   | Ы                |
|-------------|-------------|----------------------------|-----------------------------------------------|--------------|--------------------|-------------------|----------------|---------------------------------|------------------|-------------------|------|-----|-------------------------|--------------------------------------------|----------------------|------------------|
| EMCF34      | 1           | 08/2016                    | Family history                                | 13.09.2019   | 53                 | 104               | 16.1           | 14.9                            | 0                | 0.1               | 6.5  | m   | none                    | p.Gly542Ter/p.Asp1152His                   | I/IV                 | PS               |
| EMCF35      | 1           | 11/2015                    | Gastrointestinal and/or pulmonary<br>symptoms | 13.09.2019   | 76                 | 113               | 20.2           | 15.8                            | -1.5             | -1.5              | 7.4  | m   | none                    | p.Gly542Ter/p.Asp1152His                   | I/IV                 | PS               |
| EMCF36      | 1           | 02/2016                    | Gastrointestinal and/or pulmonary<br>symptoms | 23.09.2019   | 82                 | 118               | 21.3           | 15                              | -0.5             | -0.8              | 10.3 | f   | none                    | p.Phe508del/p.Phe508del                    | П/П                  | Ы                |
| EMCF37      | 1           | 04/2015                    | Gastrointestinal and/or pulmonary<br>symptoms | 08.11.2019   | 69                 | 119               | 23.1           | 16.3                            | 1.5              | 0.8               | 6.8  | m   | none                    | p.Phe508del/p.Arg117His                    | II/IV                | PS               |
| MCF13       | 1           | 04/2019                    | Newborn screening                             | 28.10.2019   | 7                  | 73                | 9.12           | 17.1                            | NA               | NA                | NA   | m   | none                    | p.Phe508del/p.Gly85Glu                     | П/П                  | Ы                |
|             |             |                            |                                               | •            |                    |                   |                |                                 | ·                | •                 |      |     |                         |                                            |                      |                  |
| Longitudina | l CF cohort |                            |                                               |              |                    |                   |                |                                 |                  |                   |      |     |                         |                                            |                      |                  |
| Patient     | Sample      | CF diagnosis (months/year) | Diagnosis                                     | Sample taken | Age<br>(in months) | Height<br>(in cm) | Weight (in kg) | BMI<br>(in kg/ m <sup>2</sup> ) | FVC<br>(Z score) | FEV1<br>(Z score) | LCI  | Sex | Antimicrobial therapy   | CFTR mutation                              | Class of mutation ** | Pancreatic state |
| MCF01       | 1           | 10/2018                    | Newborn screening                             | 06.11.2018   | 1                  | 52                | 3.9            | 14.4                            | NA               | NA                | NA   | f   | none                    | p.Phe508del/p.Phe508del                    | плі                  | Ы                |
| MCF01       | 2           | 10/2018                    | Newborn screening                             | 04.12.2018   | 2                  | 56                | 5              | 15.9                            | NA               | NA                | NA   | f   | none                    | p.Phe508del/p.Phe508del                    | шлі                  | Ы                |
| MCF01       | 3           | 10/2018                    | Newborn screening                             | 11.01.2019   | 3                  | 61                | 5.93           | 15.9                            | NA               | NA                | NA   | f   | none                    | p.Phe508del/p.Phe508del                    | плі                  | Ы                |
| MCF01       | 4           | 10/2018                    | Newborn screening                             | 22.03.2019   | 5                  | 66                | 7.8            | 17.9                            | NA               | NA                | NA   | f   | none                    | p.Phe508del/p.Phe508del                    | шлі                  | Ы                |
| MCF01       | 5           | 10/2018                    | Newborn screening                             | 24.05.2019   | 7                  | 71                | 9              | 17.9                            | NA               | NA                | NA   | f   | none                    | p.Phe508del/p.Phe508del                    | шлі                  | Ы                |
| MCF01       | 6           | 10/2018                    | Newborn screening                             | 23.07.2019   | 9                  | 72                | 10.1           | 19.5                            | NA               | NA                | NA   | f   | none                    | p.Phe508del/p.Phe508del                    | плі                  | Ы                |
| MCF01       | 7           | 10/2018                    | Newborn screening                             | 08.11.2019   | 13                 | 78                | 10.7           | 17.6                            | NA               | NA                | NA   | f   | Cefuroxime              | p.Phe508del/p.Phe508del                    | Ш/П                  | Ы                |
| MCF02       | 1           | 11/2018                    | Newborn screening                             | 13.11.2018   | 0                  | NA                | 4.13           | NA                              | NA               | NA                | NA   | f   | none                    | p.Phe508del/c.54-5940_273+10250<br>del21kb | пл                   | Ы                |
| MCF02       | 2           | 11/2018                    | Newborn screening                             | 21.01.2019   | 3                  | 68                | 7.35           | 15.9                            | NA               | NA                | NA   | f   | none                    | p.Phe508del/c.54-5940_273+10250<br>del21kb | пл                   | Ы                |
| MCF02       | 3           | 11/2018                    | Newborn screening                             | 27.05.2019   | 7                  | 73                | 9.28           | 17.4                            | NA               | NA                | NA   | f   | none                    | p.Phe508del/c.54-5940_273+10250<br>del21kb | пл                   | Ы                |
| MCF02       | 4           | 11/2018                    | Newborn screening                             | 26.08.2019   | 10                 | 78                | 11.58          | 19                              | NA               | NA                | NA   | f   | none                    | p.Phe508del/c.54-5940_273+10250<br>del21kb | пл                   | Ы                |
| MCF04       | 1           | 11/2016                    | Newborn screening                             | 07.12.2018   | 26                 | 87                | 12.4           | 16.4                            | NA               | NA                | NA   | m   | none                    | c.2657+5G>A/c.1545_1546delTA               | VЛ                   | PS               |
| MCF04       | 2           | 11/2016                    | Newborn screening                             | 08.03.2019   | 29                 | NA                | 13.1           | NA                              | NA               | NA                | NA   | m   | none                    | c.2657+5G>A/c.1545_1546delTA               | νл                   | PS               |
| MCF05       | 1           | 11/2016                    | Newborn screening                             | 15.01.2019   | 26                 | 89                | 12.2           | 15.4                            | NA               | NA                | NA   | m   | Ciprofloxacin, Colistin | p.Phe508del/p.Phe508del                    | плі                  | Ы                |
| MCF05       | 2           | 11/2016                    | Newborn screening                             | 09.04.2019   | 29                 | 90                | 13.3           | 16.4                            | NA               | NA                | NA   | m   | Colistin                | p.Phe508del/p.Phe508del                    | плі                  | Ы                |
| MCF06       | 1           | 12/2016                    | Newborn screening                             | 11.01.2019   | 26                 | 84                | 11.8           | 16.7                            | NA               | NA                | NA   | f   | Cefadroxil              | c.2052_2053insA/c.2989-2A>G                | I/I                  | Ы                |
| MCF06       | 2           | 12/2016                    | Newborn screening                             | 26.04.2019   | 29                 | 86                | 12.3           | 16.6                            | NA               | NA                | NA   | f   | Cefadroxil              | c.2052_2053insA/c.2989-2A>G                | I/I                  | Ы                |
| MCF06       | 3           | 12/2016                    | Newborn screening                             | 16.08.2019   | 33                 | 90                | 12.8           | 15.8                            | NA               | NA                | NA   | f   | none                    | c.2052_2053insA/c.2989-2A>G                | I/I                  | Ы                |
|             |             |                            |                                               |              |                    |                   |                |                                 |                  |                   |      |     |                         |                                            |                      |                  |

| MCF06                     | 4                                      | 12/2016                                                   | Newborn screening                                | 15.11.2019 | 36 | 91  | 12.9 | 15.6 | NA  | NA   | NA  | f | none                                       | c.2052_2053insA/c.2989-2A>G | 1/1   | PI |
|---------------------------|----------------------------------------|-----------------------------------------------------------|--------------------------------------------------|------------|----|-----|------|------|-----|------|-----|---|--------------------------------------------|-----------------------------|-------|----|
|                           |                                        |                                                           |                                                  |            |    |     |      |      |     |      |     |   |                                            |                             |       |    |
| MCF07                     | 1                                      | 03/2018                                                   | Newborn screening                                | 12.02.2019 | 11 | 74  | 9    | 16.4 | NA  | NA   | NA  | m | yes "                                      | p.Phe508del/p.Tyr1092Ter    | 11/1  | ы  |
| MCF07                     | 2                                      | 03/2018                                                   | Newborn screening                                | 21.05.2019 | 14 | 79  | 9.8  | 15.7 | NA  | NA   | NA  | m | none                                       | p.Phe508del/p.Tyr1092Ter    | ПЛ    | PI |
| MCF07                     | 3                                      | 03/2018                                                   | Newborn screening                                | 20.08.2019 | 17 | 80  | 10.5 | 16.4 | NA  | NA   | NA  | m | none                                       | p.Phe508del/p.Tyr1092Ter    | 11/1  | Ы  |
| MCF08                     | 1                                      | 03/2019                                                   | Newborn screening                                | 12.03.2019 | 1  | 58  | 4.9  | 14.8 | NA  | NA   | NA  | f | none                                       | p.Ser466Ter(TAG)/p.Gly85Glu | ПЛ    | Ы  |
| MCF08                     | 2                                      | 03/2019                                                   | Newborn screening                                | 29.05.2019 | 3  | NA  | 5.9  | NA   | NA  | NA   | NA  | f | none                                       | p.Ser466Ter(TAG)/p.Gly85Glu | ПЛ    | PI |
| MCF08                     | 3                                      | 03/2019                                                   | Newborn screening                                | 20.08.2019 | 6  | 70  | 6.7  | 13.7 | NA  | NA   | NA  | f | Cefuroxime, Amoxicillin<br>clavulanic acid | p.Ser466Ter(TAG)/p.Gly85Glu | 11/1  | PI |
| MCF09                     | 1                                      | 02/2018                                                   | Newborn screening                                | 18.03.2019 | 20 | 82  | 10.2 | 15.2 | NA  | NA   | NA  | m | none                                       | p.Glu92Lys/p.Glu92Lys       | П/П   | PS |
| MCF09                     | 2                                      | 02/2018                                                   | Newborn screening                                | 22.07.2019 | 24 | 88  | 10.9 | 14.1 | NA  | NA   | NA  | m | none                                       | p.Glu92Lys/p.Glu92Lys       | 11/11 | PS |
| MCF09                     | 3                                      | 02/2018                                                   | Newborn screening                                | 30.09.2019 | 26 | 89  | 11.2 | 14.1 | NA  | NA   | NA  | m | none                                       | p.Glu92Lys/p.Glu92Lys       | П/П   | PS |
| MCF10                     | 1                                      | 12/2017                                                   | Newborn screening                                | 29.03.2019 | 16 | 83  | 10.8 | 15.7 | NA  | NA   | NA  | m | Cefuroxime                                 | p.Phe508del/c.42delA        | П/І   | PI |
| MCF10                     | 2                                      | 12/2017                                                   | Newborn screening                                | 29.10.2019 | 23 | 110 | 17.1 | 14.2 | 0.7 | -0.8 | 9.9 | m | Penicillin G                               | p.Phe508del/c.42delA        | 11/1  | PI |
| MCF11                     | 1                                      | 12/2017                                                   | Newborn screening                                | 15.04.2019 | 17 | 86  | 12.4 | 16.8 | NA  | NA   | NA  | m | yes *                                      | p.Phe508del/p.Phe508del     | 11/11 | PI |
| MCF11                     | 2                                      | 12/2017                                                   | Newborn screening                                | 22.07.2019 | 20 | 90  | 13   | 16   | NA  | NA   | NA  | m | none                                       | p.Phe508del/p.Phe508del     | 11/11 | PI |
| MCF11                     | 3                                      | 12/2017                                                   | Newborn screening                                | 04.11.2019 | 24 | 92  | 14   | 16.5 | NA  | NA   | NA  | m | Tobramycin                                 | p.Phe508del/p.Phe508del     | 11/11 | PI |
| MCF12                     | 1                                      | 09/2018                                                   | Newborn screening                                | 26.04.2019 | 12 | 81  | 10.5 | 16   | NA  | NA   | NA  | m | none                                       | p.Phe508del/p.Phe508del     | 11/11 | PI |
| MCF12                     | 2                                      | 09/2018                                                   | Newborn screening                                | 23.08.2019 | 16 | 83  | 11   | 16   | NA  | NA   | NA  | m | none                                       | p.Phe508del/p.Phe508del     | 11/11 | PI |
| MCF12                     | 3                                      | 09/2018                                                   | Newborn screening                                | 15.11.2019 | 18 | NA  | 12.1 | NA   | NA  | NA   | NA  | m | none                                       | p.Phe508del/p.Phe508del     | П/П   | PI |
| *Pharmaceu<br>**Zielenski | tical active ingre<br>J. & Tsui, L. C. | dient was unknown<br>Cystic fibrosis: genotypic and phene | otypic variations. Annu. Rev. Genet. 29, 777-807 | (1995).    | •  | •   | •    | •    | •   | •    |     | • | •                                          | •                           | •     | •  |

| Supplementary Table 2. Median relative abundar | nce of core sp | ecies in health | hy and CF chi       | ildren across differ | ent age groups. The | Mann-Whitney I | J test was appro | bached for statis | tical comparison w | ith the corresponding | ng effect size (r | ) and the confid | ence intervals o | f the effect size (Cl | .).          |
|------------------------------------------------|----------------|-----------------|---------------------|----------------------|---------------------|----------------|------------------|-------------------|--------------------|-----------------------|-------------------|------------------|------------------|-----------------------|--------------|
| Age group                                      | 0 years        | 0 years         | 0 years             | 0 years              | 0 years             | 1-3 years      | 1-3 years        | 1-3 years         | 1-3 years          | 1-3 years             | 4-6 years         | 4-6 years        | 4-6 years        | 4-6 years             | 4-6 years    |
| State                                          | Healthy        | CF              | Mann-Whitney U test |                      | Healthy             | CF             | Mann-Whitr       | ney U test        |                    | Healthy               | CF                | Mann-White       | <u> </u>         |                       |              |
| Statistics                                     | median         | median          | p-value             | effect size r        | CI (r)              | median         | median           | p-value           | effect size r      | CI (r)                | median            | median           | p-value          | effect size r         | CI (r)       |
| Sample size                                    | n = 28         | n = 6           |                     |                      |                     | n = 9          | n=20             |                   |                    |                       | n = 15            | n = 16           |                  |                       |              |
| Genera and core species thereof                |                |                 |                     |                      |                     |                |                  |                   |                    |                       |                   |                  |                  |                       |              |
| Actinomyces meyeri                             | 0.24           | 0               | 0.07                | 0.32                 | -0.18 - 0.64        | 1.44           | 0.34             | 0.03              | 0.41               | 0.07 - 0.68           | 1.71              | 0.17             | 0.0004           | 0.64                  | 0.35 - 0.83  |
| Atopobium parvulum                             | 0.13           | 0.02            | 0.09                | 0.3                  | -0.01 - 0.56        | 0.12           | 0.05             | 0.12              | 0.3                | -0.05 - 0.63          | 0.54              | 0.27             | 0.007            | 0.49                  | 0.16 - 0.73  |
| Campylobacter concisus                         | 0.2            | 0               | 0.02                | 0.43                 | 0.21 - 0.61         | 1.21           | 0.83             | 0.49              | 0.13               | -0.22 - 0.47          | 7.47              | 3.45             | 0.004            | 0.5                   | 0.18 - 0.75  |
| Capnocytophaga                                 | 0.02           | 0               |                     |                      |                     | 0.31           | 0.79             |                   |                    |                       | 1.98              | 0.89             |                  |                       |              |
| Capnocytophaga gingivalis                      | 0              | 0               | 0.24                | 0.21                 | -0.05 - 0.42        | 0.13           | 0.33             | 0.04              | 0.4                | -0.66 - 0.06          | 1.21              | 0.54             | 0.10             | 0.3                   | -0.04 - 0.61 |
| Capnocytophaga leadbetteri                     | 0.02           | 0               | 0.19                | 0.24                 | -0.16 - 0.5         | 0.18           | 0.46             | 0.41              | 0.16               | -0.53 - 0.24          | 0.77              | 0.35             | 0.03             | 0.38                  | 0.04 - 0.65  |
| Corynebacterium argentoratense                 | 0              | 0               | 1                   | 0                    | -0.39 - 0.28        | 0.02           | 0                | 0.0006            | 0.64               | 0.31 - 0.89           | 0.01              | 0                | 0.14             | 0.27                  | -0.05 - 0.59 |
| Eubacterium sulci                              | 0.02           | 0               | 0.04                | 0.37                 | 0.13 - 0.58         | 0.13           | 0.23             | 0.34              | 0.18               | -0.21 - 0.54          | 2.84              | 0.43             | 0.001            | 0.6                   | 0.32 - 0.8   |
| Fusobacterium periodonticum                    | 0.02           | 0               | 0.16                | 0.25                 | -0.04 - 0.5         | 0.48           | 1.83             | 0.65              | 0.09               | -0.27 - 0.46          | 14.22             | 2.45             | 0.002            | 0.56                  | 0.28 - 0.76  |
| Haemophilus                                    | 1.26           | 0.02            |                     |                      |                     | 4.63           | 16.08            |                   |                    |                       | 7.03              | 13.15            |                  |                       |              |
| Haemophilus influenzae                         | 0.72           | 0.02            | 0.82                | 0.04                 | -0.4 - 0.43         | 2.08           | 6.62             | 0.98              | 0.01               | -0.43 - 0.38          | 3.07              | 3.21             | 0.86             | 0.04                  | -0.33 - 0.4  |
| Haemophilus parainfluenzae                     | 0.54           | 0               | 0.04                | 0.36                 | -0.02 - 0.63        | 2.55           | 9.46             | 0.69              | 0.08               | -0.49 - 0.34          | 3.96              | 9.94             | 0.80             | 0.05                  | -0.42 - 0.32 |
| Neisseria                                      | 0.3            | 0               |                     |                      |                     | 4.4            | 3.58             |                   |                    |                       | 1.55              | 3.54             |                  |                       |              |
| Neisseria gonorrhoeae                          | 0.04           | 0               | 0.15                | 0.25                 | -0.17 - 0.53        | 0.68           | 0.45             | 0.91              | 0.03               | -0.32 - 0.37          | 0.15              | 0.45             | 0.92             | 0.02                  | -0.34 - 0.37 |
| Neisseria lactamica                            | 0.13           | 0               | 0.17                | 0.24                 | -0.24 - 0.55        | 0.86           | 0.79             | 0.76              | 0.06               | -0.29 - 0.4           | 0.3               | 0.33             | 0.31             | 0.18                  | -0.16 - 0.52 |
| Neisseria meningitidis                         | 0.08           | 0               | 0.22                | 0.22                 | -0.19 - 0.51        | 1.28           | 0.64             | 0.62              | 0.1                | -0.27 - 0.42          | 0.25              | 0.44             | 0.81             | 0.05                  | -0.35 - 0.4  |
| Neisseria mucosa                               | 0.05           | 0               | 0.08                | 0.31                 | -0.03 - 0.59        | 1.58           | 1.7              | 0.45              | 0.14               | -0.48 - 0.16          | 0.85              | 2.32             | 0.32             | 0.18                  | -0.53 - 0.18 |
| Prevotella                                     | 1.32           | 0               |                     |                      |                     | 8.63           | 4.64             |                   |                    |                       | 14.87             | 18.01            |                  |                       |              |
| Prevotella jejuni                              | 0.16           | 0               | 0.04                | 0.37                 | 0.12 - 0.56         | 0.71           | 0.5              | 0.17              | 0.26               | -0.09 - 0.57          | 3.89              | 1.87             | 0.16             | 0.26                  | -0.08 - 0.57 |
| Prevotella melaninogenica                      | 1.16           | 0               | 0.02                | 0.43                 | 0.18 - 0.63         | 7.92           | 4.14             | 0.94              | 0.02               | -0.32 - 0.33          | 10.98             | 16.14            | 0.86             | 0.04                  | -0.32 - 0.38 |
| Rothia                                         | 15.98          | 9.58            |                     |                      |                     | 35.3           | 40.7             |                   |                    |                       | 15.53             | 18.48            |                  |                       |              |
| Rothia aeria                                   | 0.07           | 0.02            | 0.004               | 0.51                 | 0.28 - 0.69         | 0.28           | 0.48             | 0.89              | 0.03               | -0.38 - 0.32          | 0.31              | 0.27             | 0.59             | 0.1                   | -0.45 - 0.27 |

| Rothia mucilaginosa                                                                                                                                                               | 15.91 | 9.56  | 0.14  | 0.26 | -0.16 - 0.56 | 35.06 | 40.18 | 0.80 | 0.05 | -0.4 - 0.31  | 15.22 | 18.21 | 0.52 | 0.12 | -0.44 - 0.28 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|------|--------------|-------|-------|------|------|--------------|-------|-------|------|------|--------------|
| Streptococcus                                                                                                                                                                     | 76.61 | 88.64 |       |      |              | 39.41 | 28.12 |      |      |              | 18.96 | 28.12 |      |      |              |
| Streptococcus equinus                                                                                                                                                             | 2.39  | 6.86  | 0.21  | 0.23 | -0.56 - 0.25 | 6.43  | 2.5   | 0.22 | 0.24 | -0.13 - 0.55 | 2.01  | 1.16  | 0.61 | 0.1  | -0.46 - 0.29 |
| Streptococcus mitis                                                                                                                                                               | 41.97 | 36.18 | 0.94  | 0.02 | -0.32 - 0.29 | 4.96  | 8.55  | 0.41 | 0.16 | -0.21 - 0.5  | 3.35  | 2.93  | 0.37 | 0.16 | -0.18 - 0.5  |
| Streptococcus oralis                                                                                                                                                              | 3.12  | 3.11  | 0.71  | 0.07 | -0.3 - 0.49  | 2.05  | 1.91  | 0.94 | 0.02 | -0.33 - 0.37 | 1.29  | 1.13  | 0.98 | 0.01 | -0.36 - 0.36 |
| Streptococcus parasanguinis                                                                                                                                                       | 7.09  | 13.25 | 0.19  | 0.23 | -0.11 - 0.49 | 14.67 | 3.27  | 0.05 | 0.37 | 0.03 - 0.66  | 5.97  | 17.23 | 0.03 | 0.38 | -0.66 - 0.05 |
| Streptococcus pneumoniae                                                                                                                                                          | 7.75  | 4.31  | 0.74  | 0.06 | -0.34 - 0.44 | 2.83  | 3.36  | 0.25 | 0.22 | -0.16 - 0.54 | 1.49  | 1.28  | 0.53 | 0.12 | -0.26 - 0.46 |
| Streptococcus pseudopneumoniae                                                                                                                                                    | 12.58 | 16.76 | 0.75  | 0.06 | -0.37 - 0.28 | 5.57  | 5.92  | 0.53 | 0.12 | -0.25 - 0.47 | 2.4   | 1.41  | 0.20 | 0.23 | -0.14 - 0.56 |
| Streptococcus salivarius                                                                                                                                                          | 1.28  | 7.93  | 0.63  | 0.09 | -0.56 - 0.41 | 2.7   | 2.04  | 0.20 | 0.24 | -0.1 - 0.54  | 1.9   | 2.35  | 0.89 | 0.03 | -0.33 - 0.36 |
| Streptococcus sanguinis                                                                                                                                                           | 0.43  | 0.24  | 0.86  | 0.04 | -0.37 - 0.46 | 0.2   | 0.57  | 0.25 | 0.22 | -0.56 - 0.14 | 0.37  | 0.48  | 0.37 | 0.16 | -0.49 - 0.2  |
| Streptococcus thermophilus                                                                                                                                                        | 0.6   | 0.81  | 0.80  | 0.05 | -0.55 - 0.44 | 0.27  | 0.15  | 0.21 | 0.24 | -0.12 - 0.54 | 0.18  | 0.15  | 0.98 | 0.01 | -0.38 - 0.34 |
| Veillonella                                                                                                                                                                       | 3.3   | 0.92  |       |      |              | 3.59  | 2.7   |      |      |              | 13.29 | 11.05 |      |      |              |
| Veillonella atypica                                                                                                                                                               | 2.6   | 0.8   | 0.009 | 0.44 | 0.14 - 0.66  | 1.78  | 1.31  | 0.25 | 0.22 | -0.14 - 0.53 | 11.48 | 9.23  | 0.89 | 0.03 | -0.39 - 0.33 |
| Veillonella parvula                                                                                                                                                               | 0.7   | 0.12  | 0.02  | 0.42 | 0.09 - 0.67  | 1.81  | 1.39  | 0.35 | 0.18 | -0.17 - 0.49 | 1.81  | 1.82  | 0.25 | 0.21 | -0.54 - 0.16 |
| Significant differences in relative abundance between samples from healthy and CF children are highlighted in bold font. The significance level for statistical testing was 0.01. |       |       |       |      |              |       |       |      |      |              |       |       |      |      |              |

Supplementary Table 3. Variables contributing to the variance observed during the principal component analysis

| Variable                                                                                              | Dim1       | Dim2        | $\cos^{21}$ | Contrib <sup>2</sup> |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|------------|-------------|-------------|----------------------|--|--|--|--|--|
| Streptococcus oralis                                                                                  | -0.9237222 | 0.29624120  | 0.94        | 4.8                  |  |  |  |  |  |
| Rothia mucilaginosa                                                                                   | -0.9235098 | 0.27982962  | 0.93        | 4.7                  |  |  |  |  |  |
| Veillonella parvula                                                                                   | -0.9574001 | 0.10577277  | 0.93        | 4.7                  |  |  |  |  |  |
| Streptococcus parasanguinis                                                                           | -0.9083232 | 0.29939834  | 0.91        | 4.7                  |  |  |  |  |  |
| Fusobacterium periodonticum                                                                           | -0.8755037 | -0.36904014 | 0.90        | 4.6                  |  |  |  |  |  |
| Actinomyces meyeri                                                                                    | -0.9410270 | 0.10096403  | 0.90        | 4.6                  |  |  |  |  |  |
| Streptococcus mitis                                                                                   | -0.9153348 | 0.22133461  | 0.89        | 4.5                  |  |  |  |  |  |
| Streptococcus sanguinis                                                                               | -0.9256633 | 0.15124909  | 0.88        | 4.5                  |  |  |  |  |  |
| Neisseria gonorrhoeae                                                                                 | -0.9310432 | -0.10168723 | 0.88        | 4.5                  |  |  |  |  |  |
| Neisseria meningitidis                                                                                | -0.9278126 | -0.11361306 | 0.87        | 4.4                  |  |  |  |  |  |
| Neisseria mucosa                                                                                      | -0.8998410 | -0.21601130 | 0.86        | 4.4                  |  |  |  |  |  |
| Campylobacter concisus                                                                                | -0.9044078 | -0.17217491 | 0.85        | 4.3                  |  |  |  |  |  |
| Streptococcus salivarius                                                                              | -0.8486559 | 0.35656604  | 0.85        | 4.3                  |  |  |  |  |  |
| Streptococcus pneumoniae                                                                              | -0.8835631 | 0.20674724  | 0.82        | 4.2                  |  |  |  |  |  |
| Veillonella atypica                                                                                   | -0.8642924 | 0.24112357  | 0.81        | 4.1                  |  |  |  |  |  |
| Streptococcus pseudopneumoniae                                                                        | -0.8569169 | 0.18915066  | 0.77        | 3.9                  |  |  |  |  |  |
| Prevotella melaninogenica                                                                             | -0.6466619 | -0.50520991 | 0.67        | 3.4                  |  |  |  |  |  |
| Haemophilus parainfluenzae                                                                            | -0.7656215 | -0.21318570 | 0.63        | 3.2                  |  |  |  |  |  |
| Eubacterium sulci                                                                                     | -0.3071187 | -0.67744340 | 0.55        | 2.8                  |  |  |  |  |  |
| Streptococcus equinus                                                                                 | -0.6998067 | 0.23183883  | 0.54        | 2.8                  |  |  |  |  |  |
| Neisseria lactamica                                                                                   | -0.7097302 | -0.06791028 | 0.51        | 2.6                  |  |  |  |  |  |
| Capnocytophaga leadbetteri                                                                            | -0.3020869 | -0.64568919 | 0.51        | 2.6                  |  |  |  |  |  |
| Prevotella jejuni                                                                                     | -0.4279082 | -0.54929682 | 0.48        | 2.5                  |  |  |  |  |  |
| Rothia aeria                                                                                          | -0.6744211 | -0.02830531 | 0.46        | 2.3                  |  |  |  |  |  |
| Capnocytophaga gingivalis                                                                             | -0.3106266 | -0.56249328 | 0.41        | 2.1                  |  |  |  |  |  |
| <sup>1</sup> the squared coordinates = (eigenvectors * standard deviations of component) <sup>2</sup> |            |             |             |                      |  |  |  |  |  |

 $^2$  contribution of the variable to the principal components in percentage (cos2 of variable \* 100 / cos2 of component)

| Supplementary Table 4. Non-metric multidime   | ensional scaling based on  | Bray-Curtis           |  |  |  |  |
|-----------------------------------------------|----------------------------|-----------------------|--|--|--|--|
| dissimilarity matrices of CF patients.*       |                            |                       |  |  |  |  |
| Variable                                      | Goodness of fit, r2        | C2 Goodness of fit, p |  |  |  |  |
| Pancreatic status (PI vs PS)                  | 0.009                      | 0.80                  |  |  |  |  |
| Class of mutation (II/I; II/II; IV/other and  | 0.11                       | 0.81                  |  |  |  |  |
| V/other)                                      |                            |                       |  |  |  |  |
| Antimicrobial therapy                         | 0.05                       | 0.29                  |  |  |  |  |
| Pseudomonas aeruginosa-DNA                    | 0.06                       | 0.25                  |  |  |  |  |
| Staphylococcus aureus-DNA                     | 0.07                       | 0.25                  |  |  |  |  |
| Age group                                     | 0.02                       | 0.53                  |  |  |  |  |
| Body weight                                   | 0.04                       | 0.67                  |  |  |  |  |
| Body height                                   | 0.06                       | 0.57                  |  |  |  |  |
| BMI                                           | 0.35                       | 0.02 *                |  |  |  |  |
| FVC (Z-score)                                 | 0.17                       | 0.17                  |  |  |  |  |
| LCI                                           | 0.19                       | 0.13                  |  |  |  |  |
| * A good representation in reduced dimensions | s was observed (stress = 0 | ).07). The            |  |  |  |  |

significance of known factors fitted to the ordination was assessed using a permutation test (n = 999, R vegan package, envfit).

Supplementary Table 5. Programmes for cell lysis (programme 1) and DNA fragmentation (programme 2) using the Covaris S220 Focused-ultrasonicator.

Programme 1

Required run time: 3 min, 30 sec

Temperature: 5.0 – 8.0 °C

Begin repeat (6 x)

Treatment (5 sec)

Peak power = 200.0, duty factor = 2.0, cycles/burst = 100

Treatment (30 sec)

Peak power = 275.0, duty factor = 5.0, cycles/burst = 100

End repeat

Programme 2

Required run time: 6 min

Temperature: 5.0 – 8.0 °C

Treatment (360 sec)

Peak power = 175.0, duty factor = 10.0, cycles/burst = 200